xref: /openbmc/linux/kernel/rcu/srcutree.c (revision 98a52692)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static parameter
120  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121  */
122 static void init_srcu_struct_data(struct srcu_struct *ssp)
123 {
124 	int cpu;
125 	struct srcu_data *sdp;
126 
127 	/*
128 	 * Initialize the per-CPU srcu_data array, which feeds into the
129 	 * leaves of the srcu_node tree.
130 	 */
131 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
132 		     ARRAY_SIZE(sdp->srcu_unlock_count));
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
140 		sdp->mynode = NULL;
141 		sdp->cpu = cpu;
142 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144 		sdp->ssp = ssp;
145 	}
146 }
147 
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ		0x2
150 
151 /*
152  * Check whether sequence number corresponding to snp node,
153  * is invalid.
154  */
155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157 	return s == SRCU_SNP_INIT_SEQ;
158 }
159 
160 /*
161  * Allocated and initialize SRCU combining tree.  Returns @true if
162  * allocation succeeded and @false otherwise.
163  */
164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166 	int cpu;
167 	int i;
168 	int level = 0;
169 	int levelspread[RCU_NUM_LVLS];
170 	struct srcu_data *sdp;
171 	struct srcu_node *snp;
172 	struct srcu_node *snp_first;
173 
174 	/* Initialize geometry if it has not already been initialized. */
175 	rcu_init_geometry();
176 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177 	if (!ssp->srcu_sup->node)
178 		return false;
179 
180 	/* Work out the overall tree geometry. */
181 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182 	for (i = 1; i < rcu_num_lvls; i++)
183 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184 	rcu_init_levelspread(levelspread, num_rcu_lvl);
185 
186 	/* Each pass through this loop initializes one srcu_node structure. */
187 	srcu_for_each_node_breadth_first(ssp, snp) {
188 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
190 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
191 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193 			snp->srcu_data_have_cbs[i] = 0;
194 		}
195 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196 		snp->grplo = -1;
197 		snp->grphi = -1;
198 		if (snp == &ssp->srcu_sup->node[0]) {
199 			/* Root node, special case. */
200 			snp->srcu_parent = NULL;
201 			continue;
202 		}
203 
204 		/* Non-root node. */
205 		if (snp == ssp->srcu_sup->level[level + 1])
206 			level++;
207 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208 				   (snp - ssp->srcu_sup->level[level]) /
209 				   levelspread[level - 1];
210 	}
211 
212 	/*
213 	 * Initialize the per-CPU srcu_data array, which feeds into the
214 	 * leaves of the srcu_node tree.
215 	 */
216 	level = rcu_num_lvls - 1;
217 	snp_first = ssp->srcu_sup->level[level];
218 	for_each_possible_cpu(cpu) {
219 		sdp = per_cpu_ptr(ssp->sda, cpu);
220 		sdp->mynode = &snp_first[cpu / levelspread[level]];
221 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222 			if (snp->grplo < 0)
223 				snp->grplo = cpu;
224 			snp->grphi = cpu;
225 		}
226 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
227 	}
228 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229 	return true;
230 }
231 
232 /*
233  * Initialize non-compile-time initialized fields, including the
234  * associated srcu_node and srcu_data structures.  The is_static parameter
235  * tells us that ->sda has already been wired up to srcu_data.
236  */
237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239 	if (!is_static)
240 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241 	if (!ssp->srcu_sup)
242 		return -ENOMEM;
243 	if (!is_static)
244 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246 	ssp->srcu_sup->node = NULL;
247 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249 	ssp->srcu_idx = 0;
250 	ssp->srcu_sup->srcu_gp_seq = 0;
251 	ssp->srcu_sup->srcu_barrier_seq = 0;
252 	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
253 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
254 	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
255 	ssp->srcu_sup->sda_is_static = is_static;
256 	if (!is_static)
257 		ssp->sda = alloc_percpu(struct srcu_data);
258 	if (!ssp->sda) {
259 		if (!is_static)
260 			kfree(ssp->srcu_sup);
261 		return -ENOMEM;
262 	}
263 	init_srcu_struct_data(ssp);
264 	ssp->srcu_sup->srcu_gp_seq_needed_exp = 0;
265 	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
266 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
267 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) {
268 			if (!ssp->srcu_sup->sda_is_static) {
269 				free_percpu(ssp->sda);
270 				ssp->sda = NULL;
271 				kfree(ssp->srcu_sup);
272 				return -ENOMEM;
273 			}
274 		} else {
275 			WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
276 		}
277 	}
278 	ssp->srcu_sup->srcu_ssp = ssp;
279 	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */
280 	return 0;
281 }
282 
283 #ifdef CONFIG_DEBUG_LOCK_ALLOC
284 
285 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
286 		       struct lock_class_key *key)
287 {
288 	/* Don't re-initialize a lock while it is held. */
289 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
290 	lockdep_init_map(&ssp->dep_map, name, key, 0);
291 	return init_srcu_struct_fields(ssp, false);
292 }
293 EXPORT_SYMBOL_GPL(__init_srcu_struct);
294 
295 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
296 
297 /**
298  * init_srcu_struct - initialize a sleep-RCU structure
299  * @ssp: structure to initialize.
300  *
301  * Must invoke this on a given srcu_struct before passing that srcu_struct
302  * to any other function.  Each srcu_struct represents a separate domain
303  * of SRCU protection.
304  */
305 int init_srcu_struct(struct srcu_struct *ssp)
306 {
307 	return init_srcu_struct_fields(ssp, false);
308 }
309 EXPORT_SYMBOL_GPL(init_srcu_struct);
310 
311 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
312 
313 /*
314  * Initiate a transition to SRCU_SIZE_BIG with lock held.
315  */
316 static void __srcu_transition_to_big(struct srcu_struct *ssp)
317 {
318 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
319 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
320 }
321 
322 /*
323  * Initiate an idempotent transition to SRCU_SIZE_BIG.
324  */
325 static void srcu_transition_to_big(struct srcu_struct *ssp)
326 {
327 	unsigned long flags;
328 
329 	/* Double-checked locking on ->srcu_size-state. */
330 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
331 		return;
332 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
333 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
334 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
335 		return;
336 	}
337 	__srcu_transition_to_big(ssp);
338 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
339 }
340 
341 /*
342  * Check to see if the just-encountered contention event justifies
343  * a transition to SRCU_SIZE_BIG.
344  */
345 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
346 {
347 	unsigned long j;
348 
349 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
350 		return;
351 	j = jiffies;
352 	if (ssp->srcu_sup->srcu_size_jiffies != j) {
353 		ssp->srcu_sup->srcu_size_jiffies = j;
354 		ssp->srcu_sup->srcu_n_lock_retries = 0;
355 	}
356 	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
357 		return;
358 	__srcu_transition_to_big(ssp);
359 }
360 
361 /*
362  * Acquire the specified srcu_data structure's ->lock, but check for
363  * excessive contention, which results in initiation of a transition
364  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
365  * parameter permits this.
366  */
367 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
368 {
369 	struct srcu_struct *ssp = sdp->ssp;
370 
371 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
372 		return;
373 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
374 	spin_lock_irqsave_check_contention(ssp);
375 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
376 	spin_lock_irqsave_rcu_node(sdp, *flags);
377 }
378 
379 /*
380  * Acquire the specified srcu_struct structure's ->lock, but check for
381  * excessive contention, which results in initiation of a transition
382  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
383  * parameter permits this.
384  */
385 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
386 {
387 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
388 		return;
389 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
390 	spin_lock_irqsave_check_contention(ssp);
391 }
392 
393 /*
394  * First-use initialization of statically allocated srcu_struct
395  * structure.  Wiring up the combining tree is more than can be
396  * done with compile-time initialization, so this check is added
397  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
398  * compile-time initialized, to resolve races involving multiple
399  * CPUs trying to garner first-use privileges.
400  */
401 static void check_init_srcu_struct(struct srcu_struct *ssp)
402 {
403 	unsigned long flags;
404 
405 	/* The smp_load_acquire() pairs with the smp_store_release(). */
406 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
407 		return; /* Already initialized. */
408 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
409 	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
410 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
411 		return;
412 	}
413 	init_srcu_struct_fields(ssp, true);
414 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
415 }
416 
417 /*
418  * Returns approximate total of the readers' ->srcu_lock_count[] values
419  * for the rank of per-CPU counters specified by idx.
420  */
421 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
422 {
423 	int cpu;
424 	unsigned long sum = 0;
425 
426 	for_each_possible_cpu(cpu) {
427 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
428 
429 		sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
430 	}
431 	return sum;
432 }
433 
434 /*
435  * Returns approximate total of the readers' ->srcu_unlock_count[] values
436  * for the rank of per-CPU counters specified by idx.
437  */
438 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
439 {
440 	int cpu;
441 	unsigned long mask = 0;
442 	unsigned long sum = 0;
443 
444 	for_each_possible_cpu(cpu) {
445 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
446 
447 		sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
448 		if (IS_ENABLED(CONFIG_PROVE_RCU))
449 			mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
450 	}
451 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
452 		  "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
453 	return sum;
454 }
455 
456 /*
457  * Return true if the number of pre-existing readers is determined to
458  * be zero.
459  */
460 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
461 {
462 	unsigned long unlocks;
463 
464 	unlocks = srcu_readers_unlock_idx(ssp, idx);
465 
466 	/*
467 	 * Make sure that a lock is always counted if the corresponding
468 	 * unlock is counted. Needs to be a smp_mb() as the read side may
469 	 * contain a read from a variable that is written to before the
470 	 * synchronize_srcu() in the write side. In this case smp_mb()s
471 	 * A and B act like the store buffering pattern.
472 	 *
473 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
474 	 * after the synchronize_srcu() from being executed before the
475 	 * grace period ends.
476 	 */
477 	smp_mb(); /* A */
478 
479 	/*
480 	 * If the locks are the same as the unlocks, then there must have
481 	 * been no readers on this index at some point in this function.
482 	 * But there might be more readers, as a task might have read
483 	 * the current ->srcu_idx but not yet have incremented its CPU's
484 	 * ->srcu_lock_count[idx] counter.  In fact, it is possible
485 	 * that most of the tasks have been preempted between fetching
486 	 * ->srcu_idx and incrementing ->srcu_lock_count[idx].  And there
487 	 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
488 	 * in a system whose address space was fully populated with memory.
489 	 * Call this quantity Nt.
490 	 *
491 	 * So suppose that the updater is preempted at this point in the
492 	 * code for a long time.  That now-preempted updater has already
493 	 * flipped ->srcu_idx (possibly during the preceding grace period),
494 	 * done an smp_mb() (again, possibly during the preceding grace
495 	 * period), and summed up the ->srcu_unlock_count[idx] counters.
496 	 * How many times can a given one of the aforementioned Nt tasks
497 	 * increment the old ->srcu_idx value's ->srcu_lock_count[idx]
498 	 * counter, in the absence of nesting?
499 	 *
500 	 * It can clearly do so once, given that it has already fetched
501 	 * the old value of ->srcu_idx and is just about to use that value
502 	 * to index its increment of ->srcu_lock_count[idx].  But as soon as
503 	 * it leaves that SRCU read-side critical section, it will increment
504 	 * ->srcu_unlock_count[idx], which must follow the updater's above
505 	 * read from that same value.  Thus, as soon the reading task does
506 	 * an smp_mb() and a later fetch from ->srcu_idx, that task will be
507 	 * guaranteed to get the new index.  Except that the increment of
508 	 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
509 	 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
510 	 * is before the smp_mb().  Thus, that task might not see the new
511 	 * value of ->srcu_idx until the -second- __srcu_read_lock(),
512 	 * which in turn means that this task might well increment
513 	 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
514 	 * not just once.
515 	 *
516 	 * However, it is important to note that a given smp_mb() takes
517 	 * effect not just for the task executing it, but also for any
518 	 * later task running on that same CPU.
519 	 *
520 	 * That is, there can be almost Nt + Nc further increments of
521 	 * ->srcu_lock_count[idx] for the old index, where Nc is the number
522 	 * of CPUs.  But this is OK because the size of the task_struct
523 	 * structure limits the value of Nt and current systems limit Nc
524 	 * to a few thousand.
525 	 *
526 	 * OK, but what about nesting?  This does impose a limit on
527 	 * nesting of half of the size of the task_struct structure
528 	 * (measured in bytes), which should be sufficient.  A late 2022
529 	 * TREE01 rcutorture run reported this size to be no less than
530 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
531 	 * comfortably beyond excessive.  Especially on 64-bit systems,
532 	 * which are unlikely to be configured with an address space fully
533 	 * populated with memory, at least not anytime soon.
534 	 */
535 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
536 }
537 
538 /**
539  * srcu_readers_active - returns true if there are readers. and false
540  *                       otherwise
541  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
542  *
543  * Note that this is not an atomic primitive, and can therefore suffer
544  * severe errors when invoked on an active srcu_struct.  That said, it
545  * can be useful as an error check at cleanup time.
546  */
547 static bool srcu_readers_active(struct srcu_struct *ssp)
548 {
549 	int cpu;
550 	unsigned long sum = 0;
551 
552 	for_each_possible_cpu(cpu) {
553 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
554 
555 		sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
556 		sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
557 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
558 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
559 	}
560 	return sum;
561 }
562 
563 /*
564  * We use an adaptive strategy for synchronize_srcu() and especially for
565  * synchronize_srcu_expedited().  We spin for a fixed time period
566  * (defined below, boot time configurable) to allow SRCU readers to exit
567  * their read-side critical sections.  If there are still some readers
568  * after one jiffy, we repeatedly block for one jiffy time periods.
569  * The blocking time is increased as the grace-period age increases,
570  * with max blocking time capped at 10 jiffies.
571  */
572 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
573 
574 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
575 module_param(srcu_retry_check_delay, ulong, 0444);
576 
577 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
578 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
579 
580 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
581 							// no-delay instances.
582 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
583 							// no-delay instances.
584 
585 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
586 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
587 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
588 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
589 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
590 // called from process_srcu().
591 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
592 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
593 
594 // Maximum per-GP-phase consecutive no-delay instances.
595 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
596 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
597 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
598 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
599 
600 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
601 module_param(srcu_max_nodelay_phase, ulong, 0444);
602 
603 // Maximum consecutive no-delay instances.
604 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
605 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
606 
607 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
608 module_param(srcu_max_nodelay, ulong, 0444);
609 
610 /*
611  * Return grace-period delay, zero if there are expedited grace
612  * periods pending, SRCU_INTERVAL otherwise.
613  */
614 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
615 {
616 	unsigned long gpstart;
617 	unsigned long j;
618 	unsigned long jbase = SRCU_INTERVAL;
619 	struct srcu_usage *sup = ssp->srcu_sup;
620 
621 	if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
622 		jbase = 0;
623 	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
624 		j = jiffies - 1;
625 		gpstart = READ_ONCE(sup->srcu_gp_start);
626 		if (time_after(j, gpstart))
627 			jbase += j - gpstart;
628 		if (!jbase) {
629 			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
630 			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
631 				jbase = 1;
632 		}
633 	}
634 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
635 }
636 
637 /**
638  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
639  * @ssp: structure to clean up.
640  *
641  * Must invoke this after you are finished using a given srcu_struct that
642  * was initialized via init_srcu_struct(), else you leak memory.
643  */
644 void cleanup_srcu_struct(struct srcu_struct *ssp)
645 {
646 	int cpu;
647 	struct srcu_usage *sup = ssp->srcu_sup;
648 
649 	if (WARN_ON(!srcu_get_delay(ssp)))
650 		return; /* Just leak it! */
651 	if (WARN_ON(srcu_readers_active(ssp)))
652 		return; /* Just leak it! */
653 	flush_delayed_work(&sup->work);
654 	for_each_possible_cpu(cpu) {
655 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
656 
657 		del_timer_sync(&sdp->delay_work);
658 		flush_work(&sdp->work);
659 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
660 			return; /* Forgot srcu_barrier(), so just leak it! */
661 	}
662 	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
663 	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
664 	    WARN_ON(srcu_readers_active(ssp))) {
665 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
666 			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
667 			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
668 		return; /* Caller forgot to stop doing call_srcu()? */
669 	}
670 	kfree(sup->node);
671 	sup->node = NULL;
672 	sup->srcu_size_state = SRCU_SIZE_SMALL;
673 	if (!sup->sda_is_static) {
674 		free_percpu(ssp->sda);
675 		ssp->sda = NULL;
676 		kfree(sup);
677 		ssp->srcu_sup = NULL;
678 	}
679 }
680 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
681 
682 #ifdef CONFIG_PROVE_RCU
683 /*
684  * Check for consistent NMI safety.
685  */
686 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
687 {
688 	int nmi_safe_mask = 1 << nmi_safe;
689 	int old_nmi_safe_mask;
690 	struct srcu_data *sdp;
691 
692 	/* NMI-unsafe use in NMI is a bad sign */
693 	WARN_ON_ONCE(!nmi_safe && in_nmi());
694 	sdp = raw_cpu_ptr(ssp->sda);
695 	old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
696 	if (!old_nmi_safe_mask) {
697 		WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
698 		return;
699 	}
700 	WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
701 }
702 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
703 #endif /* CONFIG_PROVE_RCU */
704 
705 /*
706  * Counts the new reader in the appropriate per-CPU element of the
707  * srcu_struct.
708  * Returns an index that must be passed to the matching srcu_read_unlock().
709  */
710 int __srcu_read_lock(struct srcu_struct *ssp)
711 {
712 	int idx;
713 
714 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
715 	this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
716 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
717 	return idx;
718 }
719 EXPORT_SYMBOL_GPL(__srcu_read_lock);
720 
721 /*
722  * Removes the count for the old reader from the appropriate per-CPU
723  * element of the srcu_struct.  Note that this may well be a different
724  * CPU than that which was incremented by the corresponding srcu_read_lock().
725  */
726 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
727 {
728 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
729 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
730 }
731 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
732 
733 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
734 
735 /*
736  * Counts the new reader in the appropriate per-CPU element of the
737  * srcu_struct, but in an NMI-safe manner using RMW atomics.
738  * Returns an index that must be passed to the matching srcu_read_unlock().
739  */
740 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
741 {
742 	int idx;
743 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
744 
745 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
746 	atomic_long_inc(&sdp->srcu_lock_count[idx]);
747 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
748 	return idx;
749 }
750 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
751 
752 /*
753  * Removes the count for the old reader from the appropriate per-CPU
754  * element of the srcu_struct.  Note that this may well be a different
755  * CPU than that which was incremented by the corresponding srcu_read_lock().
756  */
757 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
758 {
759 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
760 
761 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
762 	atomic_long_inc(&sdp->srcu_unlock_count[idx]);
763 }
764 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
765 
766 #endif // CONFIG_NEED_SRCU_NMI_SAFE
767 
768 /*
769  * Start an SRCU grace period.
770  */
771 static void srcu_gp_start(struct srcu_struct *ssp)
772 {
773 	struct srcu_data *sdp;
774 	int state;
775 
776 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
777 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
778 	else
779 		sdp = this_cpu_ptr(ssp->sda);
780 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
781 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
782 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
783 	rcu_segcblist_advance(&sdp->srcu_cblist,
784 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
785 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
786 				       rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq));
787 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
788 	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
789 	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
790 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
791 	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
792 	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
793 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
794 }
795 
796 
797 static void srcu_delay_timer(struct timer_list *t)
798 {
799 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
800 
801 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
802 }
803 
804 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
805 				       unsigned long delay)
806 {
807 	if (!delay) {
808 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
809 		return;
810 	}
811 
812 	timer_reduce(&sdp->delay_work, jiffies + delay);
813 }
814 
815 /*
816  * Schedule callback invocation for the specified srcu_data structure,
817  * if possible, on the corresponding CPU.
818  */
819 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
820 {
821 	srcu_queue_delayed_work_on(sdp, delay);
822 }
823 
824 /*
825  * Schedule callback invocation for all srcu_data structures associated
826  * with the specified srcu_node structure that have callbacks for the
827  * just-completed grace period, the one corresponding to idx.  If possible,
828  * schedule this invocation on the corresponding CPUs.
829  */
830 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
831 				  unsigned long mask, unsigned long delay)
832 {
833 	int cpu;
834 
835 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
836 		if (!(mask & (1 << (cpu - snp->grplo))))
837 			continue;
838 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
839 	}
840 }
841 
842 /*
843  * Note the end of an SRCU grace period.  Initiates callback invocation
844  * and starts a new grace period if needed.
845  *
846  * The ->srcu_cb_mutex acquisition does not protect any data, but
847  * instead prevents more than one grace period from starting while we
848  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
849  * array to have a finite number of elements.
850  */
851 static void srcu_gp_end(struct srcu_struct *ssp)
852 {
853 	unsigned long cbdelay = 1;
854 	bool cbs;
855 	bool last_lvl;
856 	int cpu;
857 	unsigned long flags;
858 	unsigned long gpseq;
859 	int idx;
860 	unsigned long mask;
861 	struct srcu_data *sdp;
862 	unsigned long sgsne;
863 	struct srcu_node *snp;
864 	int ss_state;
865 	struct srcu_usage *sup = ssp->srcu_sup;
866 
867 	/* Prevent more than one additional grace period. */
868 	mutex_lock(&sup->srcu_cb_mutex);
869 
870 	/* End the current grace period. */
871 	spin_lock_irq_rcu_node(sup);
872 	idx = rcu_seq_state(sup->srcu_gp_seq);
873 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
874 	if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
875 		cbdelay = 0;
876 
877 	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
878 	rcu_seq_end(&sup->srcu_gp_seq);
879 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
880 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
881 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
882 	spin_unlock_irq_rcu_node(sup);
883 	mutex_unlock(&sup->srcu_gp_mutex);
884 	/* A new grace period can start at this point.  But only one. */
885 
886 	/* Initiate callback invocation as needed. */
887 	ss_state = smp_load_acquire(&sup->srcu_size_state);
888 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
889 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
890 					cbdelay);
891 	} else {
892 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
893 		srcu_for_each_node_breadth_first(ssp, snp) {
894 			spin_lock_irq_rcu_node(snp);
895 			cbs = false;
896 			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
897 			if (last_lvl)
898 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
899 			snp->srcu_have_cbs[idx] = gpseq;
900 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
901 			sgsne = snp->srcu_gp_seq_needed_exp;
902 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
903 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
904 			if (ss_state < SRCU_SIZE_BIG)
905 				mask = ~0;
906 			else
907 				mask = snp->srcu_data_have_cbs[idx];
908 			snp->srcu_data_have_cbs[idx] = 0;
909 			spin_unlock_irq_rcu_node(snp);
910 			if (cbs)
911 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
912 		}
913 	}
914 
915 	/* Occasionally prevent srcu_data counter wrap. */
916 	if (!(gpseq & counter_wrap_check))
917 		for_each_possible_cpu(cpu) {
918 			sdp = per_cpu_ptr(ssp->sda, cpu);
919 			spin_lock_irqsave_rcu_node(sdp, flags);
920 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
921 				sdp->srcu_gp_seq_needed = gpseq;
922 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
923 				sdp->srcu_gp_seq_needed_exp = gpseq;
924 			spin_unlock_irqrestore_rcu_node(sdp, flags);
925 		}
926 
927 	/* Callback initiation done, allow grace periods after next. */
928 	mutex_unlock(&sup->srcu_cb_mutex);
929 
930 	/* Start a new grace period if needed. */
931 	spin_lock_irq_rcu_node(sup);
932 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
933 	if (!rcu_seq_state(gpseq) &&
934 	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
935 		srcu_gp_start(ssp);
936 		spin_unlock_irq_rcu_node(sup);
937 		srcu_reschedule(ssp, 0);
938 	} else {
939 		spin_unlock_irq_rcu_node(sup);
940 	}
941 
942 	/* Transition to big if needed. */
943 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
944 		if (ss_state == SRCU_SIZE_ALLOC)
945 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
946 		else
947 			smp_store_release(&sup->srcu_size_state, ss_state + 1);
948 	}
949 }
950 
951 /*
952  * Funnel-locking scheme to scalably mediate many concurrent expedited
953  * grace-period requests.  This function is invoked for the first known
954  * expedited request for a grace period that has already been requested,
955  * but without expediting.  To start a completely new grace period,
956  * whether expedited or not, use srcu_funnel_gp_start() instead.
957  */
958 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
959 				  unsigned long s)
960 {
961 	unsigned long flags;
962 	unsigned long sgsne;
963 
964 	if (snp)
965 		for (; snp != NULL; snp = snp->srcu_parent) {
966 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
967 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
968 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
969 				return;
970 			spin_lock_irqsave_rcu_node(snp, flags);
971 			sgsne = snp->srcu_gp_seq_needed_exp;
972 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
973 				spin_unlock_irqrestore_rcu_node(snp, flags);
974 				return;
975 			}
976 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
977 			spin_unlock_irqrestore_rcu_node(snp, flags);
978 		}
979 	spin_lock_irqsave_ssp_contention(ssp, &flags);
980 	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
981 		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
982 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
983 }
984 
985 /*
986  * Funnel-locking scheme to scalably mediate many concurrent grace-period
987  * requests.  The winner has to do the work of actually starting grace
988  * period s.  Losers must either ensure that their desired grace-period
989  * number is recorded on at least their leaf srcu_node structure, or they
990  * must take steps to invoke their own callbacks.
991  *
992  * Note that this function also does the work of srcu_funnel_exp_start(),
993  * in some cases by directly invoking it.
994  *
995  * The srcu read lock should be hold around this function. And s is a seq snap
996  * after holding that lock.
997  */
998 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
999 				 unsigned long s, bool do_norm)
1000 {
1001 	unsigned long flags;
1002 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
1003 	unsigned long sgsne;
1004 	struct srcu_node *snp;
1005 	struct srcu_node *snp_leaf;
1006 	unsigned long snp_seq;
1007 	struct srcu_usage *sup = ssp->srcu_sup;
1008 
1009 	/* Ensure that snp node tree is fully initialized before traversing it */
1010 	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1011 		snp_leaf = NULL;
1012 	else
1013 		snp_leaf = sdp->mynode;
1014 
1015 	if (snp_leaf)
1016 		/* Each pass through the loop does one level of the srcu_node tree. */
1017 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1018 			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1019 				return; /* GP already done and CBs recorded. */
1020 			spin_lock_irqsave_rcu_node(snp, flags);
1021 			snp_seq = snp->srcu_have_cbs[idx];
1022 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1023 				if (snp == snp_leaf && snp_seq == s)
1024 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1025 				spin_unlock_irqrestore_rcu_node(snp, flags);
1026 				if (snp == snp_leaf && snp_seq != s) {
1027 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1028 					return;
1029 				}
1030 				if (!do_norm)
1031 					srcu_funnel_exp_start(ssp, snp, s);
1032 				return;
1033 			}
1034 			snp->srcu_have_cbs[idx] = s;
1035 			if (snp == snp_leaf)
1036 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1037 			sgsne = snp->srcu_gp_seq_needed_exp;
1038 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1039 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1040 			spin_unlock_irqrestore_rcu_node(snp, flags);
1041 		}
1042 
1043 	/* Top of tree, must ensure the grace period will be started. */
1044 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1045 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1046 		/*
1047 		 * Record need for grace period s.  Pair with load
1048 		 * acquire setting up for initialization.
1049 		 */
1050 		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1051 	}
1052 	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1053 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1054 
1055 	/* If grace period not already in progress, start it. */
1056 	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1057 	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1058 		WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed));
1059 		srcu_gp_start(ssp);
1060 
1061 		// And how can that list_add() in the "else" clause
1062 		// possibly be safe for concurrent execution?  Well,
1063 		// it isn't.  And it does not have to be.  After all, it
1064 		// can only be executed during early boot when there is only
1065 		// the one boot CPU running with interrupts still disabled.
1066 		if (likely(srcu_init_done))
1067 			queue_delayed_work(rcu_gp_wq, &sup->work,
1068 					   !!srcu_get_delay(ssp));
1069 		else if (list_empty(&sup->work.work.entry))
1070 			list_add(&sup->work.work.entry, &srcu_boot_list);
1071 	}
1072 	spin_unlock_irqrestore_rcu_node(sup, flags);
1073 }
1074 
1075 /*
1076  * Wait until all readers counted by array index idx complete, but
1077  * loop an additional time if there is an expedited grace period pending.
1078  * The caller must ensure that ->srcu_idx is not changed while checking.
1079  */
1080 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1081 {
1082 	unsigned long curdelay;
1083 
1084 	curdelay = !srcu_get_delay(ssp);
1085 
1086 	for (;;) {
1087 		if (srcu_readers_active_idx_check(ssp, idx))
1088 			return true;
1089 		if ((--trycount + curdelay) <= 0)
1090 			return false;
1091 		udelay(srcu_retry_check_delay);
1092 	}
1093 }
1094 
1095 /*
1096  * Increment the ->srcu_idx counter so that future SRCU readers will
1097  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1098  * us to wait for pre-existing readers in a starvation-free manner.
1099  */
1100 static void srcu_flip(struct srcu_struct *ssp)
1101 {
1102 	/*
1103 	 * Because the flip of ->srcu_idx is executed only if the
1104 	 * preceding call to srcu_readers_active_idx_check() found that
1105 	 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched
1106 	 * and because that summing uses atomic_long_read(), there is
1107 	 * ordering due to a control dependency between that summing and
1108 	 * the WRITE_ONCE() in this call to srcu_flip().  This ordering
1109 	 * ensures that if this updater saw a given reader's increment from
1110 	 * __srcu_read_lock(), that reader was using a value of ->srcu_idx
1111 	 * from before the previous call to srcu_flip(), which should be
1112 	 * quite rare.  This ordering thus helps forward progress because
1113 	 * the grace period could otherwise be delayed by additional
1114 	 * calls to __srcu_read_lock() using that old (soon to be new)
1115 	 * value of ->srcu_idx.
1116 	 *
1117 	 * This sum-equality check and ordering also ensures that if
1118 	 * a given call to __srcu_read_lock() uses the new value of
1119 	 * ->srcu_idx, this updater's earlier scans cannot have seen
1120 	 * that reader's increments, which is all to the good, because
1121 	 * this grace period need not wait on that reader.  After all,
1122 	 * if those earlier scans had seen that reader, there would have
1123 	 * been a sum mismatch and this code would not be reached.
1124 	 *
1125 	 * This means that the following smp_mb() is redundant, but
1126 	 * it stays until either (1) Compilers learn about this sort of
1127 	 * control dependency or (2) Some production workload running on
1128 	 * a production system is unduly delayed by this slowpath smp_mb().
1129 	 */
1130 	smp_mb(); /* E */  /* Pairs with B and C. */
1131 
1132 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter.
1133 
1134 	/*
1135 	 * Ensure that if the updater misses an __srcu_read_unlock()
1136 	 * increment, that task's __srcu_read_lock() following its next
1137 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1138 	 * counter update.  Note that both this memory barrier and the
1139 	 * one in srcu_readers_active_idx_check() provide the guarantee
1140 	 * for __srcu_read_lock().
1141 	 */
1142 	smp_mb(); /* D */  /* Pairs with C. */
1143 }
1144 
1145 /*
1146  * If SRCU is likely idle, return true, otherwise return false.
1147  *
1148  * Note that it is OK for several current from-idle requests for a new
1149  * grace period from idle to specify expediting because they will all end
1150  * up requesting the same grace period anyhow.  So no loss.
1151  *
1152  * Note also that if any CPU (including the current one) is still invoking
1153  * callbacks, this function will nevertheless say "idle".  This is not
1154  * ideal, but the overhead of checking all CPUs' callback lists is even
1155  * less ideal, especially on large systems.  Furthermore, the wakeup
1156  * can happen before the callback is fully removed, so we have no choice
1157  * but to accept this type of error.
1158  *
1159  * This function is also subject to counter-wrap errors, but let's face
1160  * it, if this function was preempted for enough time for the counters
1161  * to wrap, it really doesn't matter whether or not we expedite the grace
1162  * period.  The extra overhead of a needlessly expedited grace period is
1163  * negligible when amortized over that time period, and the extra latency
1164  * of a needlessly non-expedited grace period is similarly negligible.
1165  */
1166 static bool srcu_might_be_idle(struct srcu_struct *ssp)
1167 {
1168 	unsigned long curseq;
1169 	unsigned long flags;
1170 	struct srcu_data *sdp;
1171 	unsigned long t;
1172 	unsigned long tlast;
1173 
1174 	check_init_srcu_struct(ssp);
1175 	/* If the local srcu_data structure has callbacks, not idle.  */
1176 	sdp = raw_cpu_ptr(ssp->sda);
1177 	spin_lock_irqsave_rcu_node(sdp, flags);
1178 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1179 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1180 		return false; /* Callbacks already present, so not idle. */
1181 	}
1182 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1183 
1184 	/*
1185 	 * No local callbacks, so probabilistically probe global state.
1186 	 * Exact information would require acquiring locks, which would
1187 	 * kill scalability, hence the probabilistic nature of the probe.
1188 	 */
1189 
1190 	/* First, see if enough time has passed since the last GP. */
1191 	t = ktime_get_mono_fast_ns();
1192 	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1193 	if (exp_holdoff == 0 ||
1194 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1195 		return false; /* Too soon after last GP. */
1196 
1197 	/* Next, check for probable idleness. */
1198 	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1199 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1200 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1201 		return false; /* Grace period in progress, so not idle. */
1202 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1203 	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1204 		return false; /* GP # changed, so not idle. */
1205 	return true; /* With reasonable probability, idle! */
1206 }
1207 
1208 /*
1209  * SRCU callback function to leak a callback.
1210  */
1211 static void srcu_leak_callback(struct rcu_head *rhp)
1212 {
1213 }
1214 
1215 /*
1216  * Start an SRCU grace period, and also queue the callback if non-NULL.
1217  */
1218 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1219 					     struct rcu_head *rhp, bool do_norm)
1220 {
1221 	unsigned long flags;
1222 	int idx;
1223 	bool needexp = false;
1224 	bool needgp = false;
1225 	unsigned long s;
1226 	struct srcu_data *sdp;
1227 	struct srcu_node *sdp_mynode;
1228 	int ss_state;
1229 
1230 	check_init_srcu_struct(ssp);
1231 	/*
1232 	 * While starting a new grace period, make sure we are in an
1233 	 * SRCU read-side critical section so that the grace-period
1234 	 * sequence number cannot wrap around in the meantime.
1235 	 */
1236 	idx = __srcu_read_lock_nmisafe(ssp);
1237 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1238 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1239 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1240 	else
1241 		sdp = raw_cpu_ptr(ssp->sda);
1242 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1243 	if (rhp)
1244 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1245 	/*
1246 	 * The snapshot for acceleration must be taken _before_ the read of the
1247 	 * current gp sequence used for advancing, otherwise advancing may fail
1248 	 * and acceleration may then fail too.
1249 	 *
1250 	 * This could happen if:
1251 	 *
1252 	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1253 	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1254 	 *
1255 	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1256 	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1257 	 *
1258 	 *  3) This value is passed to rcu_segcblist_advance() which can't move
1259 	 *     any segment forward and fails.
1260 	 *
1261 	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1262 	 *     But then the call to rcu_seq_snap() observes the grace period for the
1263 	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1264 	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1265 	 *     so it returns a snapshot of the next grace period, which is X + 12.
1266 	 *
1267 	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1268 	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1269 	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1270 	 *     period (gp_num = X + 8). So acceleration fails.
1271 	 */
1272 	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1273 	rcu_segcblist_advance(&sdp->srcu_cblist,
1274 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1275 	WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s) && rhp);
1276 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1277 		sdp->srcu_gp_seq_needed = s;
1278 		needgp = true;
1279 	}
1280 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1281 		sdp->srcu_gp_seq_needed_exp = s;
1282 		needexp = true;
1283 	}
1284 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1285 
1286 	/* Ensure that snp node tree is fully initialized before traversing it */
1287 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1288 		sdp_mynode = NULL;
1289 	else
1290 		sdp_mynode = sdp->mynode;
1291 
1292 	if (needgp)
1293 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1294 	else if (needexp)
1295 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1296 	__srcu_read_unlock_nmisafe(ssp, idx);
1297 	return s;
1298 }
1299 
1300 /*
1301  * Enqueue an SRCU callback on the srcu_data structure associated with
1302  * the current CPU and the specified srcu_struct structure, initiating
1303  * grace-period processing if it is not already running.
1304  *
1305  * Note that all CPUs must agree that the grace period extended beyond
1306  * all pre-existing SRCU read-side critical section.  On systems with
1307  * more than one CPU, this means that when "func()" is invoked, each CPU
1308  * is guaranteed to have executed a full memory barrier since the end of
1309  * its last corresponding SRCU read-side critical section whose beginning
1310  * preceded the call to call_srcu().  It also means that each CPU executing
1311  * an SRCU read-side critical section that continues beyond the start of
1312  * "func()" must have executed a memory barrier after the call_srcu()
1313  * but before the beginning of that SRCU read-side critical section.
1314  * Note that these guarantees include CPUs that are offline, idle, or
1315  * executing in user mode, as well as CPUs that are executing in the kernel.
1316  *
1317  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1318  * resulting SRCU callback function "func()", then both CPU A and CPU
1319  * B are guaranteed to execute a full memory barrier during the time
1320  * interval between the call to call_srcu() and the invocation of "func()".
1321  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1322  * again only if the system has more than one CPU).
1323  *
1324  * Of course, these guarantees apply only for invocations of call_srcu(),
1325  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1326  * srcu_struct structure.
1327  */
1328 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1329 			rcu_callback_t func, bool do_norm)
1330 {
1331 	if (debug_rcu_head_queue(rhp)) {
1332 		/* Probable double call_srcu(), so leak the callback. */
1333 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1334 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1335 		return;
1336 	}
1337 	rhp->func = func;
1338 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1339 }
1340 
1341 /**
1342  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1343  * @ssp: srcu_struct in queue the callback
1344  * @rhp: structure to be used for queueing the SRCU callback.
1345  * @func: function to be invoked after the SRCU grace period
1346  *
1347  * The callback function will be invoked some time after a full SRCU
1348  * grace period elapses, in other words after all pre-existing SRCU
1349  * read-side critical sections have completed.  However, the callback
1350  * function might well execute concurrently with other SRCU read-side
1351  * critical sections that started after call_srcu() was invoked.  SRCU
1352  * read-side critical sections are delimited by srcu_read_lock() and
1353  * srcu_read_unlock(), and may be nested.
1354  *
1355  * The callback will be invoked from process context, but must nevertheless
1356  * be fast and must not block.
1357  */
1358 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1359 	       rcu_callback_t func)
1360 {
1361 	__call_srcu(ssp, rhp, func, true);
1362 }
1363 EXPORT_SYMBOL_GPL(call_srcu);
1364 
1365 /*
1366  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1367  */
1368 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1369 {
1370 	struct rcu_synchronize rcu;
1371 
1372 	srcu_lock_sync(&ssp->dep_map);
1373 
1374 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1375 			 lock_is_held(&rcu_bh_lock_map) ||
1376 			 lock_is_held(&rcu_lock_map) ||
1377 			 lock_is_held(&rcu_sched_lock_map),
1378 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1379 
1380 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1381 		return;
1382 	might_sleep();
1383 	check_init_srcu_struct(ssp);
1384 	init_completion(&rcu.completion);
1385 	init_rcu_head_on_stack(&rcu.head);
1386 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1387 	wait_for_completion(&rcu.completion);
1388 	destroy_rcu_head_on_stack(&rcu.head);
1389 
1390 	/*
1391 	 * Make sure that later code is ordered after the SRCU grace
1392 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1393 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1394 	 * because the current CPU might have been totally uninvolved with
1395 	 * (and thus unordered against) that grace period.
1396 	 */
1397 	smp_mb();
1398 }
1399 
1400 /**
1401  * synchronize_srcu_expedited - Brute-force SRCU grace period
1402  * @ssp: srcu_struct with which to synchronize.
1403  *
1404  * Wait for an SRCU grace period to elapse, but be more aggressive about
1405  * spinning rather than blocking when waiting.
1406  *
1407  * Note that synchronize_srcu_expedited() has the same deadlock and
1408  * memory-ordering properties as does synchronize_srcu().
1409  */
1410 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1411 {
1412 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1413 }
1414 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1415 
1416 /**
1417  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1418  * @ssp: srcu_struct with which to synchronize.
1419  *
1420  * Wait for the count to drain to zero of both indexes. To avoid the
1421  * possible starvation of synchronize_srcu(), it waits for the count of
1422  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1423  * and then flip the srcu_idx and wait for the count of the other index.
1424  *
1425  * Can block; must be called from process context.
1426  *
1427  * Note that it is illegal to call synchronize_srcu() from the corresponding
1428  * SRCU read-side critical section; doing so will result in deadlock.
1429  * However, it is perfectly legal to call synchronize_srcu() on one
1430  * srcu_struct from some other srcu_struct's read-side critical section,
1431  * as long as the resulting graph of srcu_structs is acyclic.
1432  *
1433  * There are memory-ordering constraints implied by synchronize_srcu().
1434  * On systems with more than one CPU, when synchronize_srcu() returns,
1435  * each CPU is guaranteed to have executed a full memory barrier since
1436  * the end of its last corresponding SRCU read-side critical section
1437  * whose beginning preceded the call to synchronize_srcu().  In addition,
1438  * each CPU having an SRCU read-side critical section that extends beyond
1439  * the return from synchronize_srcu() is guaranteed to have executed a
1440  * full memory barrier after the beginning of synchronize_srcu() and before
1441  * the beginning of that SRCU read-side critical section.  Note that these
1442  * guarantees include CPUs that are offline, idle, or executing in user mode,
1443  * as well as CPUs that are executing in the kernel.
1444  *
1445  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1446  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1447  * to have executed a full memory barrier during the execution of
1448  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1449  * are the same CPU, but again only if the system has more than one CPU.
1450  *
1451  * Of course, these memory-ordering guarantees apply only when
1452  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1453  * passed the same srcu_struct structure.
1454  *
1455  * Implementation of these memory-ordering guarantees is similar to
1456  * that of synchronize_rcu().
1457  *
1458  * If SRCU is likely idle, expedite the first request.  This semantic
1459  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1460  * SRCU must also provide it.  Note that detecting idleness is heuristic
1461  * and subject to both false positives and negatives.
1462  */
1463 void synchronize_srcu(struct srcu_struct *ssp)
1464 {
1465 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1466 		synchronize_srcu_expedited(ssp);
1467 	else
1468 		__synchronize_srcu(ssp, true);
1469 }
1470 EXPORT_SYMBOL_GPL(synchronize_srcu);
1471 
1472 /**
1473  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1474  * @ssp: srcu_struct to provide cookie for.
1475  *
1476  * This function returns a cookie that can be passed to
1477  * poll_state_synchronize_srcu(), which will return true if a full grace
1478  * period has elapsed in the meantime.  It is the caller's responsibility
1479  * to make sure that grace period happens, for example, by invoking
1480  * call_srcu() after return from get_state_synchronize_srcu().
1481  */
1482 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1483 {
1484 	// Any prior manipulation of SRCU-protected data must happen
1485 	// before the load from ->srcu_gp_seq.
1486 	smp_mb();
1487 	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1488 }
1489 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1490 
1491 /**
1492  * start_poll_synchronize_srcu - Provide cookie and start grace period
1493  * @ssp: srcu_struct to provide cookie for.
1494  *
1495  * This function returns a cookie that can be passed to
1496  * poll_state_synchronize_srcu(), which will return true if a full grace
1497  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1498  * this function also ensures that any needed SRCU grace period will be
1499  * started.  This convenience does come at a cost in terms of CPU overhead.
1500  */
1501 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1502 {
1503 	return srcu_gp_start_if_needed(ssp, NULL, true);
1504 }
1505 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1506 
1507 /**
1508  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1509  * @ssp: srcu_struct to provide cookie for.
1510  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1511  *
1512  * This function takes the cookie that was returned from either
1513  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1514  * returns @true if an SRCU grace period elapsed since the time that the
1515  * cookie was created.
1516  *
1517  * Because cookies are finite in size, wrapping/overflow is possible.
1518  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1519  * where in theory wrapping could happen in about 14 hours assuming
1520  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1521  * overflow lower bound is on the order of 24 days in the case of
1522  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1523  * system requires geologic timespans, as in more than seven million years
1524  * even for expedited SRCU grace periods.
1525  *
1526  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1527  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1528  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1529  * few minutes.  If this proves to be a problem, this counter will be
1530  * expanded to the same size as for Tree SRCU.
1531  */
1532 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1533 {
1534 	if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
1535 		return false;
1536 	// Ensure that the end of the SRCU grace period happens before
1537 	// any subsequent code that the caller might execute.
1538 	smp_mb(); // ^^^
1539 	return true;
1540 }
1541 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1542 
1543 /*
1544  * Callback function for srcu_barrier() use.
1545  */
1546 static void srcu_barrier_cb(struct rcu_head *rhp)
1547 {
1548 	struct srcu_data *sdp;
1549 	struct srcu_struct *ssp;
1550 
1551 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1552 	ssp = sdp->ssp;
1553 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1554 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1555 }
1556 
1557 /*
1558  * Enqueue an srcu_barrier() callback on the specified srcu_data
1559  * structure's ->cblist.  but only if that ->cblist already has at least one
1560  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1561  * it must have already registered the need for a future grace period,
1562  * so all we need do is enqueue a callback that will use the same grace
1563  * period as the last callback already in the queue.
1564  */
1565 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1566 {
1567 	spin_lock_irq_rcu_node(sdp);
1568 	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1569 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1570 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1571 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1572 				   &sdp->srcu_barrier_head)) {
1573 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1574 		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1575 	}
1576 	spin_unlock_irq_rcu_node(sdp);
1577 }
1578 
1579 /**
1580  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1581  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1582  */
1583 void srcu_barrier(struct srcu_struct *ssp)
1584 {
1585 	int cpu;
1586 	int idx;
1587 	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1588 
1589 	check_init_srcu_struct(ssp);
1590 	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1591 	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1592 		smp_mb(); /* Force ordering following return. */
1593 		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1594 		return; /* Someone else did our work for us. */
1595 	}
1596 	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1597 	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1598 
1599 	/* Initial count prevents reaching zero until all CBs are posted. */
1600 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1601 
1602 	idx = __srcu_read_lock_nmisafe(ssp);
1603 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1604 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1605 	else
1606 		for_each_possible_cpu(cpu)
1607 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1608 	__srcu_read_unlock_nmisafe(ssp, idx);
1609 
1610 	/* Remove the initial count, at which point reaching zero can happen. */
1611 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1612 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1613 	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1614 
1615 	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1616 	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1617 }
1618 EXPORT_SYMBOL_GPL(srcu_barrier);
1619 
1620 /**
1621  * srcu_batches_completed - return batches completed.
1622  * @ssp: srcu_struct on which to report batch completion.
1623  *
1624  * Report the number of batches, correlated with, but not necessarily
1625  * precisely the same as, the number of grace periods that have elapsed.
1626  */
1627 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1628 {
1629 	return READ_ONCE(ssp->srcu_idx);
1630 }
1631 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1632 
1633 /*
1634  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1635  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1636  * completed in that state.
1637  */
1638 static void srcu_advance_state(struct srcu_struct *ssp)
1639 {
1640 	int idx;
1641 
1642 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1643 
1644 	/*
1645 	 * Because readers might be delayed for an extended period after
1646 	 * fetching ->srcu_idx for their index, at any point in time there
1647 	 * might well be readers using both idx=0 and idx=1.  We therefore
1648 	 * need to wait for readers to clear from both index values before
1649 	 * invoking a callback.
1650 	 *
1651 	 * The load-acquire ensures that we see the accesses performed
1652 	 * by the prior grace period.
1653 	 */
1654 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1655 	if (idx == SRCU_STATE_IDLE) {
1656 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1657 		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1658 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1659 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1660 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1661 			return;
1662 		}
1663 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1664 		if (idx == SRCU_STATE_IDLE)
1665 			srcu_gp_start(ssp);
1666 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1667 		if (idx != SRCU_STATE_IDLE) {
1668 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1669 			return; /* Someone else started the grace period. */
1670 		}
1671 	}
1672 
1673 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1674 		idx = 1 ^ (ssp->srcu_idx & 1);
1675 		if (!try_check_zero(ssp, idx, 1)) {
1676 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1677 			return; /* readers present, retry later. */
1678 		}
1679 		srcu_flip(ssp);
1680 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1681 		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1682 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1683 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1684 	}
1685 
1686 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1687 
1688 		/*
1689 		 * SRCU read-side critical sections are normally short,
1690 		 * so check at least twice in quick succession after a flip.
1691 		 */
1692 		idx = 1 ^ (ssp->srcu_idx & 1);
1693 		if (!try_check_zero(ssp, idx, 2)) {
1694 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1695 			return; /* readers present, retry later. */
1696 		}
1697 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1698 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1699 	}
1700 }
1701 
1702 /*
1703  * Invoke a limited number of SRCU callbacks that have passed through
1704  * their grace period.  If there are more to do, SRCU will reschedule
1705  * the workqueue.  Note that needed memory barriers have been executed
1706  * in this task's context by srcu_readers_active_idx_check().
1707  */
1708 static void srcu_invoke_callbacks(struct work_struct *work)
1709 {
1710 	long len;
1711 	bool more;
1712 	struct rcu_cblist ready_cbs;
1713 	struct rcu_head *rhp;
1714 	struct srcu_data *sdp;
1715 	struct srcu_struct *ssp;
1716 
1717 	sdp = container_of(work, struct srcu_data, work);
1718 
1719 	ssp = sdp->ssp;
1720 	rcu_cblist_init(&ready_cbs);
1721 	spin_lock_irq_rcu_node(sdp);
1722 	rcu_segcblist_advance(&sdp->srcu_cblist,
1723 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1724 	if (sdp->srcu_cblist_invoking ||
1725 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1726 		spin_unlock_irq_rcu_node(sdp);
1727 		return;  /* Someone else on the job or nothing to do. */
1728 	}
1729 
1730 	/* We are on the job!  Extract and invoke ready callbacks. */
1731 	sdp->srcu_cblist_invoking = true;
1732 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1733 	len = ready_cbs.len;
1734 	spin_unlock_irq_rcu_node(sdp);
1735 	rhp = rcu_cblist_dequeue(&ready_cbs);
1736 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1737 		debug_rcu_head_unqueue(rhp);
1738 		local_bh_disable();
1739 		rhp->func(rhp);
1740 		local_bh_enable();
1741 	}
1742 	WARN_ON_ONCE(ready_cbs.len);
1743 
1744 	/*
1745 	 * Update counts, accelerate new callbacks, and if needed,
1746 	 * schedule another round of callback invocation.
1747 	 */
1748 	spin_lock_irq_rcu_node(sdp);
1749 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1750 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1751 				       rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq));
1752 	sdp->srcu_cblist_invoking = false;
1753 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1754 	spin_unlock_irq_rcu_node(sdp);
1755 	if (more)
1756 		srcu_schedule_cbs_sdp(sdp, 0);
1757 }
1758 
1759 /*
1760  * Finished one round of SRCU grace period.  Start another if there are
1761  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1762  */
1763 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1764 {
1765 	bool pushgp = true;
1766 
1767 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1768 	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1769 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1770 			/* All requests fulfilled, time to go idle. */
1771 			pushgp = false;
1772 		}
1773 	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1774 		/* Outstanding request and no GP.  Start one. */
1775 		srcu_gp_start(ssp);
1776 	}
1777 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1778 
1779 	if (pushgp)
1780 		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1781 }
1782 
1783 /*
1784  * This is the work-queue function that handles SRCU grace periods.
1785  */
1786 static void process_srcu(struct work_struct *work)
1787 {
1788 	unsigned long curdelay;
1789 	unsigned long j;
1790 	struct srcu_struct *ssp;
1791 	struct srcu_usage *sup;
1792 
1793 	sup = container_of(work, struct srcu_usage, work.work);
1794 	ssp = sup->srcu_ssp;
1795 
1796 	srcu_advance_state(ssp);
1797 	curdelay = srcu_get_delay(ssp);
1798 	if (curdelay) {
1799 		WRITE_ONCE(sup->reschedule_count, 0);
1800 	} else {
1801 		j = jiffies;
1802 		if (READ_ONCE(sup->reschedule_jiffies) == j) {
1803 			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1804 			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1805 				curdelay = 1;
1806 		} else {
1807 			WRITE_ONCE(sup->reschedule_count, 1);
1808 			WRITE_ONCE(sup->reschedule_jiffies, j);
1809 		}
1810 	}
1811 	srcu_reschedule(ssp, curdelay);
1812 }
1813 
1814 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1815 			     struct srcu_struct *ssp, int *flags,
1816 			     unsigned long *gp_seq)
1817 {
1818 	if (test_type != SRCU_FLAVOR)
1819 		return;
1820 	*flags = 0;
1821 	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1822 }
1823 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1824 
1825 static const char * const srcu_size_state_name[] = {
1826 	"SRCU_SIZE_SMALL",
1827 	"SRCU_SIZE_ALLOC",
1828 	"SRCU_SIZE_WAIT_BARRIER",
1829 	"SRCU_SIZE_WAIT_CALL",
1830 	"SRCU_SIZE_WAIT_CBS1",
1831 	"SRCU_SIZE_WAIT_CBS2",
1832 	"SRCU_SIZE_WAIT_CBS3",
1833 	"SRCU_SIZE_WAIT_CBS4",
1834 	"SRCU_SIZE_BIG",
1835 	"SRCU_SIZE_???",
1836 };
1837 
1838 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1839 {
1840 	int cpu;
1841 	int idx;
1842 	unsigned long s0 = 0, s1 = 0;
1843 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1844 	int ss_state_idx = ss_state;
1845 
1846 	idx = ssp->srcu_idx & 0x1;
1847 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1848 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1849 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1850 		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1851 		 srcu_size_state_name[ss_state_idx]);
1852 	if (!ssp->sda) {
1853 		// Called after cleanup_srcu_struct(), perhaps.
1854 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1855 	} else {
1856 		pr_cont(" per-CPU(idx=%d):", idx);
1857 		for_each_possible_cpu(cpu) {
1858 			unsigned long l0, l1;
1859 			unsigned long u0, u1;
1860 			long c0, c1;
1861 			struct srcu_data *sdp;
1862 
1863 			sdp = per_cpu_ptr(ssp->sda, cpu);
1864 			u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1865 			u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1866 
1867 			/*
1868 			 * Make sure that a lock is always counted if the corresponding
1869 			 * unlock is counted.
1870 			 */
1871 			smp_rmb();
1872 
1873 			l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1874 			l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1875 
1876 			c0 = l0 - u0;
1877 			c1 = l1 - u1;
1878 			pr_cont(" %d(%ld,%ld %c)",
1879 				cpu, c0, c1,
1880 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1881 			s0 += c0;
1882 			s1 += c1;
1883 		}
1884 		pr_cont(" T(%ld,%ld)\n", s0, s1);
1885 	}
1886 	if (SRCU_SIZING_IS_TORTURE())
1887 		srcu_transition_to_big(ssp);
1888 }
1889 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1890 
1891 static int __init srcu_bootup_announce(void)
1892 {
1893 	pr_info("Hierarchical SRCU implementation.\n");
1894 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1895 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1896 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1897 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1898 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1899 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1900 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1901 	return 0;
1902 }
1903 early_initcall(srcu_bootup_announce);
1904 
1905 void __init srcu_init(void)
1906 {
1907 	struct srcu_usage *sup;
1908 
1909 	/* Decide on srcu_struct-size strategy. */
1910 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1911 		if (nr_cpu_ids >= big_cpu_lim) {
1912 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1913 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1914 		} else {
1915 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1916 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1917 		}
1918 	}
1919 
1920 	/*
1921 	 * Once that is set, call_srcu() can follow the normal path and
1922 	 * queue delayed work. This must follow RCU workqueues creation
1923 	 * and timers initialization.
1924 	 */
1925 	srcu_init_done = true;
1926 	while (!list_empty(&srcu_boot_list)) {
1927 		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
1928 				      work.work.entry);
1929 		list_del_init(&sup->work.work.entry);
1930 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1931 		    sup->srcu_size_state == SRCU_SIZE_SMALL)
1932 			sup->srcu_size_state = SRCU_SIZE_ALLOC;
1933 		queue_work(rcu_gp_wq, &sup->work.work);
1934 	}
1935 }
1936 
1937 #ifdef CONFIG_MODULES
1938 
1939 /* Initialize any global-scope srcu_struct structures used by this module. */
1940 static int srcu_module_coming(struct module *mod)
1941 {
1942 	int i;
1943 	struct srcu_struct *ssp;
1944 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1945 
1946 	for (i = 0; i < mod->num_srcu_structs; i++) {
1947 		ssp = *(sspp++);
1948 		ssp->sda = alloc_percpu(struct srcu_data);
1949 		if (WARN_ON_ONCE(!ssp->sda))
1950 			return -ENOMEM;
1951 	}
1952 	return 0;
1953 }
1954 
1955 /* Clean up any global-scope srcu_struct structures used by this module. */
1956 static void srcu_module_going(struct module *mod)
1957 {
1958 	int i;
1959 	struct srcu_struct *ssp;
1960 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1961 
1962 	for (i = 0; i < mod->num_srcu_structs; i++) {
1963 		ssp = *(sspp++);
1964 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
1965 		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
1966 			cleanup_srcu_struct(ssp);
1967 		if (!WARN_ON(srcu_readers_active(ssp)))
1968 			free_percpu(ssp->sda);
1969 	}
1970 }
1971 
1972 /* Handle one module, either coming or going. */
1973 static int srcu_module_notify(struct notifier_block *self,
1974 			      unsigned long val, void *data)
1975 {
1976 	struct module *mod = data;
1977 	int ret = 0;
1978 
1979 	switch (val) {
1980 	case MODULE_STATE_COMING:
1981 		ret = srcu_module_coming(mod);
1982 		break;
1983 	case MODULE_STATE_GOING:
1984 		srcu_module_going(mod);
1985 		break;
1986 	default:
1987 		break;
1988 	}
1989 	return ret;
1990 }
1991 
1992 static struct notifier_block srcu_module_nb = {
1993 	.notifier_call = srcu_module_notify,
1994 	.priority = 0,
1995 };
1996 
1997 static __init int init_srcu_module_notifier(void)
1998 {
1999 	int ret;
2000 
2001 	ret = register_module_notifier(&srcu_module_nb);
2002 	if (ret)
2003 		pr_warn("Failed to register srcu module notifier\n");
2004 	return ret;
2005 }
2006 late_initcall(init_srcu_module_notifier);
2007 
2008 #endif /* #ifdef CONFIG_MODULES */
2009