1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Author: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/srcu.h> 28 29 #include "rcu.h" 30 #include "rcu_segcblist.h" 31 32 /* Holdoff in nanoseconds for auto-expediting. */ 33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 35 module_param(exp_holdoff, ulong, 0444); 36 37 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 38 static ulong counter_wrap_check = (ULONG_MAX >> 2); 39 module_param(counter_wrap_check, ulong, 0444); 40 41 /* Early-boot callback-management, so early that no lock is required! */ 42 static LIST_HEAD(srcu_boot_list); 43 static bool __read_mostly srcu_init_done; 44 45 static void srcu_invoke_callbacks(struct work_struct *work); 46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 47 static void process_srcu(struct work_struct *work); 48 static void srcu_delay_timer(struct timer_list *t); 49 50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 51 #define spin_lock_rcu_node(p) \ 52 do { \ 53 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 54 smp_mb__after_unlock_lock(); \ 55 } while (0) 56 57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 58 59 #define spin_lock_irq_rcu_node(p) \ 60 do { \ 61 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 62 smp_mb__after_unlock_lock(); \ 63 } while (0) 64 65 #define spin_unlock_irq_rcu_node(p) \ 66 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 67 68 #define spin_lock_irqsave_rcu_node(p, flags) \ 69 do { \ 70 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 71 smp_mb__after_unlock_lock(); \ 72 } while (0) 73 74 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 75 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 76 77 /* 78 * Initialize SRCU combining tree. Note that statically allocated 79 * srcu_struct structures might already have srcu_read_lock() and 80 * srcu_read_unlock() running against them. So if the is_static parameter 81 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 82 */ 83 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static) 84 { 85 int cpu; 86 int i; 87 int level = 0; 88 int levelspread[RCU_NUM_LVLS]; 89 struct srcu_data *sdp; 90 struct srcu_node *snp; 91 struct srcu_node *snp_first; 92 93 /* Work out the overall tree geometry. */ 94 ssp->level[0] = &ssp->node[0]; 95 for (i = 1; i < rcu_num_lvls; i++) 96 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1]; 97 rcu_init_levelspread(levelspread, num_rcu_lvl); 98 99 /* Each pass through this loop initializes one srcu_node structure. */ 100 srcu_for_each_node_breadth_first(ssp, snp) { 101 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 102 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 103 ARRAY_SIZE(snp->srcu_data_have_cbs)); 104 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 105 snp->srcu_have_cbs[i] = 0; 106 snp->srcu_data_have_cbs[i] = 0; 107 } 108 snp->srcu_gp_seq_needed_exp = 0; 109 snp->grplo = -1; 110 snp->grphi = -1; 111 if (snp == &ssp->node[0]) { 112 /* Root node, special case. */ 113 snp->srcu_parent = NULL; 114 continue; 115 } 116 117 /* Non-root node. */ 118 if (snp == ssp->level[level + 1]) 119 level++; 120 snp->srcu_parent = ssp->level[level - 1] + 121 (snp - ssp->level[level]) / 122 levelspread[level - 1]; 123 } 124 125 /* 126 * Initialize the per-CPU srcu_data array, which feeds into the 127 * leaves of the srcu_node tree. 128 */ 129 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 130 ARRAY_SIZE(sdp->srcu_unlock_count)); 131 level = rcu_num_lvls - 1; 132 snp_first = ssp->level[level]; 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq; 140 sdp->mynode = &snp_first[cpu / levelspread[level]]; 141 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 142 if (snp->grplo < 0) 143 snp->grplo = cpu; 144 snp->grphi = cpu; 145 } 146 sdp->cpu = cpu; 147 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 148 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 149 sdp->ssp = ssp; 150 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 151 if (is_static) 152 continue; 153 154 /* Dynamically allocated, better be no srcu_read_locks()! */ 155 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 156 sdp->srcu_lock_count[i] = 0; 157 sdp->srcu_unlock_count[i] = 0; 158 } 159 } 160 } 161 162 /* 163 * Initialize non-compile-time initialized fields, including the 164 * associated srcu_node and srcu_data structures. The is_static 165 * parameter is passed through to init_srcu_struct_nodes(), and 166 * also tells us that ->sda has already been wired up to srcu_data. 167 */ 168 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 169 { 170 mutex_init(&ssp->srcu_cb_mutex); 171 mutex_init(&ssp->srcu_gp_mutex); 172 ssp->srcu_idx = 0; 173 ssp->srcu_gp_seq = 0; 174 ssp->srcu_barrier_seq = 0; 175 mutex_init(&ssp->srcu_barrier_mutex); 176 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0); 177 INIT_DELAYED_WORK(&ssp->work, process_srcu); 178 if (!is_static) 179 ssp->sda = alloc_percpu(struct srcu_data); 180 init_srcu_struct_nodes(ssp, is_static); 181 ssp->srcu_gp_seq_needed_exp = 0; 182 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 183 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */ 184 return ssp->sda ? 0 : -ENOMEM; 185 } 186 187 #ifdef CONFIG_DEBUG_LOCK_ALLOC 188 189 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 190 struct lock_class_key *key) 191 { 192 /* Don't re-initialize a lock while it is held. */ 193 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 194 lockdep_init_map(&ssp->dep_map, name, key, 0); 195 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 196 return init_srcu_struct_fields(ssp, false); 197 } 198 EXPORT_SYMBOL_GPL(__init_srcu_struct); 199 200 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 201 202 /** 203 * init_srcu_struct - initialize a sleep-RCU structure 204 * @ssp: structure to initialize. 205 * 206 * Must invoke this on a given srcu_struct before passing that srcu_struct 207 * to any other function. Each srcu_struct represents a separate domain 208 * of SRCU protection. 209 */ 210 int init_srcu_struct(struct srcu_struct *ssp) 211 { 212 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 213 return init_srcu_struct_fields(ssp, false); 214 } 215 EXPORT_SYMBOL_GPL(init_srcu_struct); 216 217 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 218 219 /* 220 * First-use initialization of statically allocated srcu_struct 221 * structure. Wiring up the combining tree is more than can be 222 * done with compile-time initialization, so this check is added 223 * to each update-side SRCU primitive. Use ssp->lock, which -is- 224 * compile-time initialized, to resolve races involving multiple 225 * CPUs trying to garner first-use privileges. 226 */ 227 static void check_init_srcu_struct(struct srcu_struct *ssp) 228 { 229 unsigned long flags; 230 231 /* The smp_load_acquire() pairs with the smp_store_release(). */ 232 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/ 233 return; /* Already initialized. */ 234 spin_lock_irqsave_rcu_node(ssp, flags); 235 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) { 236 spin_unlock_irqrestore_rcu_node(ssp, flags); 237 return; 238 } 239 init_srcu_struct_fields(ssp, true); 240 spin_unlock_irqrestore_rcu_node(ssp, flags); 241 } 242 243 /* 244 * Returns approximate total of the readers' ->srcu_lock_count[] values 245 * for the rank of per-CPU counters specified by idx. 246 */ 247 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 248 { 249 int cpu; 250 unsigned long sum = 0; 251 252 for_each_possible_cpu(cpu) { 253 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 254 255 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 256 } 257 return sum; 258 } 259 260 /* 261 * Returns approximate total of the readers' ->srcu_unlock_count[] values 262 * for the rank of per-CPU counters specified by idx. 263 */ 264 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 265 { 266 int cpu; 267 unsigned long sum = 0; 268 269 for_each_possible_cpu(cpu) { 270 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 271 272 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 273 } 274 return sum; 275 } 276 277 /* 278 * Return true if the number of pre-existing readers is determined to 279 * be zero. 280 */ 281 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 282 { 283 unsigned long unlocks; 284 285 unlocks = srcu_readers_unlock_idx(ssp, idx); 286 287 /* 288 * Make sure that a lock is always counted if the corresponding 289 * unlock is counted. Needs to be a smp_mb() as the read side may 290 * contain a read from a variable that is written to before the 291 * synchronize_srcu() in the write side. In this case smp_mb()s 292 * A and B act like the store buffering pattern. 293 * 294 * This smp_mb() also pairs with smp_mb() C to prevent accesses 295 * after the synchronize_srcu() from being executed before the 296 * grace period ends. 297 */ 298 smp_mb(); /* A */ 299 300 /* 301 * If the locks are the same as the unlocks, then there must have 302 * been no readers on this index at some time in between. This does 303 * not mean that there are no more readers, as one could have read 304 * the current index but not have incremented the lock counter yet. 305 * 306 * So suppose that the updater is preempted here for so long 307 * that more than ULONG_MAX non-nested readers come and go in 308 * the meantime. It turns out that this cannot result in overflow 309 * because if a reader modifies its unlock count after we read it 310 * above, then that reader's next load of ->srcu_idx is guaranteed 311 * to get the new value, which will cause it to operate on the 312 * other bank of counters, where it cannot contribute to the 313 * overflow of these counters. This means that there is a maximum 314 * of 2*NR_CPUS increments, which cannot overflow given current 315 * systems, especially not on 64-bit systems. 316 * 317 * OK, how about nesting? This does impose a limit on nesting 318 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 319 * especially on 64-bit systems. 320 */ 321 return srcu_readers_lock_idx(ssp, idx) == unlocks; 322 } 323 324 /** 325 * srcu_readers_active - returns true if there are readers. and false 326 * otherwise 327 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 328 * 329 * Note that this is not an atomic primitive, and can therefore suffer 330 * severe errors when invoked on an active srcu_struct. That said, it 331 * can be useful as an error check at cleanup time. 332 */ 333 static bool srcu_readers_active(struct srcu_struct *ssp) 334 { 335 int cpu; 336 unsigned long sum = 0; 337 338 for_each_possible_cpu(cpu) { 339 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 340 341 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 342 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 343 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 344 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 345 } 346 return sum; 347 } 348 349 #define SRCU_INTERVAL 1 350 351 /* 352 * Return grace-period delay, zero if there are expedited grace 353 * periods pending, SRCU_INTERVAL otherwise. 354 */ 355 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 356 { 357 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), 358 READ_ONCE(ssp->srcu_gp_seq_needed_exp))) 359 return 0; 360 return SRCU_INTERVAL; 361 } 362 363 /** 364 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 365 * @ssp: structure to clean up. 366 * 367 * Must invoke this after you are finished using a given srcu_struct that 368 * was initialized via init_srcu_struct(), else you leak memory. 369 */ 370 void cleanup_srcu_struct(struct srcu_struct *ssp) 371 { 372 int cpu; 373 374 if (WARN_ON(!srcu_get_delay(ssp))) 375 return; /* Just leak it! */ 376 if (WARN_ON(srcu_readers_active(ssp))) 377 return; /* Just leak it! */ 378 flush_delayed_work(&ssp->work); 379 for_each_possible_cpu(cpu) { 380 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 381 382 del_timer_sync(&sdp->delay_work); 383 flush_work(&sdp->work); 384 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 385 return; /* Forgot srcu_barrier(), so just leak it! */ 386 } 387 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 388 WARN_ON(srcu_readers_active(ssp))) { 389 pr_info("%s: Active srcu_struct %p state: %d\n", 390 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))); 391 return; /* Caller forgot to stop doing call_srcu()? */ 392 } 393 free_percpu(ssp->sda); 394 ssp->sda = NULL; 395 } 396 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 397 398 /* 399 * Counts the new reader in the appropriate per-CPU element of the 400 * srcu_struct. 401 * Returns an index that must be passed to the matching srcu_read_unlock(). 402 */ 403 int __srcu_read_lock(struct srcu_struct *ssp) 404 { 405 int idx; 406 407 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 408 this_cpu_inc(ssp->sda->srcu_lock_count[idx]); 409 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 410 return idx; 411 } 412 EXPORT_SYMBOL_GPL(__srcu_read_lock); 413 414 /* 415 * Removes the count for the old reader from the appropriate per-CPU 416 * element of the srcu_struct. Note that this may well be a different 417 * CPU than that which was incremented by the corresponding srcu_read_lock(). 418 */ 419 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 420 { 421 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 422 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]); 423 } 424 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 425 426 /* 427 * We use an adaptive strategy for synchronize_srcu() and especially for 428 * synchronize_srcu_expedited(). We spin for a fixed time period 429 * (defined below) to allow SRCU readers to exit their read-side critical 430 * sections. If there are still some readers after a few microseconds, 431 * we repeatedly block for 1-millisecond time periods. 432 */ 433 #define SRCU_RETRY_CHECK_DELAY 5 434 435 /* 436 * Start an SRCU grace period. 437 */ 438 static void srcu_gp_start(struct srcu_struct *ssp) 439 { 440 struct srcu_data *sdp = this_cpu_ptr(ssp->sda); 441 int state; 442 443 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 444 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 445 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 446 rcu_segcblist_advance(&sdp->srcu_cblist, 447 rcu_seq_current(&ssp->srcu_gp_seq)); 448 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 449 rcu_seq_snap(&ssp->srcu_gp_seq)); 450 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 451 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 452 rcu_seq_start(&ssp->srcu_gp_seq); 453 state = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 454 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 455 } 456 457 458 static void srcu_delay_timer(struct timer_list *t) 459 { 460 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 461 462 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 463 } 464 465 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 466 unsigned long delay) 467 { 468 if (!delay) { 469 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 470 return; 471 } 472 473 timer_reduce(&sdp->delay_work, jiffies + delay); 474 } 475 476 /* 477 * Schedule callback invocation for the specified srcu_data structure, 478 * if possible, on the corresponding CPU. 479 */ 480 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 481 { 482 srcu_queue_delayed_work_on(sdp, delay); 483 } 484 485 /* 486 * Schedule callback invocation for all srcu_data structures associated 487 * with the specified srcu_node structure that have callbacks for the 488 * just-completed grace period, the one corresponding to idx. If possible, 489 * schedule this invocation on the corresponding CPUs. 490 */ 491 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 492 unsigned long mask, unsigned long delay) 493 { 494 int cpu; 495 496 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 497 if (!(mask & (1 << (cpu - snp->grplo)))) 498 continue; 499 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 500 } 501 } 502 503 /* 504 * Note the end of an SRCU grace period. Initiates callback invocation 505 * and starts a new grace period if needed. 506 * 507 * The ->srcu_cb_mutex acquisition does not protect any data, but 508 * instead prevents more than one grace period from starting while we 509 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 510 * array to have a finite number of elements. 511 */ 512 static void srcu_gp_end(struct srcu_struct *ssp) 513 { 514 unsigned long cbdelay; 515 bool cbs; 516 bool last_lvl; 517 int cpu; 518 unsigned long flags; 519 unsigned long gpseq; 520 int idx; 521 unsigned long mask; 522 struct srcu_data *sdp; 523 struct srcu_node *snp; 524 525 /* Prevent more than one additional grace period. */ 526 mutex_lock(&ssp->srcu_cb_mutex); 527 528 /* End the current grace period. */ 529 spin_lock_irq_rcu_node(ssp); 530 idx = rcu_seq_state(ssp->srcu_gp_seq); 531 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 532 cbdelay = srcu_get_delay(ssp); 533 WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns()); 534 rcu_seq_end(&ssp->srcu_gp_seq); 535 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 536 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq)) 537 ssp->srcu_gp_seq_needed_exp = gpseq; 538 spin_unlock_irq_rcu_node(ssp); 539 mutex_unlock(&ssp->srcu_gp_mutex); 540 /* A new grace period can start at this point. But only one. */ 541 542 /* Initiate callback invocation as needed. */ 543 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 544 srcu_for_each_node_breadth_first(ssp, snp) { 545 spin_lock_irq_rcu_node(snp); 546 cbs = false; 547 last_lvl = snp >= ssp->level[rcu_num_lvls - 1]; 548 if (last_lvl) 549 cbs = snp->srcu_have_cbs[idx] == gpseq; 550 snp->srcu_have_cbs[idx] = gpseq; 551 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 552 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 553 snp->srcu_gp_seq_needed_exp = gpseq; 554 mask = snp->srcu_data_have_cbs[idx]; 555 snp->srcu_data_have_cbs[idx] = 0; 556 spin_unlock_irq_rcu_node(snp); 557 if (cbs) 558 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 559 560 /* Occasionally prevent srcu_data counter wrap. */ 561 if (!(gpseq & counter_wrap_check) && last_lvl) 562 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 563 sdp = per_cpu_ptr(ssp->sda, cpu); 564 spin_lock_irqsave_rcu_node(sdp, flags); 565 if (ULONG_CMP_GE(gpseq, 566 sdp->srcu_gp_seq_needed + 100)) 567 sdp->srcu_gp_seq_needed = gpseq; 568 if (ULONG_CMP_GE(gpseq, 569 sdp->srcu_gp_seq_needed_exp + 100)) 570 sdp->srcu_gp_seq_needed_exp = gpseq; 571 spin_unlock_irqrestore_rcu_node(sdp, flags); 572 } 573 } 574 575 /* Callback initiation done, allow grace periods after next. */ 576 mutex_unlock(&ssp->srcu_cb_mutex); 577 578 /* Start a new grace period if needed. */ 579 spin_lock_irq_rcu_node(ssp); 580 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 581 if (!rcu_seq_state(gpseq) && 582 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) { 583 srcu_gp_start(ssp); 584 spin_unlock_irq_rcu_node(ssp); 585 srcu_reschedule(ssp, 0); 586 } else { 587 spin_unlock_irq_rcu_node(ssp); 588 } 589 } 590 591 /* 592 * Funnel-locking scheme to scalably mediate many concurrent expedited 593 * grace-period requests. This function is invoked for the first known 594 * expedited request for a grace period that has already been requested, 595 * but without expediting. To start a completely new grace period, 596 * whether expedited or not, use srcu_funnel_gp_start() instead. 597 */ 598 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 599 unsigned long s) 600 { 601 unsigned long flags; 602 603 for (; snp != NULL; snp = snp->srcu_parent) { 604 if (rcu_seq_done(&ssp->srcu_gp_seq, s) || 605 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 606 return; 607 spin_lock_irqsave_rcu_node(snp, flags); 608 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 609 spin_unlock_irqrestore_rcu_node(snp, flags); 610 return; 611 } 612 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 613 spin_unlock_irqrestore_rcu_node(snp, flags); 614 } 615 spin_lock_irqsave_rcu_node(ssp, flags); 616 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 617 ssp->srcu_gp_seq_needed_exp = s; 618 spin_unlock_irqrestore_rcu_node(ssp, flags); 619 } 620 621 /* 622 * Funnel-locking scheme to scalably mediate many concurrent grace-period 623 * requests. The winner has to do the work of actually starting grace 624 * period s. Losers must either ensure that their desired grace-period 625 * number is recorded on at least their leaf srcu_node structure, or they 626 * must take steps to invoke their own callbacks. 627 * 628 * Note that this function also does the work of srcu_funnel_exp_start(), 629 * in some cases by directly invoking it. 630 */ 631 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 632 unsigned long s, bool do_norm) 633 { 634 unsigned long flags; 635 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 636 struct srcu_node *snp = sdp->mynode; 637 unsigned long snp_seq; 638 639 /* Each pass through the loop does one level of the srcu_node tree. */ 640 for (; snp != NULL; snp = snp->srcu_parent) { 641 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode) 642 return; /* GP already done and CBs recorded. */ 643 spin_lock_irqsave_rcu_node(snp, flags); 644 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 645 snp_seq = snp->srcu_have_cbs[idx]; 646 if (snp == sdp->mynode && snp_seq == s) 647 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 648 spin_unlock_irqrestore_rcu_node(snp, flags); 649 if (snp == sdp->mynode && snp_seq != s) { 650 srcu_schedule_cbs_sdp(sdp, do_norm 651 ? SRCU_INTERVAL 652 : 0); 653 return; 654 } 655 if (!do_norm) 656 srcu_funnel_exp_start(ssp, snp, s); 657 return; 658 } 659 snp->srcu_have_cbs[idx] = s; 660 if (snp == sdp->mynode) 661 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 662 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 663 snp->srcu_gp_seq_needed_exp = s; 664 spin_unlock_irqrestore_rcu_node(snp, flags); 665 } 666 667 /* Top of tree, must ensure the grace period will be started. */ 668 spin_lock_irqsave_rcu_node(ssp, flags); 669 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) { 670 /* 671 * Record need for grace period s. Pair with load 672 * acquire setting up for initialization. 673 */ 674 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/ 675 } 676 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 677 ssp->srcu_gp_seq_needed_exp = s; 678 679 /* If grace period not already done and none in progress, start it. */ 680 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) && 681 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) { 682 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 683 srcu_gp_start(ssp); 684 if (likely(srcu_init_done)) 685 queue_delayed_work(rcu_gp_wq, &ssp->work, 686 srcu_get_delay(ssp)); 687 else if (list_empty(&ssp->work.work.entry)) 688 list_add(&ssp->work.work.entry, &srcu_boot_list); 689 } 690 spin_unlock_irqrestore_rcu_node(ssp, flags); 691 } 692 693 /* 694 * Wait until all readers counted by array index idx complete, but 695 * loop an additional time if there is an expedited grace period pending. 696 * The caller must ensure that ->srcu_idx is not changed while checking. 697 */ 698 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 699 { 700 for (;;) { 701 if (srcu_readers_active_idx_check(ssp, idx)) 702 return true; 703 if (--trycount + !srcu_get_delay(ssp) <= 0) 704 return false; 705 udelay(SRCU_RETRY_CHECK_DELAY); 706 } 707 } 708 709 /* 710 * Increment the ->srcu_idx counter so that future SRCU readers will 711 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 712 * us to wait for pre-existing readers in a starvation-free manner. 713 */ 714 static void srcu_flip(struct srcu_struct *ssp) 715 { 716 /* 717 * Ensure that if this updater saw a given reader's increment 718 * from __srcu_read_lock(), that reader was using an old value 719 * of ->srcu_idx. Also ensure that if a given reader sees the 720 * new value of ->srcu_idx, this updater's earlier scans cannot 721 * have seen that reader's increments (which is OK, because this 722 * grace period need not wait on that reader). 723 */ 724 smp_mb(); /* E */ /* Pairs with B and C. */ 725 726 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); 727 728 /* 729 * Ensure that if the updater misses an __srcu_read_unlock() 730 * increment, that task's next __srcu_read_lock() will see the 731 * above counter update. Note that both this memory barrier 732 * and the one in srcu_readers_active_idx_check() provide the 733 * guarantee for __srcu_read_lock(). 734 */ 735 smp_mb(); /* D */ /* Pairs with C. */ 736 } 737 738 /* 739 * If SRCU is likely idle, return true, otherwise return false. 740 * 741 * Note that it is OK for several current from-idle requests for a new 742 * grace period from idle to specify expediting because they will all end 743 * up requesting the same grace period anyhow. So no loss. 744 * 745 * Note also that if any CPU (including the current one) is still invoking 746 * callbacks, this function will nevertheless say "idle". This is not 747 * ideal, but the overhead of checking all CPUs' callback lists is even 748 * less ideal, especially on large systems. Furthermore, the wakeup 749 * can happen before the callback is fully removed, so we have no choice 750 * but to accept this type of error. 751 * 752 * This function is also subject to counter-wrap errors, but let's face 753 * it, if this function was preempted for enough time for the counters 754 * to wrap, it really doesn't matter whether or not we expedite the grace 755 * period. The extra overhead of a needlessly expedited grace period is 756 * negligible when amoritized over that time period, and the extra latency 757 * of a needlessly non-expedited grace period is similarly negligible. 758 */ 759 static bool srcu_might_be_idle(struct srcu_struct *ssp) 760 { 761 unsigned long curseq; 762 unsigned long flags; 763 struct srcu_data *sdp; 764 unsigned long t; 765 unsigned long tlast; 766 767 /* If the local srcu_data structure has callbacks, not idle. */ 768 local_irq_save(flags); 769 sdp = this_cpu_ptr(ssp->sda); 770 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 771 local_irq_restore(flags); 772 return false; /* Callbacks already present, so not idle. */ 773 } 774 local_irq_restore(flags); 775 776 /* 777 * No local callbacks, so probabalistically probe global state. 778 * Exact information would require acquiring locks, which would 779 * kill scalability, hence the probabalistic nature of the probe. 780 */ 781 782 /* First, see if enough time has passed since the last GP. */ 783 t = ktime_get_mono_fast_ns(); 784 tlast = READ_ONCE(ssp->srcu_last_gp_end); 785 if (exp_holdoff == 0 || 786 time_in_range_open(t, tlast, tlast + exp_holdoff)) 787 return false; /* Too soon after last GP. */ 788 789 /* Next, check for probable idleness. */ 790 curseq = rcu_seq_current(&ssp->srcu_gp_seq); 791 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 792 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed))) 793 return false; /* Grace period in progress, so not idle. */ 794 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 795 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq)) 796 return false; /* GP # changed, so not idle. */ 797 return true; /* With reasonable probability, idle! */ 798 } 799 800 /* 801 * SRCU callback function to leak a callback. 802 */ 803 static void srcu_leak_callback(struct rcu_head *rhp) 804 { 805 } 806 807 /* 808 * Enqueue an SRCU callback on the srcu_data structure associated with 809 * the current CPU and the specified srcu_struct structure, initiating 810 * grace-period processing if it is not already running. 811 * 812 * Note that all CPUs must agree that the grace period extended beyond 813 * all pre-existing SRCU read-side critical section. On systems with 814 * more than one CPU, this means that when "func()" is invoked, each CPU 815 * is guaranteed to have executed a full memory barrier since the end of 816 * its last corresponding SRCU read-side critical section whose beginning 817 * preceded the call to call_srcu(). It also means that each CPU executing 818 * an SRCU read-side critical section that continues beyond the start of 819 * "func()" must have executed a memory barrier after the call_srcu() 820 * but before the beginning of that SRCU read-side critical section. 821 * Note that these guarantees include CPUs that are offline, idle, or 822 * executing in user mode, as well as CPUs that are executing in the kernel. 823 * 824 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 825 * resulting SRCU callback function "func()", then both CPU A and CPU 826 * B are guaranteed to execute a full memory barrier during the time 827 * interval between the call to call_srcu() and the invocation of "func()". 828 * This guarantee applies even if CPU A and CPU B are the same CPU (but 829 * again only if the system has more than one CPU). 830 * 831 * Of course, these guarantees apply only for invocations of call_srcu(), 832 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 833 * srcu_struct structure. 834 */ 835 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 836 rcu_callback_t func, bool do_norm) 837 { 838 unsigned long flags; 839 int idx; 840 bool needexp = false; 841 bool needgp = false; 842 unsigned long s; 843 struct srcu_data *sdp; 844 845 check_init_srcu_struct(ssp); 846 if (debug_rcu_head_queue(rhp)) { 847 /* Probable double call_srcu(), so leak the callback. */ 848 WRITE_ONCE(rhp->func, srcu_leak_callback); 849 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 850 return; 851 } 852 rhp->func = func; 853 idx = srcu_read_lock(ssp); 854 local_irq_save(flags); 855 sdp = this_cpu_ptr(ssp->sda); 856 spin_lock_rcu_node(sdp); 857 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 858 rcu_segcblist_advance(&sdp->srcu_cblist, 859 rcu_seq_current(&ssp->srcu_gp_seq)); 860 s = rcu_seq_snap(&ssp->srcu_gp_seq); 861 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 862 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 863 sdp->srcu_gp_seq_needed = s; 864 needgp = true; 865 } 866 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 867 sdp->srcu_gp_seq_needed_exp = s; 868 needexp = true; 869 } 870 spin_unlock_irqrestore_rcu_node(sdp, flags); 871 if (needgp) 872 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 873 else if (needexp) 874 srcu_funnel_exp_start(ssp, sdp->mynode, s); 875 srcu_read_unlock(ssp, idx); 876 } 877 878 /** 879 * call_srcu() - Queue a callback for invocation after an SRCU grace period 880 * @ssp: srcu_struct in queue the callback 881 * @rhp: structure to be used for queueing the SRCU callback. 882 * @func: function to be invoked after the SRCU grace period 883 * 884 * The callback function will be invoked some time after a full SRCU 885 * grace period elapses, in other words after all pre-existing SRCU 886 * read-side critical sections have completed. However, the callback 887 * function might well execute concurrently with other SRCU read-side 888 * critical sections that started after call_srcu() was invoked. SRCU 889 * read-side critical sections are delimited by srcu_read_lock() and 890 * srcu_read_unlock(), and may be nested. 891 * 892 * The callback will be invoked from process context, but must nevertheless 893 * be fast and must not block. 894 */ 895 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 896 rcu_callback_t func) 897 { 898 __call_srcu(ssp, rhp, func, true); 899 } 900 EXPORT_SYMBOL_GPL(call_srcu); 901 902 /* 903 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 904 */ 905 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 906 { 907 struct rcu_synchronize rcu; 908 909 RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) || 910 lock_is_held(&rcu_bh_lock_map) || 911 lock_is_held(&rcu_lock_map) || 912 lock_is_held(&rcu_sched_lock_map), 913 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 914 915 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 916 return; 917 might_sleep(); 918 check_init_srcu_struct(ssp); 919 init_completion(&rcu.completion); 920 init_rcu_head_on_stack(&rcu.head); 921 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 922 wait_for_completion(&rcu.completion); 923 destroy_rcu_head_on_stack(&rcu.head); 924 925 /* 926 * Make sure that later code is ordered after the SRCU grace 927 * period. This pairs with the spin_lock_irq_rcu_node() 928 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 929 * because the current CPU might have been totally uninvolved with 930 * (and thus unordered against) that grace period. 931 */ 932 smp_mb(); 933 } 934 935 /** 936 * synchronize_srcu_expedited - Brute-force SRCU grace period 937 * @ssp: srcu_struct with which to synchronize. 938 * 939 * Wait for an SRCU grace period to elapse, but be more aggressive about 940 * spinning rather than blocking when waiting. 941 * 942 * Note that synchronize_srcu_expedited() has the same deadlock and 943 * memory-ordering properties as does synchronize_srcu(). 944 */ 945 void synchronize_srcu_expedited(struct srcu_struct *ssp) 946 { 947 __synchronize_srcu(ssp, rcu_gp_is_normal()); 948 } 949 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 950 951 /** 952 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 953 * @ssp: srcu_struct with which to synchronize. 954 * 955 * Wait for the count to drain to zero of both indexes. To avoid the 956 * possible starvation of synchronize_srcu(), it waits for the count of 957 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 958 * and then flip the srcu_idx and wait for the count of the other index. 959 * 960 * Can block; must be called from process context. 961 * 962 * Note that it is illegal to call synchronize_srcu() from the corresponding 963 * SRCU read-side critical section; doing so will result in deadlock. 964 * However, it is perfectly legal to call synchronize_srcu() on one 965 * srcu_struct from some other srcu_struct's read-side critical section, 966 * as long as the resulting graph of srcu_structs is acyclic. 967 * 968 * There are memory-ordering constraints implied by synchronize_srcu(). 969 * On systems with more than one CPU, when synchronize_srcu() returns, 970 * each CPU is guaranteed to have executed a full memory barrier since 971 * the end of its last corresponding SRCU read-side critical section 972 * whose beginning preceded the call to synchronize_srcu(). In addition, 973 * each CPU having an SRCU read-side critical section that extends beyond 974 * the return from synchronize_srcu() is guaranteed to have executed a 975 * full memory barrier after the beginning of synchronize_srcu() and before 976 * the beginning of that SRCU read-side critical section. Note that these 977 * guarantees include CPUs that are offline, idle, or executing in user mode, 978 * as well as CPUs that are executing in the kernel. 979 * 980 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 981 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 982 * to have executed a full memory barrier during the execution of 983 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 984 * are the same CPU, but again only if the system has more than one CPU. 985 * 986 * Of course, these memory-ordering guarantees apply only when 987 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 988 * passed the same srcu_struct structure. 989 * 990 * If SRCU is likely idle, expedite the first request. This semantic 991 * was provided by Classic SRCU, and is relied upon by its users, so TREE 992 * SRCU must also provide it. Note that detecting idleness is heuristic 993 * and subject to both false positives and negatives. 994 */ 995 void synchronize_srcu(struct srcu_struct *ssp) 996 { 997 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 998 synchronize_srcu_expedited(ssp); 999 else 1000 __synchronize_srcu(ssp, true); 1001 } 1002 EXPORT_SYMBOL_GPL(synchronize_srcu); 1003 1004 /* 1005 * Callback function for srcu_barrier() use. 1006 */ 1007 static void srcu_barrier_cb(struct rcu_head *rhp) 1008 { 1009 struct srcu_data *sdp; 1010 struct srcu_struct *ssp; 1011 1012 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1013 ssp = sdp->ssp; 1014 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1015 complete(&ssp->srcu_barrier_completion); 1016 } 1017 1018 /** 1019 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1020 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1021 */ 1022 void srcu_barrier(struct srcu_struct *ssp) 1023 { 1024 int cpu; 1025 struct srcu_data *sdp; 1026 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq); 1027 1028 check_init_srcu_struct(ssp); 1029 mutex_lock(&ssp->srcu_barrier_mutex); 1030 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) { 1031 smp_mb(); /* Force ordering following return. */ 1032 mutex_unlock(&ssp->srcu_barrier_mutex); 1033 return; /* Someone else did our work for us. */ 1034 } 1035 rcu_seq_start(&ssp->srcu_barrier_seq); 1036 init_completion(&ssp->srcu_barrier_completion); 1037 1038 /* Initial count prevents reaching zero until all CBs are posted. */ 1039 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1); 1040 1041 /* 1042 * Each pass through this loop enqueues a callback, but only 1043 * on CPUs already having callbacks enqueued. Note that if 1044 * a CPU already has callbacks enqueue, it must have already 1045 * registered the need for a future grace period, so all we 1046 * need do is enqueue a callback that will use the same 1047 * grace period as the last callback already in the queue. 1048 */ 1049 for_each_possible_cpu(cpu) { 1050 sdp = per_cpu_ptr(ssp->sda, cpu); 1051 spin_lock_irq_rcu_node(sdp); 1052 atomic_inc(&ssp->srcu_barrier_cpu_cnt); 1053 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1054 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1055 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1056 &sdp->srcu_barrier_head)) { 1057 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1058 atomic_dec(&ssp->srcu_barrier_cpu_cnt); 1059 } 1060 spin_unlock_irq_rcu_node(sdp); 1061 } 1062 1063 /* Remove the initial count, at which point reaching zero can happen. */ 1064 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1065 complete(&ssp->srcu_barrier_completion); 1066 wait_for_completion(&ssp->srcu_barrier_completion); 1067 1068 rcu_seq_end(&ssp->srcu_barrier_seq); 1069 mutex_unlock(&ssp->srcu_barrier_mutex); 1070 } 1071 EXPORT_SYMBOL_GPL(srcu_barrier); 1072 1073 /** 1074 * srcu_batches_completed - return batches completed. 1075 * @ssp: srcu_struct on which to report batch completion. 1076 * 1077 * Report the number of batches, correlated with, but not necessarily 1078 * precisely the same as, the number of grace periods that have elapsed. 1079 */ 1080 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1081 { 1082 return ssp->srcu_idx; 1083 } 1084 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1085 1086 /* 1087 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1088 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1089 * completed in that state. 1090 */ 1091 static void srcu_advance_state(struct srcu_struct *ssp) 1092 { 1093 int idx; 1094 1095 mutex_lock(&ssp->srcu_gp_mutex); 1096 1097 /* 1098 * Because readers might be delayed for an extended period after 1099 * fetching ->srcu_idx for their index, at any point in time there 1100 * might well be readers using both idx=0 and idx=1. We therefore 1101 * need to wait for readers to clear from both index values before 1102 * invoking a callback. 1103 * 1104 * The load-acquire ensures that we see the accesses performed 1105 * by the prior grace period. 1106 */ 1107 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */ 1108 if (idx == SRCU_STATE_IDLE) { 1109 spin_lock_irq_rcu_node(ssp); 1110 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1111 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq)); 1112 spin_unlock_irq_rcu_node(ssp); 1113 mutex_unlock(&ssp->srcu_gp_mutex); 1114 return; 1115 } 1116 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 1117 if (idx == SRCU_STATE_IDLE) 1118 srcu_gp_start(ssp); 1119 spin_unlock_irq_rcu_node(ssp); 1120 if (idx != SRCU_STATE_IDLE) { 1121 mutex_unlock(&ssp->srcu_gp_mutex); 1122 return; /* Someone else started the grace period. */ 1123 } 1124 } 1125 1126 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1127 idx = 1 ^ (ssp->srcu_idx & 1); 1128 if (!try_check_zero(ssp, idx, 1)) { 1129 mutex_unlock(&ssp->srcu_gp_mutex); 1130 return; /* readers present, retry later. */ 1131 } 1132 srcu_flip(ssp); 1133 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2); 1134 } 1135 1136 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1137 1138 /* 1139 * SRCU read-side critical sections are normally short, 1140 * so check at least twice in quick succession after a flip. 1141 */ 1142 idx = 1 ^ (ssp->srcu_idx & 1); 1143 if (!try_check_zero(ssp, idx, 2)) { 1144 mutex_unlock(&ssp->srcu_gp_mutex); 1145 return; /* readers present, retry later. */ 1146 } 1147 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1148 } 1149 } 1150 1151 /* 1152 * Invoke a limited number of SRCU callbacks that have passed through 1153 * their grace period. If there are more to do, SRCU will reschedule 1154 * the workqueue. Note that needed memory barriers have been executed 1155 * in this task's context by srcu_readers_active_idx_check(). 1156 */ 1157 static void srcu_invoke_callbacks(struct work_struct *work) 1158 { 1159 bool more; 1160 struct rcu_cblist ready_cbs; 1161 struct rcu_head *rhp; 1162 struct srcu_data *sdp; 1163 struct srcu_struct *ssp; 1164 1165 sdp = container_of(work, struct srcu_data, work); 1166 1167 ssp = sdp->ssp; 1168 rcu_cblist_init(&ready_cbs); 1169 spin_lock_irq_rcu_node(sdp); 1170 rcu_segcblist_advance(&sdp->srcu_cblist, 1171 rcu_seq_current(&ssp->srcu_gp_seq)); 1172 if (sdp->srcu_cblist_invoking || 1173 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1174 spin_unlock_irq_rcu_node(sdp); 1175 return; /* Someone else on the job or nothing to do. */ 1176 } 1177 1178 /* We are on the job! Extract and invoke ready callbacks. */ 1179 sdp->srcu_cblist_invoking = true; 1180 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1181 spin_unlock_irq_rcu_node(sdp); 1182 rhp = rcu_cblist_dequeue(&ready_cbs); 1183 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1184 debug_rcu_head_unqueue(rhp); 1185 local_bh_disable(); 1186 rhp->func(rhp); 1187 local_bh_enable(); 1188 } 1189 1190 /* 1191 * Update counts, accelerate new callbacks, and if needed, 1192 * schedule another round of callback invocation. 1193 */ 1194 spin_lock_irq_rcu_node(sdp); 1195 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); 1196 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1197 rcu_seq_snap(&ssp->srcu_gp_seq)); 1198 sdp->srcu_cblist_invoking = false; 1199 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1200 spin_unlock_irq_rcu_node(sdp); 1201 if (more) 1202 srcu_schedule_cbs_sdp(sdp, 0); 1203 } 1204 1205 /* 1206 * Finished one round of SRCU grace period. Start another if there are 1207 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1208 */ 1209 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1210 { 1211 bool pushgp = true; 1212 1213 spin_lock_irq_rcu_node(ssp); 1214 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1215 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) { 1216 /* All requests fulfilled, time to go idle. */ 1217 pushgp = false; 1218 } 1219 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) { 1220 /* Outstanding request and no GP. Start one. */ 1221 srcu_gp_start(ssp); 1222 } 1223 spin_unlock_irq_rcu_node(ssp); 1224 1225 if (pushgp) 1226 queue_delayed_work(rcu_gp_wq, &ssp->work, delay); 1227 } 1228 1229 /* 1230 * This is the work-queue function that handles SRCU grace periods. 1231 */ 1232 static void process_srcu(struct work_struct *work) 1233 { 1234 struct srcu_struct *ssp; 1235 1236 ssp = container_of(work, struct srcu_struct, work.work); 1237 1238 srcu_advance_state(ssp); 1239 srcu_reschedule(ssp, srcu_get_delay(ssp)); 1240 } 1241 1242 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1243 struct srcu_struct *ssp, int *flags, 1244 unsigned long *gp_seq) 1245 { 1246 if (test_type != SRCU_FLAVOR) 1247 return; 1248 *flags = 0; 1249 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq); 1250 } 1251 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1252 1253 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1254 { 1255 int cpu; 1256 int idx; 1257 unsigned long s0 = 0, s1 = 0; 1258 1259 idx = ssp->srcu_idx & 0x1; 1260 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):", 1261 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx); 1262 for_each_possible_cpu(cpu) { 1263 unsigned long l0, l1; 1264 unsigned long u0, u1; 1265 long c0, c1; 1266 struct srcu_data *sdp; 1267 1268 sdp = per_cpu_ptr(ssp->sda, cpu); 1269 u0 = sdp->srcu_unlock_count[!idx]; 1270 u1 = sdp->srcu_unlock_count[idx]; 1271 1272 /* 1273 * Make sure that a lock is always counted if the corresponding 1274 * unlock is counted. 1275 */ 1276 smp_rmb(); 1277 1278 l0 = sdp->srcu_lock_count[!idx]; 1279 l1 = sdp->srcu_lock_count[idx]; 1280 1281 c0 = l0 - u0; 1282 c1 = l1 - u1; 1283 pr_cont(" %d(%ld,%ld %c)", 1284 cpu, c0, c1, 1285 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1286 s0 += c0; 1287 s1 += c1; 1288 } 1289 pr_cont(" T(%ld,%ld)\n", s0, s1); 1290 } 1291 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1292 1293 static int __init srcu_bootup_announce(void) 1294 { 1295 pr_info("Hierarchical SRCU implementation.\n"); 1296 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1297 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1298 return 0; 1299 } 1300 early_initcall(srcu_bootup_announce); 1301 1302 void __init srcu_init(void) 1303 { 1304 struct srcu_struct *ssp; 1305 1306 srcu_init_done = true; 1307 while (!list_empty(&srcu_boot_list)) { 1308 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct, 1309 work.work.entry); 1310 check_init_srcu_struct(ssp); 1311 list_del_init(&ssp->work.work.entry); 1312 queue_work(rcu_gp_wq, &ssp->work.work); 1313 } 1314 } 1315 1316 #ifdef CONFIG_MODULES 1317 1318 /* Initialize any global-scope srcu_struct structures used by this module. */ 1319 static int srcu_module_coming(struct module *mod) 1320 { 1321 int i; 1322 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1323 int ret; 1324 1325 for (i = 0; i < mod->num_srcu_structs; i++) { 1326 ret = init_srcu_struct(*(sspp++)); 1327 if (WARN_ON_ONCE(ret)) 1328 return ret; 1329 } 1330 return 0; 1331 } 1332 1333 /* Clean up any global-scope srcu_struct structures used by this module. */ 1334 static void srcu_module_going(struct module *mod) 1335 { 1336 int i; 1337 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1338 1339 for (i = 0; i < mod->num_srcu_structs; i++) 1340 cleanup_srcu_struct(*(sspp++)); 1341 } 1342 1343 /* Handle one module, either coming or going. */ 1344 static int srcu_module_notify(struct notifier_block *self, 1345 unsigned long val, void *data) 1346 { 1347 struct module *mod = data; 1348 int ret = 0; 1349 1350 switch (val) { 1351 case MODULE_STATE_COMING: 1352 ret = srcu_module_coming(mod); 1353 break; 1354 case MODULE_STATE_GOING: 1355 srcu_module_going(mod); 1356 break; 1357 default: 1358 break; 1359 } 1360 return ret; 1361 } 1362 1363 static struct notifier_block srcu_module_nb = { 1364 .notifier_call = srcu_module_notify, 1365 .priority = 0, 1366 }; 1367 1368 static __init int init_srcu_module_notifier(void) 1369 { 1370 int ret; 1371 1372 ret = register_module_notifier(&srcu_module_nb); 1373 if (ret) 1374 pr_warn("Failed to register srcu module notifier\n"); 1375 return ret; 1376 } 1377 late_initcall(init_srcu_module_notifier); 1378 1379 #endif /* #ifdef CONFIG_MODULES */ 1380