1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/srcu.h> 28 29 #include "rcu.h" 30 #include "rcu_segcblist.h" 31 32 /* Holdoff in nanoseconds for auto-expediting. */ 33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 35 module_param(exp_holdoff, ulong, 0444); 36 37 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 38 static ulong counter_wrap_check = (ULONG_MAX >> 2); 39 module_param(counter_wrap_check, ulong, 0444); 40 41 /* Early-boot callback-management, so early that no lock is required! */ 42 static LIST_HEAD(srcu_boot_list); 43 static bool __read_mostly srcu_init_done; 44 45 static void srcu_invoke_callbacks(struct work_struct *work); 46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 47 static void process_srcu(struct work_struct *work); 48 static void srcu_delay_timer(struct timer_list *t); 49 50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 51 #define spin_lock_rcu_node(p) \ 52 do { \ 53 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 54 smp_mb__after_unlock_lock(); \ 55 } while (0) 56 57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 58 59 #define spin_lock_irq_rcu_node(p) \ 60 do { \ 61 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 62 smp_mb__after_unlock_lock(); \ 63 } while (0) 64 65 #define spin_unlock_irq_rcu_node(p) \ 66 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 67 68 #define spin_lock_irqsave_rcu_node(p, flags) \ 69 do { \ 70 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 71 smp_mb__after_unlock_lock(); \ 72 } while (0) 73 74 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 75 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 76 77 /* 78 * Initialize SRCU combining tree. Note that statically allocated 79 * srcu_struct structures might already have srcu_read_lock() and 80 * srcu_read_unlock() running against them. So if the is_static parameter 81 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 82 */ 83 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static) 84 { 85 int cpu; 86 int i; 87 int level = 0; 88 int levelspread[RCU_NUM_LVLS]; 89 struct srcu_data *sdp; 90 struct srcu_node *snp; 91 struct srcu_node *snp_first; 92 93 /* Work out the overall tree geometry. */ 94 ssp->level[0] = &ssp->node[0]; 95 for (i = 1; i < rcu_num_lvls; i++) 96 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1]; 97 rcu_init_levelspread(levelspread, num_rcu_lvl); 98 99 /* Each pass through this loop initializes one srcu_node structure. */ 100 srcu_for_each_node_breadth_first(ssp, snp) { 101 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 102 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 103 ARRAY_SIZE(snp->srcu_data_have_cbs)); 104 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 105 snp->srcu_have_cbs[i] = 0; 106 snp->srcu_data_have_cbs[i] = 0; 107 } 108 snp->srcu_gp_seq_needed_exp = 0; 109 snp->grplo = -1; 110 snp->grphi = -1; 111 if (snp == &ssp->node[0]) { 112 /* Root node, special case. */ 113 snp->srcu_parent = NULL; 114 continue; 115 } 116 117 /* Non-root node. */ 118 if (snp == ssp->level[level + 1]) 119 level++; 120 snp->srcu_parent = ssp->level[level - 1] + 121 (snp - ssp->level[level]) / 122 levelspread[level - 1]; 123 } 124 125 /* 126 * Initialize the per-CPU srcu_data array, which feeds into the 127 * leaves of the srcu_node tree. 128 */ 129 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 130 ARRAY_SIZE(sdp->srcu_unlock_count)); 131 level = rcu_num_lvls - 1; 132 snp_first = ssp->level[level]; 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq; 140 sdp->mynode = &snp_first[cpu / levelspread[level]]; 141 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 142 if (snp->grplo < 0) 143 snp->grplo = cpu; 144 snp->grphi = cpu; 145 } 146 sdp->cpu = cpu; 147 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 148 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 149 sdp->ssp = ssp; 150 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 151 if (is_static) 152 continue; 153 154 /* Dynamically allocated, better be no srcu_read_locks()! */ 155 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 156 sdp->srcu_lock_count[i] = 0; 157 sdp->srcu_unlock_count[i] = 0; 158 } 159 } 160 } 161 162 /* 163 * Initialize non-compile-time initialized fields, including the 164 * associated srcu_node and srcu_data structures. The is_static 165 * parameter is passed through to init_srcu_struct_nodes(), and 166 * also tells us that ->sda has already been wired up to srcu_data. 167 */ 168 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 169 { 170 mutex_init(&ssp->srcu_cb_mutex); 171 mutex_init(&ssp->srcu_gp_mutex); 172 ssp->srcu_idx = 0; 173 ssp->srcu_gp_seq = 0; 174 ssp->srcu_barrier_seq = 0; 175 mutex_init(&ssp->srcu_barrier_mutex); 176 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0); 177 INIT_DELAYED_WORK(&ssp->work, process_srcu); 178 if (!is_static) 179 ssp->sda = alloc_percpu(struct srcu_data); 180 if (!ssp->sda) 181 return -ENOMEM; 182 init_srcu_struct_nodes(ssp, is_static); 183 ssp->srcu_gp_seq_needed_exp = 0; 184 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 185 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */ 186 return 0; 187 } 188 189 #ifdef CONFIG_DEBUG_LOCK_ALLOC 190 191 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 192 struct lock_class_key *key) 193 { 194 /* Don't re-initialize a lock while it is held. */ 195 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 196 lockdep_init_map(&ssp->dep_map, name, key, 0); 197 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 198 return init_srcu_struct_fields(ssp, false); 199 } 200 EXPORT_SYMBOL_GPL(__init_srcu_struct); 201 202 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 203 204 /** 205 * init_srcu_struct - initialize a sleep-RCU structure 206 * @ssp: structure to initialize. 207 * 208 * Must invoke this on a given srcu_struct before passing that srcu_struct 209 * to any other function. Each srcu_struct represents a separate domain 210 * of SRCU protection. 211 */ 212 int init_srcu_struct(struct srcu_struct *ssp) 213 { 214 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 215 return init_srcu_struct_fields(ssp, false); 216 } 217 EXPORT_SYMBOL_GPL(init_srcu_struct); 218 219 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 220 221 /* 222 * First-use initialization of statically allocated srcu_struct 223 * structure. Wiring up the combining tree is more than can be 224 * done with compile-time initialization, so this check is added 225 * to each update-side SRCU primitive. Use ssp->lock, which -is- 226 * compile-time initialized, to resolve races involving multiple 227 * CPUs trying to garner first-use privileges. 228 */ 229 static void check_init_srcu_struct(struct srcu_struct *ssp) 230 { 231 unsigned long flags; 232 233 /* The smp_load_acquire() pairs with the smp_store_release(). */ 234 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/ 235 return; /* Already initialized. */ 236 spin_lock_irqsave_rcu_node(ssp, flags); 237 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) { 238 spin_unlock_irqrestore_rcu_node(ssp, flags); 239 return; 240 } 241 init_srcu_struct_fields(ssp, true); 242 spin_unlock_irqrestore_rcu_node(ssp, flags); 243 } 244 245 /* 246 * Returns approximate total of the readers' ->srcu_lock_count[] values 247 * for the rank of per-CPU counters specified by idx. 248 */ 249 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 250 { 251 int cpu; 252 unsigned long sum = 0; 253 254 for_each_possible_cpu(cpu) { 255 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 256 257 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 258 } 259 return sum; 260 } 261 262 /* 263 * Returns approximate total of the readers' ->srcu_unlock_count[] values 264 * for the rank of per-CPU counters specified by idx. 265 */ 266 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 267 { 268 int cpu; 269 unsigned long sum = 0; 270 271 for_each_possible_cpu(cpu) { 272 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 273 274 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 275 } 276 return sum; 277 } 278 279 /* 280 * Return true if the number of pre-existing readers is determined to 281 * be zero. 282 */ 283 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 284 { 285 unsigned long unlocks; 286 287 unlocks = srcu_readers_unlock_idx(ssp, idx); 288 289 /* 290 * Make sure that a lock is always counted if the corresponding 291 * unlock is counted. Needs to be a smp_mb() as the read side may 292 * contain a read from a variable that is written to before the 293 * synchronize_srcu() in the write side. In this case smp_mb()s 294 * A and B act like the store buffering pattern. 295 * 296 * This smp_mb() also pairs with smp_mb() C to prevent accesses 297 * after the synchronize_srcu() from being executed before the 298 * grace period ends. 299 */ 300 smp_mb(); /* A */ 301 302 /* 303 * If the locks are the same as the unlocks, then there must have 304 * been no readers on this index at some time in between. This does 305 * not mean that there are no more readers, as one could have read 306 * the current index but not have incremented the lock counter yet. 307 * 308 * So suppose that the updater is preempted here for so long 309 * that more than ULONG_MAX non-nested readers come and go in 310 * the meantime. It turns out that this cannot result in overflow 311 * because if a reader modifies its unlock count after we read it 312 * above, then that reader's next load of ->srcu_idx is guaranteed 313 * to get the new value, which will cause it to operate on the 314 * other bank of counters, where it cannot contribute to the 315 * overflow of these counters. This means that there is a maximum 316 * of 2*NR_CPUS increments, which cannot overflow given current 317 * systems, especially not on 64-bit systems. 318 * 319 * OK, how about nesting? This does impose a limit on nesting 320 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 321 * especially on 64-bit systems. 322 */ 323 return srcu_readers_lock_idx(ssp, idx) == unlocks; 324 } 325 326 /** 327 * srcu_readers_active - returns true if there are readers. and false 328 * otherwise 329 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 330 * 331 * Note that this is not an atomic primitive, and can therefore suffer 332 * severe errors when invoked on an active srcu_struct. That said, it 333 * can be useful as an error check at cleanup time. 334 */ 335 static bool srcu_readers_active(struct srcu_struct *ssp) 336 { 337 int cpu; 338 unsigned long sum = 0; 339 340 for_each_possible_cpu(cpu) { 341 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 342 343 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 344 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 345 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 346 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 347 } 348 return sum; 349 } 350 351 #define SRCU_INTERVAL 1 352 353 /* 354 * Return grace-period delay, zero if there are expedited grace 355 * periods pending, SRCU_INTERVAL otherwise. 356 */ 357 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 358 { 359 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), 360 READ_ONCE(ssp->srcu_gp_seq_needed_exp))) 361 return 0; 362 return SRCU_INTERVAL; 363 } 364 365 /** 366 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 367 * @ssp: structure to clean up. 368 * 369 * Must invoke this after you are finished using a given srcu_struct that 370 * was initialized via init_srcu_struct(), else you leak memory. 371 */ 372 void cleanup_srcu_struct(struct srcu_struct *ssp) 373 { 374 int cpu; 375 376 if (WARN_ON(!srcu_get_delay(ssp))) 377 return; /* Just leak it! */ 378 if (WARN_ON(srcu_readers_active(ssp))) 379 return; /* Just leak it! */ 380 flush_delayed_work(&ssp->work); 381 for_each_possible_cpu(cpu) { 382 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 383 384 del_timer_sync(&sdp->delay_work); 385 flush_work(&sdp->work); 386 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 387 return; /* Forgot srcu_barrier(), so just leak it! */ 388 } 389 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 390 WARN_ON(srcu_readers_active(ssp))) { 391 pr_info("%s: Active srcu_struct %p state: %d\n", 392 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))); 393 return; /* Caller forgot to stop doing call_srcu()? */ 394 } 395 free_percpu(ssp->sda); 396 ssp->sda = NULL; 397 } 398 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 399 400 /* 401 * Counts the new reader in the appropriate per-CPU element of the 402 * srcu_struct. 403 * Returns an index that must be passed to the matching srcu_read_unlock(). 404 */ 405 int __srcu_read_lock(struct srcu_struct *ssp) 406 { 407 int idx; 408 409 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 410 this_cpu_inc(ssp->sda->srcu_lock_count[idx]); 411 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 412 return idx; 413 } 414 EXPORT_SYMBOL_GPL(__srcu_read_lock); 415 416 /* 417 * Removes the count for the old reader from the appropriate per-CPU 418 * element of the srcu_struct. Note that this may well be a different 419 * CPU than that which was incremented by the corresponding srcu_read_lock(). 420 */ 421 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 422 { 423 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 424 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]); 425 } 426 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 427 428 /* 429 * We use an adaptive strategy for synchronize_srcu() and especially for 430 * synchronize_srcu_expedited(). We spin for a fixed time period 431 * (defined below) to allow SRCU readers to exit their read-side critical 432 * sections. If there are still some readers after a few microseconds, 433 * we repeatedly block for 1-millisecond time periods. 434 */ 435 #define SRCU_RETRY_CHECK_DELAY 5 436 437 /* 438 * Start an SRCU grace period. 439 */ 440 static void srcu_gp_start(struct srcu_struct *ssp) 441 { 442 struct srcu_data *sdp = this_cpu_ptr(ssp->sda); 443 int state; 444 445 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 446 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 447 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 448 rcu_segcblist_advance(&sdp->srcu_cblist, 449 rcu_seq_current(&ssp->srcu_gp_seq)); 450 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 451 rcu_seq_snap(&ssp->srcu_gp_seq)); 452 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 453 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 454 rcu_seq_start(&ssp->srcu_gp_seq); 455 state = rcu_seq_state(ssp->srcu_gp_seq); 456 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 457 } 458 459 460 static void srcu_delay_timer(struct timer_list *t) 461 { 462 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 463 464 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 465 } 466 467 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 468 unsigned long delay) 469 { 470 if (!delay) { 471 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 472 return; 473 } 474 475 timer_reduce(&sdp->delay_work, jiffies + delay); 476 } 477 478 /* 479 * Schedule callback invocation for the specified srcu_data structure, 480 * if possible, on the corresponding CPU. 481 */ 482 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 483 { 484 srcu_queue_delayed_work_on(sdp, delay); 485 } 486 487 /* 488 * Schedule callback invocation for all srcu_data structures associated 489 * with the specified srcu_node structure that have callbacks for the 490 * just-completed grace period, the one corresponding to idx. If possible, 491 * schedule this invocation on the corresponding CPUs. 492 */ 493 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 494 unsigned long mask, unsigned long delay) 495 { 496 int cpu; 497 498 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 499 if (!(mask & (1 << (cpu - snp->grplo)))) 500 continue; 501 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 502 } 503 } 504 505 /* 506 * Note the end of an SRCU grace period. Initiates callback invocation 507 * and starts a new grace period if needed. 508 * 509 * The ->srcu_cb_mutex acquisition does not protect any data, but 510 * instead prevents more than one grace period from starting while we 511 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 512 * array to have a finite number of elements. 513 */ 514 static void srcu_gp_end(struct srcu_struct *ssp) 515 { 516 unsigned long cbdelay; 517 bool cbs; 518 bool last_lvl; 519 int cpu; 520 unsigned long flags; 521 unsigned long gpseq; 522 int idx; 523 unsigned long mask; 524 struct srcu_data *sdp; 525 struct srcu_node *snp; 526 527 /* Prevent more than one additional grace period. */ 528 mutex_lock(&ssp->srcu_cb_mutex); 529 530 /* End the current grace period. */ 531 spin_lock_irq_rcu_node(ssp); 532 idx = rcu_seq_state(ssp->srcu_gp_seq); 533 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 534 cbdelay = srcu_get_delay(ssp); 535 WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns()); 536 rcu_seq_end(&ssp->srcu_gp_seq); 537 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 538 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq)) 539 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq); 540 spin_unlock_irq_rcu_node(ssp); 541 mutex_unlock(&ssp->srcu_gp_mutex); 542 /* A new grace period can start at this point. But only one. */ 543 544 /* Initiate callback invocation as needed. */ 545 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 546 srcu_for_each_node_breadth_first(ssp, snp) { 547 spin_lock_irq_rcu_node(snp); 548 cbs = false; 549 last_lvl = snp >= ssp->level[rcu_num_lvls - 1]; 550 if (last_lvl) 551 cbs = snp->srcu_have_cbs[idx] == gpseq; 552 snp->srcu_have_cbs[idx] = gpseq; 553 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 554 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 555 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 556 mask = snp->srcu_data_have_cbs[idx]; 557 snp->srcu_data_have_cbs[idx] = 0; 558 spin_unlock_irq_rcu_node(snp); 559 if (cbs) 560 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 561 562 /* Occasionally prevent srcu_data counter wrap. */ 563 if (!(gpseq & counter_wrap_check) && last_lvl) 564 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 565 sdp = per_cpu_ptr(ssp->sda, cpu); 566 spin_lock_irqsave_rcu_node(sdp, flags); 567 if (ULONG_CMP_GE(gpseq, 568 sdp->srcu_gp_seq_needed + 100)) 569 sdp->srcu_gp_seq_needed = gpseq; 570 if (ULONG_CMP_GE(gpseq, 571 sdp->srcu_gp_seq_needed_exp + 100)) 572 sdp->srcu_gp_seq_needed_exp = gpseq; 573 spin_unlock_irqrestore_rcu_node(sdp, flags); 574 } 575 } 576 577 /* Callback initiation done, allow grace periods after next. */ 578 mutex_unlock(&ssp->srcu_cb_mutex); 579 580 /* Start a new grace period if needed. */ 581 spin_lock_irq_rcu_node(ssp); 582 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 583 if (!rcu_seq_state(gpseq) && 584 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) { 585 srcu_gp_start(ssp); 586 spin_unlock_irq_rcu_node(ssp); 587 srcu_reschedule(ssp, 0); 588 } else { 589 spin_unlock_irq_rcu_node(ssp); 590 } 591 } 592 593 /* 594 * Funnel-locking scheme to scalably mediate many concurrent expedited 595 * grace-period requests. This function is invoked for the first known 596 * expedited request for a grace period that has already been requested, 597 * but without expediting. To start a completely new grace period, 598 * whether expedited or not, use srcu_funnel_gp_start() instead. 599 */ 600 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 601 unsigned long s) 602 { 603 unsigned long flags; 604 605 for (; snp != NULL; snp = snp->srcu_parent) { 606 if (rcu_seq_done(&ssp->srcu_gp_seq, s) || 607 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 608 return; 609 spin_lock_irqsave_rcu_node(snp, flags); 610 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 611 spin_unlock_irqrestore_rcu_node(snp, flags); 612 return; 613 } 614 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 615 spin_unlock_irqrestore_rcu_node(snp, flags); 616 } 617 spin_lock_irqsave_rcu_node(ssp, flags); 618 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 619 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 620 spin_unlock_irqrestore_rcu_node(ssp, flags); 621 } 622 623 /* 624 * Funnel-locking scheme to scalably mediate many concurrent grace-period 625 * requests. The winner has to do the work of actually starting grace 626 * period s. Losers must either ensure that their desired grace-period 627 * number is recorded on at least their leaf srcu_node structure, or they 628 * must take steps to invoke their own callbacks. 629 * 630 * Note that this function also does the work of srcu_funnel_exp_start(), 631 * in some cases by directly invoking it. 632 */ 633 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 634 unsigned long s, bool do_norm) 635 { 636 unsigned long flags; 637 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 638 struct srcu_node *snp = sdp->mynode; 639 unsigned long snp_seq; 640 641 /* Each pass through the loop does one level of the srcu_node tree. */ 642 for (; snp != NULL; snp = snp->srcu_parent) { 643 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode) 644 return; /* GP already done and CBs recorded. */ 645 spin_lock_irqsave_rcu_node(snp, flags); 646 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 647 snp_seq = snp->srcu_have_cbs[idx]; 648 if (snp == sdp->mynode && snp_seq == s) 649 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 650 spin_unlock_irqrestore_rcu_node(snp, flags); 651 if (snp == sdp->mynode && snp_seq != s) { 652 srcu_schedule_cbs_sdp(sdp, do_norm 653 ? SRCU_INTERVAL 654 : 0); 655 return; 656 } 657 if (!do_norm) 658 srcu_funnel_exp_start(ssp, snp, s); 659 return; 660 } 661 snp->srcu_have_cbs[idx] = s; 662 if (snp == sdp->mynode) 663 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 664 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 665 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 666 spin_unlock_irqrestore_rcu_node(snp, flags); 667 } 668 669 /* Top of tree, must ensure the grace period will be started. */ 670 spin_lock_irqsave_rcu_node(ssp, flags); 671 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) { 672 /* 673 * Record need for grace period s. Pair with load 674 * acquire setting up for initialization. 675 */ 676 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/ 677 } 678 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 679 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 680 681 /* If grace period not already done and none in progress, start it. */ 682 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) && 683 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) { 684 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 685 srcu_gp_start(ssp); 686 if (likely(srcu_init_done)) 687 queue_delayed_work(rcu_gp_wq, &ssp->work, 688 srcu_get_delay(ssp)); 689 else if (list_empty(&ssp->work.work.entry)) 690 list_add(&ssp->work.work.entry, &srcu_boot_list); 691 } 692 spin_unlock_irqrestore_rcu_node(ssp, flags); 693 } 694 695 /* 696 * Wait until all readers counted by array index idx complete, but 697 * loop an additional time if there is an expedited grace period pending. 698 * The caller must ensure that ->srcu_idx is not changed while checking. 699 */ 700 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 701 { 702 for (;;) { 703 if (srcu_readers_active_idx_check(ssp, idx)) 704 return true; 705 if (--trycount + !srcu_get_delay(ssp) <= 0) 706 return false; 707 udelay(SRCU_RETRY_CHECK_DELAY); 708 } 709 } 710 711 /* 712 * Increment the ->srcu_idx counter so that future SRCU readers will 713 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 714 * us to wait for pre-existing readers in a starvation-free manner. 715 */ 716 static void srcu_flip(struct srcu_struct *ssp) 717 { 718 /* 719 * Ensure that if this updater saw a given reader's increment 720 * from __srcu_read_lock(), that reader was using an old value 721 * of ->srcu_idx. Also ensure that if a given reader sees the 722 * new value of ->srcu_idx, this updater's earlier scans cannot 723 * have seen that reader's increments (which is OK, because this 724 * grace period need not wait on that reader). 725 */ 726 smp_mb(); /* E */ /* Pairs with B and C. */ 727 728 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); 729 730 /* 731 * Ensure that if the updater misses an __srcu_read_unlock() 732 * increment, that task's next __srcu_read_lock() will see the 733 * above counter update. Note that both this memory barrier 734 * and the one in srcu_readers_active_idx_check() provide the 735 * guarantee for __srcu_read_lock(). 736 */ 737 smp_mb(); /* D */ /* Pairs with C. */ 738 } 739 740 /* 741 * If SRCU is likely idle, return true, otherwise return false. 742 * 743 * Note that it is OK for several current from-idle requests for a new 744 * grace period from idle to specify expediting because they will all end 745 * up requesting the same grace period anyhow. So no loss. 746 * 747 * Note also that if any CPU (including the current one) is still invoking 748 * callbacks, this function will nevertheless say "idle". This is not 749 * ideal, but the overhead of checking all CPUs' callback lists is even 750 * less ideal, especially on large systems. Furthermore, the wakeup 751 * can happen before the callback is fully removed, so we have no choice 752 * but to accept this type of error. 753 * 754 * This function is also subject to counter-wrap errors, but let's face 755 * it, if this function was preempted for enough time for the counters 756 * to wrap, it really doesn't matter whether or not we expedite the grace 757 * period. The extra overhead of a needlessly expedited grace period is 758 * negligible when amortized over that time period, and the extra latency 759 * of a needlessly non-expedited grace period is similarly negligible. 760 */ 761 static bool srcu_might_be_idle(struct srcu_struct *ssp) 762 { 763 unsigned long curseq; 764 unsigned long flags; 765 struct srcu_data *sdp; 766 unsigned long t; 767 unsigned long tlast; 768 769 check_init_srcu_struct(ssp); 770 /* If the local srcu_data structure has callbacks, not idle. */ 771 sdp = raw_cpu_ptr(ssp->sda); 772 spin_lock_irqsave_rcu_node(sdp, flags); 773 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 774 spin_unlock_irqrestore_rcu_node(sdp, flags); 775 return false; /* Callbacks already present, so not idle. */ 776 } 777 spin_unlock_irqrestore_rcu_node(sdp, flags); 778 779 /* 780 * No local callbacks, so probabalistically probe global state. 781 * Exact information would require acquiring locks, which would 782 * kill scalability, hence the probabalistic nature of the probe. 783 */ 784 785 /* First, see if enough time has passed since the last GP. */ 786 t = ktime_get_mono_fast_ns(); 787 tlast = READ_ONCE(ssp->srcu_last_gp_end); 788 if (exp_holdoff == 0 || 789 time_in_range_open(t, tlast, tlast + exp_holdoff)) 790 return false; /* Too soon after last GP. */ 791 792 /* Next, check for probable idleness. */ 793 curseq = rcu_seq_current(&ssp->srcu_gp_seq); 794 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 795 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed))) 796 return false; /* Grace period in progress, so not idle. */ 797 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 798 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq)) 799 return false; /* GP # changed, so not idle. */ 800 return true; /* With reasonable probability, idle! */ 801 } 802 803 /* 804 * SRCU callback function to leak a callback. 805 */ 806 static void srcu_leak_callback(struct rcu_head *rhp) 807 { 808 } 809 810 /* 811 * Enqueue an SRCU callback on the srcu_data structure associated with 812 * the current CPU and the specified srcu_struct structure, initiating 813 * grace-period processing if it is not already running. 814 * 815 * Note that all CPUs must agree that the grace period extended beyond 816 * all pre-existing SRCU read-side critical section. On systems with 817 * more than one CPU, this means that when "func()" is invoked, each CPU 818 * is guaranteed to have executed a full memory barrier since the end of 819 * its last corresponding SRCU read-side critical section whose beginning 820 * preceded the call to call_srcu(). It also means that each CPU executing 821 * an SRCU read-side critical section that continues beyond the start of 822 * "func()" must have executed a memory barrier after the call_srcu() 823 * but before the beginning of that SRCU read-side critical section. 824 * Note that these guarantees include CPUs that are offline, idle, or 825 * executing in user mode, as well as CPUs that are executing in the kernel. 826 * 827 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 828 * resulting SRCU callback function "func()", then both CPU A and CPU 829 * B are guaranteed to execute a full memory barrier during the time 830 * interval between the call to call_srcu() and the invocation of "func()". 831 * This guarantee applies even if CPU A and CPU B are the same CPU (but 832 * again only if the system has more than one CPU). 833 * 834 * Of course, these guarantees apply only for invocations of call_srcu(), 835 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 836 * srcu_struct structure. 837 */ 838 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 839 rcu_callback_t func, bool do_norm) 840 { 841 unsigned long flags; 842 int idx; 843 bool needexp = false; 844 bool needgp = false; 845 unsigned long s; 846 struct srcu_data *sdp; 847 848 check_init_srcu_struct(ssp); 849 if (debug_rcu_head_queue(rhp)) { 850 /* Probable double call_srcu(), so leak the callback. */ 851 WRITE_ONCE(rhp->func, srcu_leak_callback); 852 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 853 return; 854 } 855 rhp->func = func; 856 idx = srcu_read_lock(ssp); 857 sdp = raw_cpu_ptr(ssp->sda); 858 spin_lock_irqsave_rcu_node(sdp, flags); 859 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 860 rcu_segcblist_advance(&sdp->srcu_cblist, 861 rcu_seq_current(&ssp->srcu_gp_seq)); 862 s = rcu_seq_snap(&ssp->srcu_gp_seq); 863 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 864 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 865 sdp->srcu_gp_seq_needed = s; 866 needgp = true; 867 } 868 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 869 sdp->srcu_gp_seq_needed_exp = s; 870 needexp = true; 871 } 872 spin_unlock_irqrestore_rcu_node(sdp, flags); 873 if (needgp) 874 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 875 else if (needexp) 876 srcu_funnel_exp_start(ssp, sdp->mynode, s); 877 srcu_read_unlock(ssp, idx); 878 } 879 880 /** 881 * call_srcu() - Queue a callback for invocation after an SRCU grace period 882 * @ssp: srcu_struct in queue the callback 883 * @rhp: structure to be used for queueing the SRCU callback. 884 * @func: function to be invoked after the SRCU grace period 885 * 886 * The callback function will be invoked some time after a full SRCU 887 * grace period elapses, in other words after all pre-existing SRCU 888 * read-side critical sections have completed. However, the callback 889 * function might well execute concurrently with other SRCU read-side 890 * critical sections that started after call_srcu() was invoked. SRCU 891 * read-side critical sections are delimited by srcu_read_lock() and 892 * srcu_read_unlock(), and may be nested. 893 * 894 * The callback will be invoked from process context, but must nevertheless 895 * be fast and must not block. 896 */ 897 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 898 rcu_callback_t func) 899 { 900 __call_srcu(ssp, rhp, func, true); 901 } 902 EXPORT_SYMBOL_GPL(call_srcu); 903 904 /* 905 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 906 */ 907 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 908 { 909 struct rcu_synchronize rcu; 910 911 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 912 lock_is_held(&rcu_bh_lock_map) || 913 lock_is_held(&rcu_lock_map) || 914 lock_is_held(&rcu_sched_lock_map), 915 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 916 917 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 918 return; 919 might_sleep(); 920 check_init_srcu_struct(ssp); 921 init_completion(&rcu.completion); 922 init_rcu_head_on_stack(&rcu.head); 923 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 924 wait_for_completion(&rcu.completion); 925 destroy_rcu_head_on_stack(&rcu.head); 926 927 /* 928 * Make sure that later code is ordered after the SRCU grace 929 * period. This pairs with the spin_lock_irq_rcu_node() 930 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 931 * because the current CPU might have been totally uninvolved with 932 * (and thus unordered against) that grace period. 933 */ 934 smp_mb(); 935 } 936 937 /** 938 * synchronize_srcu_expedited - Brute-force SRCU grace period 939 * @ssp: srcu_struct with which to synchronize. 940 * 941 * Wait for an SRCU grace period to elapse, but be more aggressive about 942 * spinning rather than blocking when waiting. 943 * 944 * Note that synchronize_srcu_expedited() has the same deadlock and 945 * memory-ordering properties as does synchronize_srcu(). 946 */ 947 void synchronize_srcu_expedited(struct srcu_struct *ssp) 948 { 949 __synchronize_srcu(ssp, rcu_gp_is_normal()); 950 } 951 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 952 953 /** 954 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 955 * @ssp: srcu_struct with which to synchronize. 956 * 957 * Wait for the count to drain to zero of both indexes. To avoid the 958 * possible starvation of synchronize_srcu(), it waits for the count of 959 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 960 * and then flip the srcu_idx and wait for the count of the other index. 961 * 962 * Can block; must be called from process context. 963 * 964 * Note that it is illegal to call synchronize_srcu() from the corresponding 965 * SRCU read-side critical section; doing so will result in deadlock. 966 * However, it is perfectly legal to call synchronize_srcu() on one 967 * srcu_struct from some other srcu_struct's read-side critical section, 968 * as long as the resulting graph of srcu_structs is acyclic. 969 * 970 * There are memory-ordering constraints implied by synchronize_srcu(). 971 * On systems with more than one CPU, when synchronize_srcu() returns, 972 * each CPU is guaranteed to have executed a full memory barrier since 973 * the end of its last corresponding SRCU read-side critical section 974 * whose beginning preceded the call to synchronize_srcu(). In addition, 975 * each CPU having an SRCU read-side critical section that extends beyond 976 * the return from synchronize_srcu() is guaranteed to have executed a 977 * full memory barrier after the beginning of synchronize_srcu() and before 978 * the beginning of that SRCU read-side critical section. Note that these 979 * guarantees include CPUs that are offline, idle, or executing in user mode, 980 * as well as CPUs that are executing in the kernel. 981 * 982 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 983 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 984 * to have executed a full memory barrier during the execution of 985 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 986 * are the same CPU, but again only if the system has more than one CPU. 987 * 988 * Of course, these memory-ordering guarantees apply only when 989 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 990 * passed the same srcu_struct structure. 991 * 992 * If SRCU is likely idle, expedite the first request. This semantic 993 * was provided by Classic SRCU, and is relied upon by its users, so TREE 994 * SRCU must also provide it. Note that detecting idleness is heuristic 995 * and subject to both false positives and negatives. 996 */ 997 void synchronize_srcu(struct srcu_struct *ssp) 998 { 999 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1000 synchronize_srcu_expedited(ssp); 1001 else 1002 __synchronize_srcu(ssp, true); 1003 } 1004 EXPORT_SYMBOL_GPL(synchronize_srcu); 1005 1006 /* 1007 * Callback function for srcu_barrier() use. 1008 */ 1009 static void srcu_barrier_cb(struct rcu_head *rhp) 1010 { 1011 struct srcu_data *sdp; 1012 struct srcu_struct *ssp; 1013 1014 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1015 ssp = sdp->ssp; 1016 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1017 complete(&ssp->srcu_barrier_completion); 1018 } 1019 1020 /** 1021 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1022 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1023 */ 1024 void srcu_barrier(struct srcu_struct *ssp) 1025 { 1026 int cpu; 1027 struct srcu_data *sdp; 1028 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq); 1029 1030 check_init_srcu_struct(ssp); 1031 mutex_lock(&ssp->srcu_barrier_mutex); 1032 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) { 1033 smp_mb(); /* Force ordering following return. */ 1034 mutex_unlock(&ssp->srcu_barrier_mutex); 1035 return; /* Someone else did our work for us. */ 1036 } 1037 rcu_seq_start(&ssp->srcu_barrier_seq); 1038 init_completion(&ssp->srcu_barrier_completion); 1039 1040 /* Initial count prevents reaching zero until all CBs are posted. */ 1041 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1); 1042 1043 /* 1044 * Each pass through this loop enqueues a callback, but only 1045 * on CPUs already having callbacks enqueued. Note that if 1046 * a CPU already has callbacks enqueue, it must have already 1047 * registered the need for a future grace period, so all we 1048 * need do is enqueue a callback that will use the same 1049 * grace period as the last callback already in the queue. 1050 */ 1051 for_each_possible_cpu(cpu) { 1052 sdp = per_cpu_ptr(ssp->sda, cpu); 1053 spin_lock_irq_rcu_node(sdp); 1054 atomic_inc(&ssp->srcu_barrier_cpu_cnt); 1055 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1056 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1057 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1058 &sdp->srcu_barrier_head)) { 1059 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1060 atomic_dec(&ssp->srcu_barrier_cpu_cnt); 1061 } 1062 spin_unlock_irq_rcu_node(sdp); 1063 } 1064 1065 /* Remove the initial count, at which point reaching zero can happen. */ 1066 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1067 complete(&ssp->srcu_barrier_completion); 1068 wait_for_completion(&ssp->srcu_barrier_completion); 1069 1070 rcu_seq_end(&ssp->srcu_barrier_seq); 1071 mutex_unlock(&ssp->srcu_barrier_mutex); 1072 } 1073 EXPORT_SYMBOL_GPL(srcu_barrier); 1074 1075 /** 1076 * srcu_batches_completed - return batches completed. 1077 * @ssp: srcu_struct on which to report batch completion. 1078 * 1079 * Report the number of batches, correlated with, but not necessarily 1080 * precisely the same as, the number of grace periods that have elapsed. 1081 */ 1082 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1083 { 1084 return READ_ONCE(ssp->srcu_idx); 1085 } 1086 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1087 1088 /* 1089 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1090 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1091 * completed in that state. 1092 */ 1093 static void srcu_advance_state(struct srcu_struct *ssp) 1094 { 1095 int idx; 1096 1097 mutex_lock(&ssp->srcu_gp_mutex); 1098 1099 /* 1100 * Because readers might be delayed for an extended period after 1101 * fetching ->srcu_idx for their index, at any point in time there 1102 * might well be readers using both idx=0 and idx=1. We therefore 1103 * need to wait for readers to clear from both index values before 1104 * invoking a callback. 1105 * 1106 * The load-acquire ensures that we see the accesses performed 1107 * by the prior grace period. 1108 */ 1109 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */ 1110 if (idx == SRCU_STATE_IDLE) { 1111 spin_lock_irq_rcu_node(ssp); 1112 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1113 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq)); 1114 spin_unlock_irq_rcu_node(ssp); 1115 mutex_unlock(&ssp->srcu_gp_mutex); 1116 return; 1117 } 1118 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 1119 if (idx == SRCU_STATE_IDLE) 1120 srcu_gp_start(ssp); 1121 spin_unlock_irq_rcu_node(ssp); 1122 if (idx != SRCU_STATE_IDLE) { 1123 mutex_unlock(&ssp->srcu_gp_mutex); 1124 return; /* Someone else started the grace period. */ 1125 } 1126 } 1127 1128 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1129 idx = 1 ^ (ssp->srcu_idx & 1); 1130 if (!try_check_zero(ssp, idx, 1)) { 1131 mutex_unlock(&ssp->srcu_gp_mutex); 1132 return; /* readers present, retry later. */ 1133 } 1134 srcu_flip(ssp); 1135 spin_lock_irq_rcu_node(ssp); 1136 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2); 1137 spin_unlock_irq_rcu_node(ssp); 1138 } 1139 1140 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1141 1142 /* 1143 * SRCU read-side critical sections are normally short, 1144 * so check at least twice in quick succession after a flip. 1145 */ 1146 idx = 1 ^ (ssp->srcu_idx & 1); 1147 if (!try_check_zero(ssp, idx, 2)) { 1148 mutex_unlock(&ssp->srcu_gp_mutex); 1149 return; /* readers present, retry later. */ 1150 } 1151 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1152 } 1153 } 1154 1155 /* 1156 * Invoke a limited number of SRCU callbacks that have passed through 1157 * their grace period. If there are more to do, SRCU will reschedule 1158 * the workqueue. Note that needed memory barriers have been executed 1159 * in this task's context by srcu_readers_active_idx_check(). 1160 */ 1161 static void srcu_invoke_callbacks(struct work_struct *work) 1162 { 1163 bool more; 1164 struct rcu_cblist ready_cbs; 1165 struct rcu_head *rhp; 1166 struct srcu_data *sdp; 1167 struct srcu_struct *ssp; 1168 1169 sdp = container_of(work, struct srcu_data, work); 1170 1171 ssp = sdp->ssp; 1172 rcu_cblist_init(&ready_cbs); 1173 spin_lock_irq_rcu_node(sdp); 1174 rcu_segcblist_advance(&sdp->srcu_cblist, 1175 rcu_seq_current(&ssp->srcu_gp_seq)); 1176 if (sdp->srcu_cblist_invoking || 1177 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1178 spin_unlock_irq_rcu_node(sdp); 1179 return; /* Someone else on the job or nothing to do. */ 1180 } 1181 1182 /* We are on the job! Extract and invoke ready callbacks. */ 1183 sdp->srcu_cblist_invoking = true; 1184 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1185 spin_unlock_irq_rcu_node(sdp); 1186 rhp = rcu_cblist_dequeue(&ready_cbs); 1187 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1188 debug_rcu_head_unqueue(rhp); 1189 local_bh_disable(); 1190 rhp->func(rhp); 1191 local_bh_enable(); 1192 } 1193 1194 /* 1195 * Update counts, accelerate new callbacks, and if needed, 1196 * schedule another round of callback invocation. 1197 */ 1198 spin_lock_irq_rcu_node(sdp); 1199 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); 1200 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1201 rcu_seq_snap(&ssp->srcu_gp_seq)); 1202 sdp->srcu_cblist_invoking = false; 1203 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1204 spin_unlock_irq_rcu_node(sdp); 1205 if (more) 1206 srcu_schedule_cbs_sdp(sdp, 0); 1207 } 1208 1209 /* 1210 * Finished one round of SRCU grace period. Start another if there are 1211 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1212 */ 1213 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1214 { 1215 bool pushgp = true; 1216 1217 spin_lock_irq_rcu_node(ssp); 1218 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1219 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) { 1220 /* All requests fulfilled, time to go idle. */ 1221 pushgp = false; 1222 } 1223 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) { 1224 /* Outstanding request and no GP. Start one. */ 1225 srcu_gp_start(ssp); 1226 } 1227 spin_unlock_irq_rcu_node(ssp); 1228 1229 if (pushgp) 1230 queue_delayed_work(rcu_gp_wq, &ssp->work, delay); 1231 } 1232 1233 /* 1234 * This is the work-queue function that handles SRCU grace periods. 1235 */ 1236 static void process_srcu(struct work_struct *work) 1237 { 1238 struct srcu_struct *ssp; 1239 1240 ssp = container_of(work, struct srcu_struct, work.work); 1241 1242 srcu_advance_state(ssp); 1243 srcu_reschedule(ssp, srcu_get_delay(ssp)); 1244 } 1245 1246 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1247 struct srcu_struct *ssp, int *flags, 1248 unsigned long *gp_seq) 1249 { 1250 if (test_type != SRCU_FLAVOR) 1251 return; 1252 *flags = 0; 1253 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq); 1254 } 1255 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1256 1257 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1258 { 1259 int cpu; 1260 int idx; 1261 unsigned long s0 = 0, s1 = 0; 1262 1263 idx = ssp->srcu_idx & 0x1; 1264 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):", 1265 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx); 1266 for_each_possible_cpu(cpu) { 1267 unsigned long l0, l1; 1268 unsigned long u0, u1; 1269 long c0, c1; 1270 struct srcu_data *sdp; 1271 1272 sdp = per_cpu_ptr(ssp->sda, cpu); 1273 u0 = data_race(sdp->srcu_unlock_count[!idx]); 1274 u1 = data_race(sdp->srcu_unlock_count[idx]); 1275 1276 /* 1277 * Make sure that a lock is always counted if the corresponding 1278 * unlock is counted. 1279 */ 1280 smp_rmb(); 1281 1282 l0 = data_race(sdp->srcu_lock_count[!idx]); 1283 l1 = data_race(sdp->srcu_lock_count[idx]); 1284 1285 c0 = l0 - u0; 1286 c1 = l1 - u1; 1287 pr_cont(" %d(%ld,%ld %c)", 1288 cpu, c0, c1, 1289 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1290 s0 += c0; 1291 s1 += c1; 1292 } 1293 pr_cont(" T(%ld,%ld)\n", s0, s1); 1294 } 1295 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1296 1297 static int __init srcu_bootup_announce(void) 1298 { 1299 pr_info("Hierarchical SRCU implementation.\n"); 1300 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1301 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1302 return 0; 1303 } 1304 early_initcall(srcu_bootup_announce); 1305 1306 void __init srcu_init(void) 1307 { 1308 struct srcu_struct *ssp; 1309 1310 srcu_init_done = true; 1311 while (!list_empty(&srcu_boot_list)) { 1312 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct, 1313 work.work.entry); 1314 check_init_srcu_struct(ssp); 1315 list_del_init(&ssp->work.work.entry); 1316 queue_work(rcu_gp_wq, &ssp->work.work); 1317 } 1318 } 1319 1320 #ifdef CONFIG_MODULES 1321 1322 /* Initialize any global-scope srcu_struct structures used by this module. */ 1323 static int srcu_module_coming(struct module *mod) 1324 { 1325 int i; 1326 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1327 int ret; 1328 1329 for (i = 0; i < mod->num_srcu_structs; i++) { 1330 ret = init_srcu_struct(*(sspp++)); 1331 if (WARN_ON_ONCE(ret)) 1332 return ret; 1333 } 1334 return 0; 1335 } 1336 1337 /* Clean up any global-scope srcu_struct structures used by this module. */ 1338 static void srcu_module_going(struct module *mod) 1339 { 1340 int i; 1341 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1342 1343 for (i = 0; i < mod->num_srcu_structs; i++) 1344 cleanup_srcu_struct(*(sspp++)); 1345 } 1346 1347 /* Handle one module, either coming or going. */ 1348 static int srcu_module_notify(struct notifier_block *self, 1349 unsigned long val, void *data) 1350 { 1351 struct module *mod = data; 1352 int ret = 0; 1353 1354 switch (val) { 1355 case MODULE_STATE_COMING: 1356 ret = srcu_module_coming(mod); 1357 break; 1358 case MODULE_STATE_GOING: 1359 srcu_module_going(mod); 1360 break; 1361 default: 1362 break; 1363 } 1364 return ret; 1365 } 1366 1367 static struct notifier_block srcu_module_nb = { 1368 .notifier_call = srcu_module_notify, 1369 .priority = 0, 1370 }; 1371 1372 static __init int init_srcu_module_notifier(void) 1373 { 1374 int ret; 1375 1376 ret = register_module_notifier(&srcu_module_nb); 1377 if (ret) 1378 pr_warn("Failed to register srcu module notifier\n"); 1379 return ret; 1380 } 1381 late_initcall(init_srcu_module_notifier); 1382 1383 #endif /* #ifdef CONFIG_MODULES */ 1384