1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/srcu.h> 29 30 #include "rcu.h" 31 #include "rcu_segcblist.h" 32 33 /* Holdoff in nanoseconds for auto-expediting. */ 34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 36 module_param(exp_holdoff, ulong, 0444); 37 38 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 39 static ulong counter_wrap_check = (ULONG_MAX >> 2); 40 module_param(counter_wrap_check, ulong, 0444); 41 42 /* 43 * Control conversion to SRCU_SIZE_BIG: 44 * 0: Don't convert at all. 45 * 1: Convert at init_srcu_struct() time. 46 * 2: Convert when rcutorture invokes srcu_torture_stats_print(). 47 * 3: Decide at boot time based on system shape (default). 48 * 0x1x: Convert when excessive contention encountered. 49 */ 50 #define SRCU_SIZING_NONE 0 51 #define SRCU_SIZING_INIT 1 52 #define SRCU_SIZING_TORTURE 2 53 #define SRCU_SIZING_AUTO 3 54 #define SRCU_SIZING_CONTEND 0x10 55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) 56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) 57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) 58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) 59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) 60 static int convert_to_big = SRCU_SIZING_AUTO; 61 module_param(convert_to_big, int, 0444); 62 63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ 64 static int big_cpu_lim __read_mostly = 128; 65 module_param(big_cpu_lim, int, 0444); 66 67 /* Contention events per jiffy to initiate transition to big. */ 68 static int small_contention_lim __read_mostly = 100; 69 module_param(small_contention_lim, int, 0444); 70 71 /* Early-boot callback-management, so early that no lock is required! */ 72 static LIST_HEAD(srcu_boot_list); 73 static bool __read_mostly srcu_init_done; 74 75 static void srcu_invoke_callbacks(struct work_struct *work); 76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 77 static void process_srcu(struct work_struct *work); 78 static void srcu_delay_timer(struct timer_list *t); 79 80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 81 #define spin_lock_rcu_node(p) \ 82 do { \ 83 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 84 smp_mb__after_unlock_lock(); \ 85 } while (0) 86 87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 88 89 #define spin_lock_irq_rcu_node(p) \ 90 do { \ 91 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 92 smp_mb__after_unlock_lock(); \ 93 } while (0) 94 95 #define spin_unlock_irq_rcu_node(p) \ 96 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 97 98 #define spin_lock_irqsave_rcu_node(p, flags) \ 99 do { \ 100 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 101 smp_mb__after_unlock_lock(); \ 102 } while (0) 103 104 #define spin_trylock_irqsave_rcu_node(p, flags) \ 105 ({ \ 106 bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 107 \ 108 if (___locked) \ 109 smp_mb__after_unlock_lock(); \ 110 ___locked; \ 111 }) 112 113 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 114 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 115 116 /* 117 * Initialize SRCU per-CPU data. Note that statically allocated 118 * srcu_struct structures might already have srcu_read_lock() and 119 * srcu_read_unlock() running against them. So if the is_static parameter 120 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 121 */ 122 static void init_srcu_struct_data(struct srcu_struct *ssp) 123 { 124 int cpu; 125 struct srcu_data *sdp; 126 127 /* 128 * Initialize the per-CPU srcu_data array, which feeds into the 129 * leaves of the srcu_node tree. 130 */ 131 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 132 ARRAY_SIZE(sdp->srcu_unlock_count)); 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq; 140 sdp->mynode = NULL; 141 sdp->cpu = cpu; 142 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 143 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 144 sdp->ssp = ssp; 145 } 146 } 147 148 /* Invalid seq state, used during snp node initialization */ 149 #define SRCU_SNP_INIT_SEQ 0x2 150 151 /* 152 * Check whether sequence number corresponding to snp node, 153 * is invalid. 154 */ 155 static inline bool srcu_invl_snp_seq(unsigned long s) 156 { 157 return s == SRCU_SNP_INIT_SEQ; 158 } 159 160 /* 161 * Allocated and initialize SRCU combining tree. Returns @true if 162 * allocation succeeded and @false otherwise. 163 */ 164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) 165 { 166 int cpu; 167 int i; 168 int level = 0; 169 int levelspread[RCU_NUM_LVLS]; 170 struct srcu_data *sdp; 171 struct srcu_node *snp; 172 struct srcu_node *snp_first; 173 174 /* Initialize geometry if it has not already been initialized. */ 175 rcu_init_geometry(); 176 ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags); 177 if (!ssp->srcu_sup->node) 178 return false; 179 180 /* Work out the overall tree geometry. */ 181 ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0]; 182 for (i = 1; i < rcu_num_lvls; i++) 183 ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1]; 184 rcu_init_levelspread(levelspread, num_rcu_lvl); 185 186 /* Each pass through this loop initializes one srcu_node structure. */ 187 srcu_for_each_node_breadth_first(ssp, snp) { 188 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 189 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 190 ARRAY_SIZE(snp->srcu_data_have_cbs)); 191 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 192 snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; 193 snp->srcu_data_have_cbs[i] = 0; 194 } 195 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; 196 snp->grplo = -1; 197 snp->grphi = -1; 198 if (snp == &ssp->srcu_sup->node[0]) { 199 /* Root node, special case. */ 200 snp->srcu_parent = NULL; 201 continue; 202 } 203 204 /* Non-root node. */ 205 if (snp == ssp->srcu_sup->level[level + 1]) 206 level++; 207 snp->srcu_parent = ssp->srcu_sup->level[level - 1] + 208 (snp - ssp->srcu_sup->level[level]) / 209 levelspread[level - 1]; 210 } 211 212 /* 213 * Initialize the per-CPU srcu_data array, which feeds into the 214 * leaves of the srcu_node tree. 215 */ 216 level = rcu_num_lvls - 1; 217 snp_first = ssp->srcu_sup->level[level]; 218 for_each_possible_cpu(cpu) { 219 sdp = per_cpu_ptr(ssp->sda, cpu); 220 sdp->mynode = &snp_first[cpu / levelspread[level]]; 221 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 222 if (snp->grplo < 0) 223 snp->grplo = cpu; 224 snp->grphi = cpu; 225 } 226 sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo); 227 } 228 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); 229 return true; 230 } 231 232 /* 233 * Initialize non-compile-time initialized fields, including the 234 * associated srcu_node and srcu_data structures. The is_static parameter 235 * tells us that ->sda has already been wired up to srcu_data. 236 */ 237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 238 { 239 if (!is_static) 240 ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL); 241 if (!ssp->srcu_sup) 242 return -ENOMEM; 243 if (!is_static) 244 spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 245 ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL; 246 ssp->srcu_sup->node = NULL; 247 mutex_init(&ssp->srcu_sup->srcu_cb_mutex); 248 mutex_init(&ssp->srcu_sup->srcu_gp_mutex); 249 ssp->srcu_idx = 0; 250 ssp->srcu_sup->srcu_gp_seq = 0; 251 ssp->srcu_sup->srcu_barrier_seq = 0; 252 mutex_init(&ssp->srcu_sup->srcu_barrier_mutex); 253 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0); 254 INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu); 255 ssp->srcu_sup->sda_is_static = is_static; 256 if (!is_static) 257 ssp->sda = alloc_percpu(struct srcu_data); 258 if (!ssp->sda) { 259 if (!is_static) 260 kfree(ssp->srcu_sup); 261 return -ENOMEM; 262 } 263 init_srcu_struct_data(ssp); 264 ssp->srcu_sup->srcu_gp_seq_needed_exp = 0; 265 ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns(); 266 if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { 267 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) { 268 if (!ssp->srcu_sup->sda_is_static) { 269 free_percpu(ssp->sda); 270 ssp->sda = NULL; 271 kfree(ssp->srcu_sup); 272 return -ENOMEM; 273 } 274 } else { 275 WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG); 276 } 277 } 278 ssp->srcu_sup->srcu_ssp = ssp; 279 smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */ 280 return 0; 281 } 282 283 #ifdef CONFIG_DEBUG_LOCK_ALLOC 284 285 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 286 struct lock_class_key *key) 287 { 288 /* Don't re-initialize a lock while it is held. */ 289 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 290 lockdep_init_map(&ssp->dep_map, name, key, 0); 291 return init_srcu_struct_fields(ssp, false); 292 } 293 EXPORT_SYMBOL_GPL(__init_srcu_struct); 294 295 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 296 297 /** 298 * init_srcu_struct - initialize a sleep-RCU structure 299 * @ssp: structure to initialize. 300 * 301 * Must invoke this on a given srcu_struct before passing that srcu_struct 302 * to any other function. Each srcu_struct represents a separate domain 303 * of SRCU protection. 304 */ 305 int init_srcu_struct(struct srcu_struct *ssp) 306 { 307 return init_srcu_struct_fields(ssp, false); 308 } 309 EXPORT_SYMBOL_GPL(init_srcu_struct); 310 311 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 312 313 /* 314 * Initiate a transition to SRCU_SIZE_BIG with lock held. 315 */ 316 static void __srcu_transition_to_big(struct srcu_struct *ssp) 317 { 318 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 319 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC); 320 } 321 322 /* 323 * Initiate an idempotent transition to SRCU_SIZE_BIG. 324 */ 325 static void srcu_transition_to_big(struct srcu_struct *ssp) 326 { 327 unsigned long flags; 328 329 /* Double-checked locking on ->srcu_size-state. */ 330 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) 331 return; 332 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 333 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) { 334 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 335 return; 336 } 337 __srcu_transition_to_big(ssp); 338 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 339 } 340 341 /* 342 * Check to see if the just-encountered contention event justifies 343 * a transition to SRCU_SIZE_BIG. 344 */ 345 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) 346 { 347 unsigned long j; 348 349 if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state) 350 return; 351 j = jiffies; 352 if (ssp->srcu_sup->srcu_size_jiffies != j) { 353 ssp->srcu_sup->srcu_size_jiffies = j; 354 ssp->srcu_sup->srcu_n_lock_retries = 0; 355 } 356 if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim) 357 return; 358 __srcu_transition_to_big(ssp); 359 } 360 361 /* 362 * Acquire the specified srcu_data structure's ->lock, but check for 363 * excessive contention, which results in initiation of a transition 364 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 365 * parameter permits this. 366 */ 367 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) 368 { 369 struct srcu_struct *ssp = sdp->ssp; 370 371 if (spin_trylock_irqsave_rcu_node(sdp, *flags)) 372 return; 373 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 374 spin_lock_irqsave_check_contention(ssp); 375 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags); 376 spin_lock_irqsave_rcu_node(sdp, *flags); 377 } 378 379 /* 380 * Acquire the specified srcu_struct structure's ->lock, but check for 381 * excessive contention, which results in initiation of a transition 382 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 383 * parameter permits this. 384 */ 385 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) 386 { 387 if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags)) 388 return; 389 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 390 spin_lock_irqsave_check_contention(ssp); 391 } 392 393 /* 394 * First-use initialization of statically allocated srcu_struct 395 * structure. Wiring up the combining tree is more than can be 396 * done with compile-time initialization, so this check is added 397 * to each update-side SRCU primitive. Use ssp->lock, which -is- 398 * compile-time initialized, to resolve races involving multiple 399 * CPUs trying to garner first-use privileges. 400 */ 401 static void check_init_srcu_struct(struct srcu_struct *ssp) 402 { 403 unsigned long flags; 404 405 /* The smp_load_acquire() pairs with the smp_store_release(). */ 406 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/ 407 return; /* Already initialized. */ 408 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 409 if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) { 410 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 411 return; 412 } 413 init_srcu_struct_fields(ssp, true); 414 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 415 } 416 417 /* 418 * Returns approximate total of the readers' ->srcu_lock_count[] values 419 * for the rank of per-CPU counters specified by idx. 420 */ 421 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 422 { 423 int cpu; 424 unsigned long sum = 0; 425 426 for_each_possible_cpu(cpu) { 427 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 428 429 sum += atomic_long_read(&cpuc->srcu_lock_count[idx]); 430 } 431 return sum; 432 } 433 434 /* 435 * Returns approximate total of the readers' ->srcu_unlock_count[] values 436 * for the rank of per-CPU counters specified by idx. 437 */ 438 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 439 { 440 int cpu; 441 unsigned long mask = 0; 442 unsigned long sum = 0; 443 444 for_each_possible_cpu(cpu) { 445 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 446 447 sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]); 448 if (IS_ENABLED(CONFIG_PROVE_RCU)) 449 mask = mask | READ_ONCE(cpuc->srcu_nmi_safety); 450 } 451 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)), 452 "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp); 453 return sum; 454 } 455 456 /* 457 * Return true if the number of pre-existing readers is determined to 458 * be zero. 459 */ 460 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 461 { 462 unsigned long unlocks; 463 464 unlocks = srcu_readers_unlock_idx(ssp, idx); 465 466 /* 467 * Make sure that a lock is always counted if the corresponding 468 * unlock is counted. Needs to be a smp_mb() as the read side may 469 * contain a read from a variable that is written to before the 470 * synchronize_srcu() in the write side. In this case smp_mb()s 471 * A and B act like the store buffering pattern. 472 * 473 * This smp_mb() also pairs with smp_mb() C to prevent accesses 474 * after the synchronize_srcu() from being executed before the 475 * grace period ends. 476 */ 477 smp_mb(); /* A */ 478 479 /* 480 * If the locks are the same as the unlocks, then there must have 481 * been no readers on this index at some point in this function. 482 * But there might be more readers, as a task might have read 483 * the current ->srcu_idx but not yet have incremented its CPU's 484 * ->srcu_lock_count[idx] counter. In fact, it is possible 485 * that most of the tasks have been preempted between fetching 486 * ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there 487 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks 488 * in a system whose address space was fully populated with memory. 489 * Call this quantity Nt. 490 * 491 * So suppose that the updater is preempted at this point in the 492 * code for a long time. That now-preempted updater has already 493 * flipped ->srcu_idx (possibly during the preceding grace period), 494 * done an smp_mb() (again, possibly during the preceding grace 495 * period), and summed up the ->srcu_unlock_count[idx] counters. 496 * How many times can a given one of the aforementioned Nt tasks 497 * increment the old ->srcu_idx value's ->srcu_lock_count[idx] 498 * counter, in the absence of nesting? 499 * 500 * It can clearly do so once, given that it has already fetched 501 * the old value of ->srcu_idx and is just about to use that value 502 * to index its increment of ->srcu_lock_count[idx]. But as soon as 503 * it leaves that SRCU read-side critical section, it will increment 504 * ->srcu_unlock_count[idx], which must follow the updater's above 505 * read from that same value. Thus, as soon the reading task does 506 * an smp_mb() and a later fetch from ->srcu_idx, that task will be 507 * guaranteed to get the new index. Except that the increment of 508 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the 509 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock() 510 * is before the smp_mb(). Thus, that task might not see the new 511 * value of ->srcu_idx until the -second- __srcu_read_lock(), 512 * which in turn means that this task might well increment 513 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice, 514 * not just once. 515 * 516 * However, it is important to note that a given smp_mb() takes 517 * effect not just for the task executing it, but also for any 518 * later task running on that same CPU. 519 * 520 * That is, there can be almost Nt + Nc further increments of 521 * ->srcu_lock_count[idx] for the old index, where Nc is the number 522 * of CPUs. But this is OK because the size of the task_struct 523 * structure limits the value of Nt and current systems limit Nc 524 * to a few thousand. 525 * 526 * OK, but what about nesting? This does impose a limit on 527 * nesting of half of the size of the task_struct structure 528 * (measured in bytes), which should be sufficient. A late 2022 529 * TREE01 rcutorture run reported this size to be no less than 530 * 9408 bytes, allowing up to 4704 levels of nesting, which is 531 * comfortably beyond excessive. Especially on 64-bit systems, 532 * which are unlikely to be configured with an address space fully 533 * populated with memory, at least not anytime soon. 534 */ 535 return srcu_readers_lock_idx(ssp, idx) == unlocks; 536 } 537 538 /** 539 * srcu_readers_active - returns true if there are readers. and false 540 * otherwise 541 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 542 * 543 * Note that this is not an atomic primitive, and can therefore suffer 544 * severe errors when invoked on an active srcu_struct. That said, it 545 * can be useful as an error check at cleanup time. 546 */ 547 static bool srcu_readers_active(struct srcu_struct *ssp) 548 { 549 int cpu; 550 unsigned long sum = 0; 551 552 for_each_possible_cpu(cpu) { 553 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 554 555 sum += atomic_long_read(&cpuc->srcu_lock_count[0]); 556 sum += atomic_long_read(&cpuc->srcu_lock_count[1]); 557 sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]); 558 sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]); 559 } 560 return sum; 561 } 562 563 /* 564 * We use an adaptive strategy for synchronize_srcu() and especially for 565 * synchronize_srcu_expedited(). We spin for a fixed time period 566 * (defined below, boot time configurable) to allow SRCU readers to exit 567 * their read-side critical sections. If there are still some readers 568 * after one jiffy, we repeatedly block for one jiffy time periods. 569 * The blocking time is increased as the grace-period age increases, 570 * with max blocking time capped at 10 jiffies. 571 */ 572 #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 573 574 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; 575 module_param(srcu_retry_check_delay, ulong, 0444); 576 577 #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. 578 #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. 579 580 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase 581 // no-delay instances. 582 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase 583 // no-delay instances. 584 585 #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) 586 #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) 587 #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) 588 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto 589 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() 590 // called from process_srcu(). 591 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ 592 (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) 593 594 // Maximum per-GP-phase consecutive no-delay instances. 595 #define SRCU_DEFAULT_MAX_NODELAY_PHASE \ 596 SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ 597 SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ 598 SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) 599 600 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; 601 module_param(srcu_max_nodelay_phase, ulong, 0444); 602 603 // Maximum consecutive no-delay instances. 604 #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ 605 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) 606 607 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; 608 module_param(srcu_max_nodelay, ulong, 0444); 609 610 /* 611 * Return grace-period delay, zero if there are expedited grace 612 * periods pending, SRCU_INTERVAL otherwise. 613 */ 614 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 615 { 616 unsigned long gpstart; 617 unsigned long j; 618 unsigned long jbase = SRCU_INTERVAL; 619 struct srcu_usage *sup = ssp->srcu_sup; 620 621 if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) 622 jbase = 0; 623 if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) { 624 j = jiffies - 1; 625 gpstart = READ_ONCE(sup->srcu_gp_start); 626 if (time_after(j, gpstart)) 627 jbase += j - gpstart; 628 if (!jbase) { 629 WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1); 630 if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) 631 jbase = 1; 632 } 633 } 634 return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; 635 } 636 637 /** 638 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 639 * @ssp: structure to clean up. 640 * 641 * Must invoke this after you are finished using a given srcu_struct that 642 * was initialized via init_srcu_struct(), else you leak memory. 643 */ 644 void cleanup_srcu_struct(struct srcu_struct *ssp) 645 { 646 int cpu; 647 struct srcu_usage *sup = ssp->srcu_sup; 648 649 if (WARN_ON(!srcu_get_delay(ssp))) 650 return; /* Just leak it! */ 651 if (WARN_ON(srcu_readers_active(ssp))) 652 return; /* Just leak it! */ 653 flush_delayed_work(&sup->work); 654 for_each_possible_cpu(cpu) { 655 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 656 657 del_timer_sync(&sdp->delay_work); 658 flush_work(&sdp->work); 659 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 660 return; /* Forgot srcu_barrier(), so just leak it! */ 661 } 662 if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) || 663 WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) || 664 WARN_ON(srcu_readers_active(ssp))) { 665 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", 666 __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)), 667 rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed); 668 return; /* Caller forgot to stop doing call_srcu()? */ 669 } 670 kfree(sup->node); 671 sup->node = NULL; 672 sup->srcu_size_state = SRCU_SIZE_SMALL; 673 if (!sup->sda_is_static) { 674 free_percpu(ssp->sda); 675 ssp->sda = NULL; 676 kfree(sup); 677 ssp->srcu_sup = NULL; 678 } 679 } 680 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 681 682 #ifdef CONFIG_PROVE_RCU 683 /* 684 * Check for consistent NMI safety. 685 */ 686 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe) 687 { 688 int nmi_safe_mask = 1 << nmi_safe; 689 int old_nmi_safe_mask; 690 struct srcu_data *sdp; 691 692 /* NMI-unsafe use in NMI is a bad sign */ 693 WARN_ON_ONCE(!nmi_safe && in_nmi()); 694 sdp = raw_cpu_ptr(ssp->sda); 695 old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety); 696 if (!old_nmi_safe_mask) { 697 WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask); 698 return; 699 } 700 WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask); 701 } 702 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety); 703 #endif /* CONFIG_PROVE_RCU */ 704 705 /* 706 * Counts the new reader in the appropriate per-CPU element of the 707 * srcu_struct. 708 * Returns an index that must be passed to the matching srcu_read_unlock(). 709 */ 710 int __srcu_read_lock(struct srcu_struct *ssp) 711 { 712 int idx; 713 714 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 715 this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter); 716 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 717 return idx; 718 } 719 EXPORT_SYMBOL_GPL(__srcu_read_lock); 720 721 /* 722 * Removes the count for the old reader from the appropriate per-CPU 723 * element of the srcu_struct. Note that this may well be a different 724 * CPU than that which was incremented by the corresponding srcu_read_lock(). 725 */ 726 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 727 { 728 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 729 this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter); 730 } 731 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 732 733 #ifdef CONFIG_NEED_SRCU_NMI_SAFE 734 735 /* 736 * Counts the new reader in the appropriate per-CPU element of the 737 * srcu_struct, but in an NMI-safe manner using RMW atomics. 738 * Returns an index that must be passed to the matching srcu_read_unlock(). 739 */ 740 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) 741 { 742 int idx; 743 struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); 744 745 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 746 atomic_long_inc(&sdp->srcu_lock_count[idx]); 747 smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */ 748 return idx; 749 } 750 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe); 751 752 /* 753 * Removes the count for the old reader from the appropriate per-CPU 754 * element of the srcu_struct. Note that this may well be a different 755 * CPU than that which was incremented by the corresponding srcu_read_lock(). 756 */ 757 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) 758 { 759 struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); 760 761 smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */ 762 atomic_long_inc(&sdp->srcu_unlock_count[idx]); 763 } 764 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe); 765 766 #endif // CONFIG_NEED_SRCU_NMI_SAFE 767 768 /* 769 * Start an SRCU grace period. 770 */ 771 static void srcu_gp_start(struct srcu_struct *ssp) 772 { 773 struct srcu_data *sdp; 774 int state; 775 776 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 777 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); 778 else 779 sdp = this_cpu_ptr(ssp->sda); 780 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 781 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)); 782 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 783 rcu_segcblist_advance(&sdp->srcu_cblist, 784 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 785 WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); 786 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 787 WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies); 788 WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0); 789 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 790 rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq); 791 state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq); 792 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 793 } 794 795 796 static void srcu_delay_timer(struct timer_list *t) 797 { 798 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 799 800 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 801 } 802 803 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 804 unsigned long delay) 805 { 806 if (!delay) { 807 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 808 return; 809 } 810 811 timer_reduce(&sdp->delay_work, jiffies + delay); 812 } 813 814 /* 815 * Schedule callback invocation for the specified srcu_data structure, 816 * if possible, on the corresponding CPU. 817 */ 818 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 819 { 820 srcu_queue_delayed_work_on(sdp, delay); 821 } 822 823 /* 824 * Schedule callback invocation for all srcu_data structures associated 825 * with the specified srcu_node structure that have callbacks for the 826 * just-completed grace period, the one corresponding to idx. If possible, 827 * schedule this invocation on the corresponding CPUs. 828 */ 829 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 830 unsigned long mask, unsigned long delay) 831 { 832 int cpu; 833 834 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 835 if (!(mask & (1UL << (cpu - snp->grplo)))) 836 continue; 837 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 838 } 839 } 840 841 /* 842 * Note the end of an SRCU grace period. Initiates callback invocation 843 * and starts a new grace period if needed. 844 * 845 * The ->srcu_cb_mutex acquisition does not protect any data, but 846 * instead prevents more than one grace period from starting while we 847 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 848 * array to have a finite number of elements. 849 */ 850 static void srcu_gp_end(struct srcu_struct *ssp) 851 { 852 unsigned long cbdelay = 1; 853 bool cbs; 854 bool last_lvl; 855 int cpu; 856 unsigned long flags; 857 unsigned long gpseq; 858 int idx; 859 unsigned long mask; 860 struct srcu_data *sdp; 861 unsigned long sgsne; 862 struct srcu_node *snp; 863 int ss_state; 864 struct srcu_usage *sup = ssp->srcu_sup; 865 866 /* Prevent more than one additional grace period. */ 867 mutex_lock(&sup->srcu_cb_mutex); 868 869 /* End the current grace period. */ 870 spin_lock_irq_rcu_node(sup); 871 idx = rcu_seq_state(sup->srcu_gp_seq); 872 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 873 if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) 874 cbdelay = 0; 875 876 WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns()); 877 rcu_seq_end(&sup->srcu_gp_seq); 878 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 879 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq)) 880 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq); 881 spin_unlock_irq_rcu_node(sup); 882 mutex_unlock(&sup->srcu_gp_mutex); 883 /* A new grace period can start at this point. But only one. */ 884 885 /* Initiate callback invocation as needed. */ 886 ss_state = smp_load_acquire(&sup->srcu_size_state); 887 if (ss_state < SRCU_SIZE_WAIT_BARRIER) { 888 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), 889 cbdelay); 890 } else { 891 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 892 srcu_for_each_node_breadth_first(ssp, snp) { 893 spin_lock_irq_rcu_node(snp); 894 cbs = false; 895 last_lvl = snp >= sup->level[rcu_num_lvls - 1]; 896 if (last_lvl) 897 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; 898 snp->srcu_have_cbs[idx] = gpseq; 899 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 900 sgsne = snp->srcu_gp_seq_needed_exp; 901 if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) 902 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 903 if (ss_state < SRCU_SIZE_BIG) 904 mask = ~0; 905 else 906 mask = snp->srcu_data_have_cbs[idx]; 907 snp->srcu_data_have_cbs[idx] = 0; 908 spin_unlock_irq_rcu_node(snp); 909 if (cbs) 910 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 911 } 912 } 913 914 /* Occasionally prevent srcu_data counter wrap. */ 915 if (!(gpseq & counter_wrap_check)) 916 for_each_possible_cpu(cpu) { 917 sdp = per_cpu_ptr(ssp->sda, cpu); 918 spin_lock_irqsave_rcu_node(sdp, flags); 919 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) 920 sdp->srcu_gp_seq_needed = gpseq; 921 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) 922 sdp->srcu_gp_seq_needed_exp = gpseq; 923 spin_unlock_irqrestore_rcu_node(sdp, flags); 924 } 925 926 /* Callback initiation done, allow grace periods after next. */ 927 mutex_unlock(&sup->srcu_cb_mutex); 928 929 /* Start a new grace period if needed. */ 930 spin_lock_irq_rcu_node(sup); 931 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 932 if (!rcu_seq_state(gpseq) && 933 ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) { 934 srcu_gp_start(ssp); 935 spin_unlock_irq_rcu_node(sup); 936 srcu_reschedule(ssp, 0); 937 } else { 938 spin_unlock_irq_rcu_node(sup); 939 } 940 941 /* Transition to big if needed. */ 942 if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { 943 if (ss_state == SRCU_SIZE_ALLOC) 944 init_srcu_struct_nodes(ssp, GFP_KERNEL); 945 else 946 smp_store_release(&sup->srcu_size_state, ss_state + 1); 947 } 948 } 949 950 /* 951 * Funnel-locking scheme to scalably mediate many concurrent expedited 952 * grace-period requests. This function is invoked for the first known 953 * expedited request for a grace period that has already been requested, 954 * but without expediting. To start a completely new grace period, 955 * whether expedited or not, use srcu_funnel_gp_start() instead. 956 */ 957 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 958 unsigned long s) 959 { 960 unsigned long flags; 961 unsigned long sgsne; 962 963 if (snp) 964 for (; snp != NULL; snp = snp->srcu_parent) { 965 sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); 966 if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) || 967 (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) 968 return; 969 spin_lock_irqsave_rcu_node(snp, flags); 970 sgsne = snp->srcu_gp_seq_needed_exp; 971 if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { 972 spin_unlock_irqrestore_rcu_node(snp, flags); 973 return; 974 } 975 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 976 spin_unlock_irqrestore_rcu_node(snp, flags); 977 } 978 spin_lock_irqsave_ssp_contention(ssp, &flags); 979 if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s)) 980 WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s); 981 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 982 } 983 984 /* 985 * Funnel-locking scheme to scalably mediate many concurrent grace-period 986 * requests. The winner has to do the work of actually starting grace 987 * period s. Losers must either ensure that their desired grace-period 988 * number is recorded on at least their leaf srcu_node structure, or they 989 * must take steps to invoke their own callbacks. 990 * 991 * Note that this function also does the work of srcu_funnel_exp_start(), 992 * in some cases by directly invoking it. 993 * 994 * The srcu read lock should be hold around this function. And s is a seq snap 995 * after holding that lock. 996 */ 997 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 998 unsigned long s, bool do_norm) 999 { 1000 unsigned long flags; 1001 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 1002 unsigned long sgsne; 1003 struct srcu_node *snp; 1004 struct srcu_node *snp_leaf; 1005 unsigned long snp_seq; 1006 struct srcu_usage *sup = ssp->srcu_sup; 1007 1008 /* Ensure that snp node tree is fully initialized before traversing it */ 1009 if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1010 snp_leaf = NULL; 1011 else 1012 snp_leaf = sdp->mynode; 1013 1014 if (snp_leaf) 1015 /* Each pass through the loop does one level of the srcu_node tree. */ 1016 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { 1017 if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf) 1018 return; /* GP already done and CBs recorded. */ 1019 spin_lock_irqsave_rcu_node(snp, flags); 1020 snp_seq = snp->srcu_have_cbs[idx]; 1021 if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { 1022 if (snp == snp_leaf && snp_seq == s) 1023 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1024 spin_unlock_irqrestore_rcu_node(snp, flags); 1025 if (snp == snp_leaf && snp_seq != s) { 1026 srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); 1027 return; 1028 } 1029 if (!do_norm) 1030 srcu_funnel_exp_start(ssp, snp, s); 1031 return; 1032 } 1033 snp->srcu_have_cbs[idx] = s; 1034 if (snp == snp_leaf) 1035 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1036 sgsne = snp->srcu_gp_seq_needed_exp; 1037 if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) 1038 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 1039 spin_unlock_irqrestore_rcu_node(snp, flags); 1040 } 1041 1042 /* Top of tree, must ensure the grace period will be started. */ 1043 spin_lock_irqsave_ssp_contention(ssp, &flags); 1044 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) { 1045 /* 1046 * Record need for grace period s. Pair with load 1047 * acquire setting up for initialization. 1048 */ 1049 smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/ 1050 } 1051 if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s)) 1052 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s); 1053 1054 /* If grace period not already in progress, start it. */ 1055 if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && 1056 rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) { 1057 WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed)); 1058 srcu_gp_start(ssp); 1059 1060 // And how can that list_add() in the "else" clause 1061 // possibly be safe for concurrent execution? Well, 1062 // it isn't. And it does not have to be. After all, it 1063 // can only be executed during early boot when there is only 1064 // the one boot CPU running with interrupts still disabled. 1065 if (likely(srcu_init_done)) 1066 queue_delayed_work(rcu_gp_wq, &sup->work, 1067 !!srcu_get_delay(ssp)); 1068 else if (list_empty(&sup->work.work.entry)) 1069 list_add(&sup->work.work.entry, &srcu_boot_list); 1070 } 1071 spin_unlock_irqrestore_rcu_node(sup, flags); 1072 } 1073 1074 /* 1075 * Wait until all readers counted by array index idx complete, but 1076 * loop an additional time if there is an expedited grace period pending. 1077 * The caller must ensure that ->srcu_idx is not changed while checking. 1078 */ 1079 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 1080 { 1081 unsigned long curdelay; 1082 1083 curdelay = !srcu_get_delay(ssp); 1084 1085 for (;;) { 1086 if (srcu_readers_active_idx_check(ssp, idx)) 1087 return true; 1088 if ((--trycount + curdelay) <= 0) 1089 return false; 1090 udelay(srcu_retry_check_delay); 1091 } 1092 } 1093 1094 /* 1095 * Increment the ->srcu_idx counter so that future SRCU readers will 1096 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 1097 * us to wait for pre-existing readers in a starvation-free manner. 1098 */ 1099 static void srcu_flip(struct srcu_struct *ssp) 1100 { 1101 /* 1102 * Because the flip of ->srcu_idx is executed only if the 1103 * preceding call to srcu_readers_active_idx_check() found that 1104 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched 1105 * and because that summing uses atomic_long_read(), there is 1106 * ordering due to a control dependency between that summing and 1107 * the WRITE_ONCE() in this call to srcu_flip(). This ordering 1108 * ensures that if this updater saw a given reader's increment from 1109 * __srcu_read_lock(), that reader was using a value of ->srcu_idx 1110 * from before the previous call to srcu_flip(), which should be 1111 * quite rare. This ordering thus helps forward progress because 1112 * the grace period could otherwise be delayed by additional 1113 * calls to __srcu_read_lock() using that old (soon to be new) 1114 * value of ->srcu_idx. 1115 * 1116 * This sum-equality check and ordering also ensures that if 1117 * a given call to __srcu_read_lock() uses the new value of 1118 * ->srcu_idx, this updater's earlier scans cannot have seen 1119 * that reader's increments, which is all to the good, because 1120 * this grace period need not wait on that reader. After all, 1121 * if those earlier scans had seen that reader, there would have 1122 * been a sum mismatch and this code would not be reached. 1123 * 1124 * This means that the following smp_mb() is redundant, but 1125 * it stays until either (1) Compilers learn about this sort of 1126 * control dependency or (2) Some production workload running on 1127 * a production system is unduly delayed by this slowpath smp_mb(). 1128 */ 1129 smp_mb(); /* E */ /* Pairs with B and C. */ 1130 1131 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter. 1132 1133 /* 1134 * Ensure that if the updater misses an __srcu_read_unlock() 1135 * increment, that task's __srcu_read_lock() following its next 1136 * __srcu_read_lock() or __srcu_read_unlock() will see the above 1137 * counter update. Note that both this memory barrier and the 1138 * one in srcu_readers_active_idx_check() provide the guarantee 1139 * for __srcu_read_lock(). 1140 */ 1141 smp_mb(); /* D */ /* Pairs with C. */ 1142 } 1143 1144 /* 1145 * If SRCU is likely idle, return true, otherwise return false. 1146 * 1147 * Note that it is OK for several current from-idle requests for a new 1148 * grace period from idle to specify expediting because they will all end 1149 * up requesting the same grace period anyhow. So no loss. 1150 * 1151 * Note also that if any CPU (including the current one) is still invoking 1152 * callbacks, this function will nevertheless say "idle". This is not 1153 * ideal, but the overhead of checking all CPUs' callback lists is even 1154 * less ideal, especially on large systems. Furthermore, the wakeup 1155 * can happen before the callback is fully removed, so we have no choice 1156 * but to accept this type of error. 1157 * 1158 * This function is also subject to counter-wrap errors, but let's face 1159 * it, if this function was preempted for enough time for the counters 1160 * to wrap, it really doesn't matter whether or not we expedite the grace 1161 * period. The extra overhead of a needlessly expedited grace period is 1162 * negligible when amortized over that time period, and the extra latency 1163 * of a needlessly non-expedited grace period is similarly negligible. 1164 */ 1165 static bool srcu_might_be_idle(struct srcu_struct *ssp) 1166 { 1167 unsigned long curseq; 1168 unsigned long flags; 1169 struct srcu_data *sdp; 1170 unsigned long t; 1171 unsigned long tlast; 1172 1173 check_init_srcu_struct(ssp); 1174 /* If the local srcu_data structure has callbacks, not idle. */ 1175 sdp = raw_cpu_ptr(ssp->sda); 1176 spin_lock_irqsave_rcu_node(sdp, flags); 1177 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 1178 spin_unlock_irqrestore_rcu_node(sdp, flags); 1179 return false; /* Callbacks already present, so not idle. */ 1180 } 1181 spin_unlock_irqrestore_rcu_node(sdp, flags); 1182 1183 /* 1184 * No local callbacks, so probabilistically probe global state. 1185 * Exact information would require acquiring locks, which would 1186 * kill scalability, hence the probabilistic nature of the probe. 1187 */ 1188 1189 /* First, see if enough time has passed since the last GP. */ 1190 t = ktime_get_mono_fast_ns(); 1191 tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end); 1192 if (exp_holdoff == 0 || 1193 time_in_range_open(t, tlast, tlast + exp_holdoff)) 1194 return false; /* Too soon after last GP. */ 1195 1196 /* Next, check for probable idleness. */ 1197 curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1198 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 1199 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed))) 1200 return false; /* Grace period in progress, so not idle. */ 1201 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 1202 if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)) 1203 return false; /* GP # changed, so not idle. */ 1204 return true; /* With reasonable probability, idle! */ 1205 } 1206 1207 /* 1208 * SRCU callback function to leak a callback. 1209 */ 1210 static void srcu_leak_callback(struct rcu_head *rhp) 1211 { 1212 } 1213 1214 /* 1215 * Start an SRCU grace period, and also queue the callback if non-NULL. 1216 */ 1217 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 1218 struct rcu_head *rhp, bool do_norm) 1219 { 1220 unsigned long flags; 1221 int idx; 1222 bool needexp = false; 1223 bool needgp = false; 1224 unsigned long s; 1225 struct srcu_data *sdp; 1226 struct srcu_node *sdp_mynode; 1227 int ss_state; 1228 1229 check_init_srcu_struct(ssp); 1230 /* 1231 * While starting a new grace period, make sure we are in an 1232 * SRCU read-side critical section so that the grace-period 1233 * sequence number cannot wrap around in the meantime. 1234 */ 1235 idx = __srcu_read_lock_nmisafe(ssp); 1236 ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state); 1237 if (ss_state < SRCU_SIZE_WAIT_CALL) 1238 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); 1239 else 1240 sdp = raw_cpu_ptr(ssp->sda); 1241 spin_lock_irqsave_sdp_contention(sdp, &flags); 1242 if (rhp) 1243 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 1244 /* 1245 * The snapshot for acceleration must be taken _before_ the read of the 1246 * current gp sequence used for advancing, otherwise advancing may fail 1247 * and acceleration may then fail too. 1248 * 1249 * This could happen if: 1250 * 1251 * 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the 1252 * RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8). 1253 * 1254 * 2) The grace period for RCU_WAIT_TAIL is seen as started but not 1255 * completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1. 1256 * 1257 * 3) This value is passed to rcu_segcblist_advance() which can't move 1258 * any segment forward and fails. 1259 * 1260 * 4) srcu_gp_start_if_needed() still proceeds with callback acceleration. 1261 * But then the call to rcu_seq_snap() observes the grace period for the 1262 * RCU_WAIT_TAIL segment as completed and the subsequent one for the 1263 * RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1) 1264 * so it returns a snapshot of the next grace period, which is X + 12. 1265 * 1266 * 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the 1267 * freshly enqueued callback in RCU_NEXT_TAIL can't move to 1268 * RCU_NEXT_READY_TAIL which already has callbacks for a previous grace 1269 * period (gp_num = X + 8). So acceleration fails. 1270 */ 1271 s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1272 rcu_segcblist_advance(&sdp->srcu_cblist, 1273 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1274 WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s) && rhp); 1275 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 1276 sdp->srcu_gp_seq_needed = s; 1277 needgp = true; 1278 } 1279 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 1280 sdp->srcu_gp_seq_needed_exp = s; 1281 needexp = true; 1282 } 1283 spin_unlock_irqrestore_rcu_node(sdp, flags); 1284 1285 /* Ensure that snp node tree is fully initialized before traversing it */ 1286 if (ss_state < SRCU_SIZE_WAIT_BARRIER) 1287 sdp_mynode = NULL; 1288 else 1289 sdp_mynode = sdp->mynode; 1290 1291 if (needgp) 1292 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 1293 else if (needexp) 1294 srcu_funnel_exp_start(ssp, sdp_mynode, s); 1295 __srcu_read_unlock_nmisafe(ssp, idx); 1296 return s; 1297 } 1298 1299 /* 1300 * Enqueue an SRCU callback on the srcu_data structure associated with 1301 * the current CPU and the specified srcu_struct structure, initiating 1302 * grace-period processing if it is not already running. 1303 * 1304 * Note that all CPUs must agree that the grace period extended beyond 1305 * all pre-existing SRCU read-side critical section. On systems with 1306 * more than one CPU, this means that when "func()" is invoked, each CPU 1307 * is guaranteed to have executed a full memory barrier since the end of 1308 * its last corresponding SRCU read-side critical section whose beginning 1309 * preceded the call to call_srcu(). It also means that each CPU executing 1310 * an SRCU read-side critical section that continues beyond the start of 1311 * "func()" must have executed a memory barrier after the call_srcu() 1312 * but before the beginning of that SRCU read-side critical section. 1313 * Note that these guarantees include CPUs that are offline, idle, or 1314 * executing in user mode, as well as CPUs that are executing in the kernel. 1315 * 1316 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 1317 * resulting SRCU callback function "func()", then both CPU A and CPU 1318 * B are guaranteed to execute a full memory barrier during the time 1319 * interval between the call to call_srcu() and the invocation of "func()". 1320 * This guarantee applies even if CPU A and CPU B are the same CPU (but 1321 * again only if the system has more than one CPU). 1322 * 1323 * Of course, these guarantees apply only for invocations of call_srcu(), 1324 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 1325 * srcu_struct structure. 1326 */ 1327 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1328 rcu_callback_t func, bool do_norm) 1329 { 1330 if (debug_rcu_head_queue(rhp)) { 1331 /* Probable double call_srcu(), so leak the callback. */ 1332 WRITE_ONCE(rhp->func, srcu_leak_callback); 1333 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 1334 return; 1335 } 1336 rhp->func = func; 1337 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 1338 } 1339 1340 /** 1341 * call_srcu() - Queue a callback for invocation after an SRCU grace period 1342 * @ssp: srcu_struct in queue the callback 1343 * @rhp: structure to be used for queueing the SRCU callback. 1344 * @func: function to be invoked after the SRCU grace period 1345 * 1346 * The callback function will be invoked some time after a full SRCU 1347 * grace period elapses, in other words after all pre-existing SRCU 1348 * read-side critical sections have completed. However, the callback 1349 * function might well execute concurrently with other SRCU read-side 1350 * critical sections that started after call_srcu() was invoked. SRCU 1351 * read-side critical sections are delimited by srcu_read_lock() and 1352 * srcu_read_unlock(), and may be nested. 1353 * 1354 * The callback will be invoked from process context, but must nevertheless 1355 * be fast and must not block. 1356 */ 1357 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1358 rcu_callback_t func) 1359 { 1360 __call_srcu(ssp, rhp, func, true); 1361 } 1362 EXPORT_SYMBOL_GPL(call_srcu); 1363 1364 /* 1365 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 1366 */ 1367 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 1368 { 1369 struct rcu_synchronize rcu; 1370 1371 srcu_lock_sync(&ssp->dep_map); 1372 1373 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 1374 lock_is_held(&rcu_bh_lock_map) || 1375 lock_is_held(&rcu_lock_map) || 1376 lock_is_held(&rcu_sched_lock_map), 1377 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 1378 1379 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 1380 return; 1381 might_sleep(); 1382 check_init_srcu_struct(ssp); 1383 init_completion(&rcu.completion); 1384 init_rcu_head_on_stack(&rcu.head); 1385 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 1386 wait_for_completion(&rcu.completion); 1387 destroy_rcu_head_on_stack(&rcu.head); 1388 1389 /* 1390 * Make sure that later code is ordered after the SRCU grace 1391 * period. This pairs with the spin_lock_irq_rcu_node() 1392 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 1393 * because the current CPU might have been totally uninvolved with 1394 * (and thus unordered against) that grace period. 1395 */ 1396 smp_mb(); 1397 } 1398 1399 /** 1400 * synchronize_srcu_expedited - Brute-force SRCU grace period 1401 * @ssp: srcu_struct with which to synchronize. 1402 * 1403 * Wait for an SRCU grace period to elapse, but be more aggressive about 1404 * spinning rather than blocking when waiting. 1405 * 1406 * Note that synchronize_srcu_expedited() has the same deadlock and 1407 * memory-ordering properties as does synchronize_srcu(). 1408 */ 1409 void synchronize_srcu_expedited(struct srcu_struct *ssp) 1410 { 1411 __synchronize_srcu(ssp, rcu_gp_is_normal()); 1412 } 1413 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 1414 1415 /** 1416 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 1417 * @ssp: srcu_struct with which to synchronize. 1418 * 1419 * Wait for the count to drain to zero of both indexes. To avoid the 1420 * possible starvation of synchronize_srcu(), it waits for the count of 1421 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 1422 * and then flip the srcu_idx and wait for the count of the other index. 1423 * 1424 * Can block; must be called from process context. 1425 * 1426 * Note that it is illegal to call synchronize_srcu() from the corresponding 1427 * SRCU read-side critical section; doing so will result in deadlock. 1428 * However, it is perfectly legal to call synchronize_srcu() on one 1429 * srcu_struct from some other srcu_struct's read-side critical section, 1430 * as long as the resulting graph of srcu_structs is acyclic. 1431 * 1432 * There are memory-ordering constraints implied by synchronize_srcu(). 1433 * On systems with more than one CPU, when synchronize_srcu() returns, 1434 * each CPU is guaranteed to have executed a full memory barrier since 1435 * the end of its last corresponding SRCU read-side critical section 1436 * whose beginning preceded the call to synchronize_srcu(). In addition, 1437 * each CPU having an SRCU read-side critical section that extends beyond 1438 * the return from synchronize_srcu() is guaranteed to have executed a 1439 * full memory barrier after the beginning of synchronize_srcu() and before 1440 * the beginning of that SRCU read-side critical section. Note that these 1441 * guarantees include CPUs that are offline, idle, or executing in user mode, 1442 * as well as CPUs that are executing in the kernel. 1443 * 1444 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 1445 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 1446 * to have executed a full memory barrier during the execution of 1447 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 1448 * are the same CPU, but again only if the system has more than one CPU. 1449 * 1450 * Of course, these memory-ordering guarantees apply only when 1451 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1452 * passed the same srcu_struct structure. 1453 * 1454 * Implementation of these memory-ordering guarantees is similar to 1455 * that of synchronize_rcu(). 1456 * 1457 * If SRCU is likely idle, expedite the first request. This semantic 1458 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1459 * SRCU must also provide it. Note that detecting idleness is heuristic 1460 * and subject to both false positives and negatives. 1461 */ 1462 void synchronize_srcu(struct srcu_struct *ssp) 1463 { 1464 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1465 synchronize_srcu_expedited(ssp); 1466 else 1467 __synchronize_srcu(ssp, true); 1468 } 1469 EXPORT_SYMBOL_GPL(synchronize_srcu); 1470 1471 /** 1472 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1473 * @ssp: srcu_struct to provide cookie for. 1474 * 1475 * This function returns a cookie that can be passed to 1476 * poll_state_synchronize_srcu(), which will return true if a full grace 1477 * period has elapsed in the meantime. It is the caller's responsibility 1478 * to make sure that grace period happens, for example, by invoking 1479 * call_srcu() after return from get_state_synchronize_srcu(). 1480 */ 1481 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1482 { 1483 // Any prior manipulation of SRCU-protected data must happen 1484 // before the load from ->srcu_gp_seq. 1485 smp_mb(); 1486 return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1487 } 1488 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1489 1490 /** 1491 * start_poll_synchronize_srcu - Provide cookie and start grace period 1492 * @ssp: srcu_struct to provide cookie for. 1493 * 1494 * This function returns a cookie that can be passed to 1495 * poll_state_synchronize_srcu(), which will return true if a full grace 1496 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1497 * this function also ensures that any needed SRCU grace period will be 1498 * started. This convenience does come at a cost in terms of CPU overhead. 1499 */ 1500 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1501 { 1502 return srcu_gp_start_if_needed(ssp, NULL, true); 1503 } 1504 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1505 1506 /** 1507 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1508 * @ssp: srcu_struct to provide cookie for. 1509 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1510 * 1511 * This function takes the cookie that was returned from either 1512 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1513 * returns @true if an SRCU grace period elapsed since the time that the 1514 * cookie was created. 1515 * 1516 * Because cookies are finite in size, wrapping/overflow is possible. 1517 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1518 * where in theory wrapping could happen in about 14 hours assuming 1519 * 25-microsecond expedited SRCU grace periods. However, a more likely 1520 * overflow lower bound is on the order of 24 days in the case of 1521 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1522 * system requires geologic timespans, as in more than seven million years 1523 * even for expedited SRCU grace periods. 1524 * 1525 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1526 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1527 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1528 * few minutes. If this proves to be a problem, this counter will be 1529 * expanded to the same size as for Tree SRCU. 1530 */ 1531 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1532 { 1533 if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie)) 1534 return false; 1535 // Ensure that the end of the SRCU grace period happens before 1536 // any subsequent code that the caller might execute. 1537 smp_mb(); // ^^^ 1538 return true; 1539 } 1540 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1541 1542 /* 1543 * Callback function for srcu_barrier() use. 1544 */ 1545 static void srcu_barrier_cb(struct rcu_head *rhp) 1546 { 1547 struct srcu_data *sdp; 1548 struct srcu_struct *ssp; 1549 1550 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1551 ssp = sdp->ssp; 1552 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1553 complete(&ssp->srcu_sup->srcu_barrier_completion); 1554 } 1555 1556 /* 1557 * Enqueue an srcu_barrier() callback on the specified srcu_data 1558 * structure's ->cblist. but only if that ->cblist already has at least one 1559 * callback enqueued. Note that if a CPU already has callbacks enqueue, 1560 * it must have already registered the need for a future grace period, 1561 * so all we need do is enqueue a callback that will use the same grace 1562 * period as the last callback already in the queue. 1563 */ 1564 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) 1565 { 1566 spin_lock_irq_rcu_node(sdp); 1567 atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1568 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1569 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1570 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1571 &sdp->srcu_barrier_head)) { 1572 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1573 atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1574 } 1575 spin_unlock_irq_rcu_node(sdp); 1576 } 1577 1578 /** 1579 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1580 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1581 */ 1582 void srcu_barrier(struct srcu_struct *ssp) 1583 { 1584 int cpu; 1585 int idx; 1586 unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq); 1587 1588 check_init_srcu_struct(ssp); 1589 mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex); 1590 if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) { 1591 smp_mb(); /* Force ordering following return. */ 1592 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1593 return; /* Someone else did our work for us. */ 1594 } 1595 rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq); 1596 init_completion(&ssp->srcu_sup->srcu_barrier_completion); 1597 1598 /* Initial count prevents reaching zero until all CBs are posted. */ 1599 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1); 1600 1601 idx = __srcu_read_lock_nmisafe(ssp); 1602 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1603 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); 1604 else 1605 for_each_possible_cpu(cpu) 1606 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); 1607 __srcu_read_unlock_nmisafe(ssp, idx); 1608 1609 /* Remove the initial count, at which point reaching zero can happen. */ 1610 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1611 complete(&ssp->srcu_sup->srcu_barrier_completion); 1612 wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion); 1613 1614 rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq); 1615 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1616 } 1617 EXPORT_SYMBOL_GPL(srcu_barrier); 1618 1619 /** 1620 * srcu_batches_completed - return batches completed. 1621 * @ssp: srcu_struct on which to report batch completion. 1622 * 1623 * Report the number of batches, correlated with, but not necessarily 1624 * precisely the same as, the number of grace periods that have elapsed. 1625 */ 1626 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1627 { 1628 return READ_ONCE(ssp->srcu_idx); 1629 } 1630 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1631 1632 /* 1633 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1634 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1635 * completed in that state. 1636 */ 1637 static void srcu_advance_state(struct srcu_struct *ssp) 1638 { 1639 int idx; 1640 1641 mutex_lock(&ssp->srcu_sup->srcu_gp_mutex); 1642 1643 /* 1644 * Because readers might be delayed for an extended period after 1645 * fetching ->srcu_idx for their index, at any point in time there 1646 * might well be readers using both idx=0 and idx=1. We therefore 1647 * need to wait for readers to clear from both index values before 1648 * invoking a callback. 1649 * 1650 * The load-acquire ensures that we see the accesses performed 1651 * by the prior grace period. 1652 */ 1653 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */ 1654 if (idx == SRCU_STATE_IDLE) { 1655 spin_lock_irq_rcu_node(ssp->srcu_sup); 1656 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1657 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)); 1658 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1659 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1660 return; 1661 } 1662 idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)); 1663 if (idx == SRCU_STATE_IDLE) 1664 srcu_gp_start(ssp); 1665 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1666 if (idx != SRCU_STATE_IDLE) { 1667 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1668 return; /* Someone else started the grace period. */ 1669 } 1670 } 1671 1672 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1673 idx = 1 ^ (ssp->srcu_idx & 1); 1674 if (!try_check_zero(ssp, idx, 1)) { 1675 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1676 return; /* readers present, retry later. */ 1677 } 1678 srcu_flip(ssp); 1679 spin_lock_irq_rcu_node(ssp->srcu_sup); 1680 rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2); 1681 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1682 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1683 } 1684 1685 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1686 1687 /* 1688 * SRCU read-side critical sections are normally short, 1689 * so check at least twice in quick succession after a flip. 1690 */ 1691 idx = 1 ^ (ssp->srcu_idx & 1); 1692 if (!try_check_zero(ssp, idx, 2)) { 1693 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1694 return; /* readers present, retry later. */ 1695 } 1696 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1697 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1698 } 1699 } 1700 1701 /* 1702 * Invoke a limited number of SRCU callbacks that have passed through 1703 * their grace period. If there are more to do, SRCU will reschedule 1704 * the workqueue. Note that needed memory barriers have been executed 1705 * in this task's context by srcu_readers_active_idx_check(). 1706 */ 1707 static void srcu_invoke_callbacks(struct work_struct *work) 1708 { 1709 long len; 1710 bool more; 1711 struct rcu_cblist ready_cbs; 1712 struct rcu_head *rhp; 1713 struct srcu_data *sdp; 1714 struct srcu_struct *ssp; 1715 1716 sdp = container_of(work, struct srcu_data, work); 1717 1718 ssp = sdp->ssp; 1719 rcu_cblist_init(&ready_cbs); 1720 spin_lock_irq_rcu_node(sdp); 1721 WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); 1722 rcu_segcblist_advance(&sdp->srcu_cblist, 1723 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1724 if (sdp->srcu_cblist_invoking || 1725 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1726 spin_unlock_irq_rcu_node(sdp); 1727 return; /* Someone else on the job or nothing to do. */ 1728 } 1729 1730 /* We are on the job! Extract and invoke ready callbacks. */ 1731 sdp->srcu_cblist_invoking = true; 1732 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1733 len = ready_cbs.len; 1734 spin_unlock_irq_rcu_node(sdp); 1735 rhp = rcu_cblist_dequeue(&ready_cbs); 1736 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1737 debug_rcu_head_unqueue(rhp); 1738 local_bh_disable(); 1739 rhp->func(rhp); 1740 local_bh_enable(); 1741 } 1742 WARN_ON_ONCE(ready_cbs.len); 1743 1744 /* 1745 * Update counts, accelerate new callbacks, and if needed, 1746 * schedule another round of callback invocation. 1747 */ 1748 spin_lock_irq_rcu_node(sdp); 1749 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1750 sdp->srcu_cblist_invoking = false; 1751 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1752 spin_unlock_irq_rcu_node(sdp); 1753 if (more) 1754 srcu_schedule_cbs_sdp(sdp, 0); 1755 } 1756 1757 /* 1758 * Finished one round of SRCU grace period. Start another if there are 1759 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1760 */ 1761 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1762 { 1763 bool pushgp = true; 1764 1765 spin_lock_irq_rcu_node(ssp->srcu_sup); 1766 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1767 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) { 1768 /* All requests fulfilled, time to go idle. */ 1769 pushgp = false; 1770 } 1771 } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) { 1772 /* Outstanding request and no GP. Start one. */ 1773 srcu_gp_start(ssp); 1774 } 1775 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1776 1777 if (pushgp) 1778 queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay); 1779 } 1780 1781 /* 1782 * This is the work-queue function that handles SRCU grace periods. 1783 */ 1784 static void process_srcu(struct work_struct *work) 1785 { 1786 unsigned long curdelay; 1787 unsigned long j; 1788 struct srcu_struct *ssp; 1789 struct srcu_usage *sup; 1790 1791 sup = container_of(work, struct srcu_usage, work.work); 1792 ssp = sup->srcu_ssp; 1793 1794 srcu_advance_state(ssp); 1795 curdelay = srcu_get_delay(ssp); 1796 if (curdelay) { 1797 WRITE_ONCE(sup->reschedule_count, 0); 1798 } else { 1799 j = jiffies; 1800 if (READ_ONCE(sup->reschedule_jiffies) == j) { 1801 WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1); 1802 if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay) 1803 curdelay = 1; 1804 } else { 1805 WRITE_ONCE(sup->reschedule_count, 1); 1806 WRITE_ONCE(sup->reschedule_jiffies, j); 1807 } 1808 } 1809 srcu_reschedule(ssp, curdelay); 1810 } 1811 1812 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1813 struct srcu_struct *ssp, int *flags, 1814 unsigned long *gp_seq) 1815 { 1816 if (test_type != SRCU_FLAVOR) 1817 return; 1818 *flags = 0; 1819 *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1820 } 1821 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1822 1823 static const char * const srcu_size_state_name[] = { 1824 "SRCU_SIZE_SMALL", 1825 "SRCU_SIZE_ALLOC", 1826 "SRCU_SIZE_WAIT_BARRIER", 1827 "SRCU_SIZE_WAIT_CALL", 1828 "SRCU_SIZE_WAIT_CBS1", 1829 "SRCU_SIZE_WAIT_CBS2", 1830 "SRCU_SIZE_WAIT_CBS3", 1831 "SRCU_SIZE_WAIT_CBS4", 1832 "SRCU_SIZE_BIG", 1833 "SRCU_SIZE_???", 1834 }; 1835 1836 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1837 { 1838 int cpu; 1839 int idx; 1840 unsigned long s0 = 0, s1 = 0; 1841 int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state); 1842 int ss_state_idx = ss_state; 1843 1844 idx = ssp->srcu_idx & 0x1; 1845 if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) 1846 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; 1847 pr_alert("%s%s Tree SRCU g%ld state %d (%s)", 1848 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state, 1849 srcu_size_state_name[ss_state_idx]); 1850 if (!ssp->sda) { 1851 // Called after cleanup_srcu_struct(), perhaps. 1852 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); 1853 } else { 1854 pr_cont(" per-CPU(idx=%d):", idx); 1855 for_each_possible_cpu(cpu) { 1856 unsigned long l0, l1; 1857 unsigned long u0, u1; 1858 long c0, c1; 1859 struct srcu_data *sdp; 1860 1861 sdp = per_cpu_ptr(ssp->sda, cpu); 1862 u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx])); 1863 u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx])); 1864 1865 /* 1866 * Make sure that a lock is always counted if the corresponding 1867 * unlock is counted. 1868 */ 1869 smp_rmb(); 1870 1871 l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx])); 1872 l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx])); 1873 1874 c0 = l0 - u0; 1875 c1 = l1 - u1; 1876 pr_cont(" %d(%ld,%ld %c)", 1877 cpu, c0, c1, 1878 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1879 s0 += c0; 1880 s1 += c1; 1881 } 1882 pr_cont(" T(%ld,%ld)\n", s0, s1); 1883 } 1884 if (SRCU_SIZING_IS_TORTURE()) 1885 srcu_transition_to_big(ssp); 1886 } 1887 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1888 1889 static int __init srcu_bootup_announce(void) 1890 { 1891 pr_info("Hierarchical SRCU implementation.\n"); 1892 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1893 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1894 if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) 1895 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); 1896 if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) 1897 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); 1898 pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); 1899 return 0; 1900 } 1901 early_initcall(srcu_bootup_announce); 1902 1903 void __init srcu_init(void) 1904 { 1905 struct srcu_usage *sup; 1906 1907 /* Decide on srcu_struct-size strategy. */ 1908 if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { 1909 if (nr_cpu_ids >= big_cpu_lim) { 1910 convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. 1911 pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); 1912 } else { 1913 convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; 1914 pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); 1915 } 1916 } 1917 1918 /* 1919 * Once that is set, call_srcu() can follow the normal path and 1920 * queue delayed work. This must follow RCU workqueues creation 1921 * and timers initialization. 1922 */ 1923 srcu_init_done = true; 1924 while (!list_empty(&srcu_boot_list)) { 1925 sup = list_first_entry(&srcu_boot_list, struct srcu_usage, 1926 work.work.entry); 1927 list_del_init(&sup->work.work.entry); 1928 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && 1929 sup->srcu_size_state == SRCU_SIZE_SMALL) 1930 sup->srcu_size_state = SRCU_SIZE_ALLOC; 1931 queue_work(rcu_gp_wq, &sup->work.work); 1932 } 1933 } 1934 1935 #ifdef CONFIG_MODULES 1936 1937 /* Initialize any global-scope srcu_struct structures used by this module. */ 1938 static int srcu_module_coming(struct module *mod) 1939 { 1940 int i; 1941 struct srcu_struct *ssp; 1942 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1943 1944 for (i = 0; i < mod->num_srcu_structs; i++) { 1945 ssp = *(sspp++); 1946 ssp->sda = alloc_percpu(struct srcu_data); 1947 if (WARN_ON_ONCE(!ssp->sda)) 1948 return -ENOMEM; 1949 } 1950 return 0; 1951 } 1952 1953 /* Clean up any global-scope srcu_struct structures used by this module. */ 1954 static void srcu_module_going(struct module *mod) 1955 { 1956 int i; 1957 struct srcu_struct *ssp; 1958 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1959 1960 for (i = 0; i < mod->num_srcu_structs; i++) { 1961 ssp = *(sspp++); 1962 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) && 1963 !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static)) 1964 cleanup_srcu_struct(ssp); 1965 if (!WARN_ON(srcu_readers_active(ssp))) 1966 free_percpu(ssp->sda); 1967 } 1968 } 1969 1970 /* Handle one module, either coming or going. */ 1971 static int srcu_module_notify(struct notifier_block *self, 1972 unsigned long val, void *data) 1973 { 1974 struct module *mod = data; 1975 int ret = 0; 1976 1977 switch (val) { 1978 case MODULE_STATE_COMING: 1979 ret = srcu_module_coming(mod); 1980 break; 1981 case MODULE_STATE_GOING: 1982 srcu_module_going(mod); 1983 break; 1984 default: 1985 break; 1986 } 1987 return ret; 1988 } 1989 1990 static struct notifier_block srcu_module_nb = { 1991 .notifier_call = srcu_module_notify, 1992 .priority = 0, 1993 }; 1994 1995 static __init int init_srcu_module_notifier(void) 1996 { 1997 int ret; 1998 1999 ret = register_module_notifier(&srcu_module_nb); 2000 if (ret) 2001 pr_warn("Failed to register srcu module notifier\n"); 2002 return ret; 2003 } 2004 late_initcall(init_srcu_module_notifier); 2005 2006 #endif /* #ifdef CONFIG_MODULES */ 2007