1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Author: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/srcu.h> 28 29 #include "rcu.h" 30 #include "rcu_segcblist.h" 31 32 /* Holdoff in nanoseconds for auto-expediting. */ 33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 35 module_param(exp_holdoff, ulong, 0444); 36 37 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 38 static ulong counter_wrap_check = (ULONG_MAX >> 2); 39 module_param(counter_wrap_check, ulong, 0444); 40 41 /* Early-boot callback-management, so early that no lock is required! */ 42 static LIST_HEAD(srcu_boot_list); 43 static bool __read_mostly srcu_init_done; 44 45 static void srcu_invoke_callbacks(struct work_struct *work); 46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 47 static void process_srcu(struct work_struct *work); 48 static void srcu_delay_timer(struct timer_list *t); 49 50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 51 #define spin_lock_rcu_node(p) \ 52 do { \ 53 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 54 smp_mb__after_unlock_lock(); \ 55 } while (0) 56 57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 58 59 #define spin_lock_irq_rcu_node(p) \ 60 do { \ 61 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 62 smp_mb__after_unlock_lock(); \ 63 } while (0) 64 65 #define spin_unlock_irq_rcu_node(p) \ 66 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 67 68 #define spin_lock_irqsave_rcu_node(p, flags) \ 69 do { \ 70 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 71 smp_mb__after_unlock_lock(); \ 72 } while (0) 73 74 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 75 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 76 77 /* 78 * Initialize SRCU combining tree. Note that statically allocated 79 * srcu_struct structures might already have srcu_read_lock() and 80 * srcu_read_unlock() running against them. So if the is_static parameter 81 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 82 */ 83 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static) 84 { 85 int cpu; 86 int i; 87 int level = 0; 88 int levelspread[RCU_NUM_LVLS]; 89 struct srcu_data *sdp; 90 struct srcu_node *snp; 91 struct srcu_node *snp_first; 92 93 /* Work out the overall tree geometry. */ 94 ssp->level[0] = &ssp->node[0]; 95 for (i = 1; i < rcu_num_lvls; i++) 96 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1]; 97 rcu_init_levelspread(levelspread, num_rcu_lvl); 98 99 /* Each pass through this loop initializes one srcu_node structure. */ 100 srcu_for_each_node_breadth_first(ssp, snp) { 101 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 102 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 103 ARRAY_SIZE(snp->srcu_data_have_cbs)); 104 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 105 snp->srcu_have_cbs[i] = 0; 106 snp->srcu_data_have_cbs[i] = 0; 107 } 108 snp->srcu_gp_seq_needed_exp = 0; 109 snp->grplo = -1; 110 snp->grphi = -1; 111 if (snp == &ssp->node[0]) { 112 /* Root node, special case. */ 113 snp->srcu_parent = NULL; 114 continue; 115 } 116 117 /* Non-root node. */ 118 if (snp == ssp->level[level + 1]) 119 level++; 120 snp->srcu_parent = ssp->level[level - 1] + 121 (snp - ssp->level[level]) / 122 levelspread[level - 1]; 123 } 124 125 /* 126 * Initialize the per-CPU srcu_data array, which feeds into the 127 * leaves of the srcu_node tree. 128 */ 129 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 130 ARRAY_SIZE(sdp->srcu_unlock_count)); 131 level = rcu_num_lvls - 1; 132 snp_first = ssp->level[level]; 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq; 140 sdp->mynode = &snp_first[cpu / levelspread[level]]; 141 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 142 if (snp->grplo < 0) 143 snp->grplo = cpu; 144 snp->grphi = cpu; 145 } 146 sdp->cpu = cpu; 147 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 148 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 149 sdp->ssp = ssp; 150 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 151 if (is_static) 152 continue; 153 154 /* Dynamically allocated, better be no srcu_read_locks()! */ 155 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 156 sdp->srcu_lock_count[i] = 0; 157 sdp->srcu_unlock_count[i] = 0; 158 } 159 } 160 } 161 162 /* 163 * Initialize non-compile-time initialized fields, including the 164 * associated srcu_node and srcu_data structures. The is_static 165 * parameter is passed through to init_srcu_struct_nodes(), and 166 * also tells us that ->sda has already been wired up to srcu_data. 167 */ 168 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 169 { 170 mutex_init(&ssp->srcu_cb_mutex); 171 mutex_init(&ssp->srcu_gp_mutex); 172 ssp->srcu_idx = 0; 173 ssp->srcu_gp_seq = 0; 174 ssp->srcu_barrier_seq = 0; 175 mutex_init(&ssp->srcu_barrier_mutex); 176 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0); 177 INIT_DELAYED_WORK(&ssp->work, process_srcu); 178 if (!is_static) 179 ssp->sda = alloc_percpu(struct srcu_data); 180 init_srcu_struct_nodes(ssp, is_static); 181 ssp->srcu_gp_seq_needed_exp = 0; 182 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 183 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */ 184 return ssp->sda ? 0 : -ENOMEM; 185 } 186 187 #ifdef CONFIG_DEBUG_LOCK_ALLOC 188 189 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 190 struct lock_class_key *key) 191 { 192 /* Don't re-initialize a lock while it is held. */ 193 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 194 lockdep_init_map(&ssp->dep_map, name, key, 0); 195 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 196 return init_srcu_struct_fields(ssp, false); 197 } 198 EXPORT_SYMBOL_GPL(__init_srcu_struct); 199 200 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 201 202 /** 203 * init_srcu_struct - initialize a sleep-RCU structure 204 * @ssp: structure to initialize. 205 * 206 * Must invoke this on a given srcu_struct before passing that srcu_struct 207 * to any other function. Each srcu_struct represents a separate domain 208 * of SRCU protection. 209 */ 210 int init_srcu_struct(struct srcu_struct *ssp) 211 { 212 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 213 return init_srcu_struct_fields(ssp, false); 214 } 215 EXPORT_SYMBOL_GPL(init_srcu_struct); 216 217 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 218 219 /* 220 * First-use initialization of statically allocated srcu_struct 221 * structure. Wiring up the combining tree is more than can be 222 * done with compile-time initialization, so this check is added 223 * to each update-side SRCU primitive. Use ssp->lock, which -is- 224 * compile-time initialized, to resolve races involving multiple 225 * CPUs trying to garner first-use privileges. 226 */ 227 static void check_init_srcu_struct(struct srcu_struct *ssp) 228 { 229 unsigned long flags; 230 231 /* The smp_load_acquire() pairs with the smp_store_release(). */ 232 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/ 233 return; /* Already initialized. */ 234 spin_lock_irqsave_rcu_node(ssp, flags); 235 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) { 236 spin_unlock_irqrestore_rcu_node(ssp, flags); 237 return; 238 } 239 init_srcu_struct_fields(ssp, true); 240 spin_unlock_irqrestore_rcu_node(ssp, flags); 241 } 242 243 /* 244 * Returns approximate total of the readers' ->srcu_lock_count[] values 245 * for the rank of per-CPU counters specified by idx. 246 */ 247 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 248 { 249 int cpu; 250 unsigned long sum = 0; 251 252 for_each_possible_cpu(cpu) { 253 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 254 255 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 256 } 257 return sum; 258 } 259 260 /* 261 * Returns approximate total of the readers' ->srcu_unlock_count[] values 262 * for the rank of per-CPU counters specified by idx. 263 */ 264 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 265 { 266 int cpu; 267 unsigned long sum = 0; 268 269 for_each_possible_cpu(cpu) { 270 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 271 272 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 273 } 274 return sum; 275 } 276 277 /* 278 * Return true if the number of pre-existing readers is determined to 279 * be zero. 280 */ 281 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 282 { 283 unsigned long unlocks; 284 285 unlocks = srcu_readers_unlock_idx(ssp, idx); 286 287 /* 288 * Make sure that a lock is always counted if the corresponding 289 * unlock is counted. Needs to be a smp_mb() as the read side may 290 * contain a read from a variable that is written to before the 291 * synchronize_srcu() in the write side. In this case smp_mb()s 292 * A and B act like the store buffering pattern. 293 * 294 * This smp_mb() also pairs with smp_mb() C to prevent accesses 295 * after the synchronize_srcu() from being executed before the 296 * grace period ends. 297 */ 298 smp_mb(); /* A */ 299 300 /* 301 * If the locks are the same as the unlocks, then there must have 302 * been no readers on this index at some time in between. This does 303 * not mean that there are no more readers, as one could have read 304 * the current index but not have incremented the lock counter yet. 305 * 306 * So suppose that the updater is preempted here for so long 307 * that more than ULONG_MAX non-nested readers come and go in 308 * the meantime. It turns out that this cannot result in overflow 309 * because if a reader modifies its unlock count after we read it 310 * above, then that reader's next load of ->srcu_idx is guaranteed 311 * to get the new value, which will cause it to operate on the 312 * other bank of counters, where it cannot contribute to the 313 * overflow of these counters. This means that there is a maximum 314 * of 2*NR_CPUS increments, which cannot overflow given current 315 * systems, especially not on 64-bit systems. 316 * 317 * OK, how about nesting? This does impose a limit on nesting 318 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 319 * especially on 64-bit systems. 320 */ 321 return srcu_readers_lock_idx(ssp, idx) == unlocks; 322 } 323 324 /** 325 * srcu_readers_active - returns true if there are readers. and false 326 * otherwise 327 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 328 * 329 * Note that this is not an atomic primitive, and can therefore suffer 330 * severe errors when invoked on an active srcu_struct. That said, it 331 * can be useful as an error check at cleanup time. 332 */ 333 static bool srcu_readers_active(struct srcu_struct *ssp) 334 { 335 int cpu; 336 unsigned long sum = 0; 337 338 for_each_possible_cpu(cpu) { 339 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 340 341 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 342 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 343 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 344 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 345 } 346 return sum; 347 } 348 349 #define SRCU_INTERVAL 1 350 351 /* 352 * Return grace-period delay, zero if there are expedited grace 353 * periods pending, SRCU_INTERVAL otherwise. 354 */ 355 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 356 { 357 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), 358 READ_ONCE(ssp->srcu_gp_seq_needed_exp))) 359 return 0; 360 return SRCU_INTERVAL; 361 } 362 363 /** 364 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 365 * @ssp: structure to clean up. 366 * 367 * Must invoke this after you are finished using a given srcu_struct that 368 * was initialized via init_srcu_struct(), else you leak memory. 369 */ 370 void cleanup_srcu_struct(struct srcu_struct *ssp) 371 { 372 int cpu; 373 374 if (WARN_ON(!srcu_get_delay(ssp))) 375 return; /* Just leak it! */ 376 if (WARN_ON(srcu_readers_active(ssp))) 377 return; /* Just leak it! */ 378 flush_delayed_work(&ssp->work); 379 for_each_possible_cpu(cpu) { 380 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 381 382 del_timer_sync(&sdp->delay_work); 383 flush_work(&sdp->work); 384 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 385 return; /* Forgot srcu_barrier(), so just leak it! */ 386 } 387 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 388 WARN_ON(srcu_readers_active(ssp))) { 389 pr_info("%s: Active srcu_struct %p state: %d\n", 390 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))); 391 return; /* Caller forgot to stop doing call_srcu()? */ 392 } 393 free_percpu(ssp->sda); 394 ssp->sda = NULL; 395 } 396 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 397 398 /* 399 * Counts the new reader in the appropriate per-CPU element of the 400 * srcu_struct. 401 * Returns an index that must be passed to the matching srcu_read_unlock(). 402 */ 403 int __srcu_read_lock(struct srcu_struct *ssp) 404 { 405 int idx; 406 407 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 408 this_cpu_inc(ssp->sda->srcu_lock_count[idx]); 409 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 410 return idx; 411 } 412 EXPORT_SYMBOL_GPL(__srcu_read_lock); 413 414 /* 415 * Removes the count for the old reader from the appropriate per-CPU 416 * element of the srcu_struct. Note that this may well be a different 417 * CPU than that which was incremented by the corresponding srcu_read_lock(). 418 */ 419 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 420 { 421 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 422 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]); 423 } 424 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 425 426 /* 427 * We use an adaptive strategy for synchronize_srcu() and especially for 428 * synchronize_srcu_expedited(). We spin for a fixed time period 429 * (defined below) to allow SRCU readers to exit their read-side critical 430 * sections. If there are still some readers after a few microseconds, 431 * we repeatedly block for 1-millisecond time periods. 432 */ 433 #define SRCU_RETRY_CHECK_DELAY 5 434 435 /* 436 * Start an SRCU grace period. 437 */ 438 static void srcu_gp_start(struct srcu_struct *ssp) 439 { 440 struct srcu_data *sdp = this_cpu_ptr(ssp->sda); 441 int state; 442 443 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 444 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 445 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 446 rcu_segcblist_advance(&sdp->srcu_cblist, 447 rcu_seq_current(&ssp->srcu_gp_seq)); 448 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 449 rcu_seq_snap(&ssp->srcu_gp_seq)); 450 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 451 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 452 rcu_seq_start(&ssp->srcu_gp_seq); 453 state = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 454 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 455 } 456 457 458 static void srcu_delay_timer(struct timer_list *t) 459 { 460 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 461 462 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 463 } 464 465 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 466 unsigned long delay) 467 { 468 if (!delay) { 469 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 470 return; 471 } 472 473 timer_reduce(&sdp->delay_work, jiffies + delay); 474 } 475 476 /* 477 * Schedule callback invocation for the specified srcu_data structure, 478 * if possible, on the corresponding CPU. 479 */ 480 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 481 { 482 srcu_queue_delayed_work_on(sdp, delay); 483 } 484 485 /* 486 * Schedule callback invocation for all srcu_data structures associated 487 * with the specified srcu_node structure that have callbacks for the 488 * just-completed grace period, the one corresponding to idx. If possible, 489 * schedule this invocation on the corresponding CPUs. 490 */ 491 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 492 unsigned long mask, unsigned long delay) 493 { 494 int cpu; 495 496 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 497 if (!(mask & (1 << (cpu - snp->grplo)))) 498 continue; 499 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 500 } 501 } 502 503 /* 504 * Note the end of an SRCU grace period. Initiates callback invocation 505 * and starts a new grace period if needed. 506 * 507 * The ->srcu_cb_mutex acquisition does not protect any data, but 508 * instead prevents more than one grace period from starting while we 509 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 510 * array to have a finite number of elements. 511 */ 512 static void srcu_gp_end(struct srcu_struct *ssp) 513 { 514 unsigned long cbdelay; 515 bool cbs; 516 bool last_lvl; 517 int cpu; 518 unsigned long flags; 519 unsigned long gpseq; 520 int idx; 521 unsigned long mask; 522 struct srcu_data *sdp; 523 struct srcu_node *snp; 524 525 /* Prevent more than one additional grace period. */ 526 mutex_lock(&ssp->srcu_cb_mutex); 527 528 /* End the current grace period. */ 529 spin_lock_irq_rcu_node(ssp); 530 idx = rcu_seq_state(ssp->srcu_gp_seq); 531 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 532 cbdelay = srcu_get_delay(ssp); 533 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 534 rcu_seq_end(&ssp->srcu_gp_seq); 535 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 536 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq)) 537 ssp->srcu_gp_seq_needed_exp = gpseq; 538 spin_unlock_irq_rcu_node(ssp); 539 mutex_unlock(&ssp->srcu_gp_mutex); 540 /* A new grace period can start at this point. But only one. */ 541 542 /* Initiate callback invocation as needed. */ 543 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 544 srcu_for_each_node_breadth_first(ssp, snp) { 545 spin_lock_irq_rcu_node(snp); 546 cbs = false; 547 last_lvl = snp >= ssp->level[rcu_num_lvls - 1]; 548 if (last_lvl) 549 cbs = snp->srcu_have_cbs[idx] == gpseq; 550 snp->srcu_have_cbs[idx] = gpseq; 551 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 552 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 553 snp->srcu_gp_seq_needed_exp = gpseq; 554 mask = snp->srcu_data_have_cbs[idx]; 555 snp->srcu_data_have_cbs[idx] = 0; 556 spin_unlock_irq_rcu_node(snp); 557 if (cbs) 558 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 559 560 /* Occasionally prevent srcu_data counter wrap. */ 561 if (!(gpseq & counter_wrap_check) && last_lvl) 562 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 563 sdp = per_cpu_ptr(ssp->sda, cpu); 564 spin_lock_irqsave_rcu_node(sdp, flags); 565 if (ULONG_CMP_GE(gpseq, 566 sdp->srcu_gp_seq_needed + 100)) 567 sdp->srcu_gp_seq_needed = gpseq; 568 if (ULONG_CMP_GE(gpseq, 569 sdp->srcu_gp_seq_needed_exp + 100)) 570 sdp->srcu_gp_seq_needed_exp = gpseq; 571 spin_unlock_irqrestore_rcu_node(sdp, flags); 572 } 573 } 574 575 /* Callback initiation done, allow grace periods after next. */ 576 mutex_unlock(&ssp->srcu_cb_mutex); 577 578 /* Start a new grace period if needed. */ 579 spin_lock_irq_rcu_node(ssp); 580 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 581 if (!rcu_seq_state(gpseq) && 582 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) { 583 srcu_gp_start(ssp); 584 spin_unlock_irq_rcu_node(ssp); 585 srcu_reschedule(ssp, 0); 586 } else { 587 spin_unlock_irq_rcu_node(ssp); 588 } 589 } 590 591 /* 592 * Funnel-locking scheme to scalably mediate many concurrent expedited 593 * grace-period requests. This function is invoked for the first known 594 * expedited request for a grace period that has already been requested, 595 * but without expediting. To start a completely new grace period, 596 * whether expedited or not, use srcu_funnel_gp_start() instead. 597 */ 598 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 599 unsigned long s) 600 { 601 unsigned long flags; 602 603 for (; snp != NULL; snp = snp->srcu_parent) { 604 if (rcu_seq_done(&ssp->srcu_gp_seq, s) || 605 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 606 return; 607 spin_lock_irqsave_rcu_node(snp, flags); 608 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 609 spin_unlock_irqrestore_rcu_node(snp, flags); 610 return; 611 } 612 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 613 spin_unlock_irqrestore_rcu_node(snp, flags); 614 } 615 spin_lock_irqsave_rcu_node(ssp, flags); 616 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 617 ssp->srcu_gp_seq_needed_exp = s; 618 spin_unlock_irqrestore_rcu_node(ssp, flags); 619 } 620 621 /* 622 * Funnel-locking scheme to scalably mediate many concurrent grace-period 623 * requests. The winner has to do the work of actually starting grace 624 * period s. Losers must either ensure that their desired grace-period 625 * number is recorded on at least their leaf srcu_node structure, or they 626 * must take steps to invoke their own callbacks. 627 * 628 * Note that this function also does the work of srcu_funnel_exp_start(), 629 * in some cases by directly invoking it. 630 */ 631 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 632 unsigned long s, bool do_norm) 633 { 634 unsigned long flags; 635 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 636 struct srcu_node *snp = sdp->mynode; 637 unsigned long snp_seq; 638 639 /* Each pass through the loop does one level of the srcu_node tree. */ 640 for (; snp != NULL; snp = snp->srcu_parent) { 641 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode) 642 return; /* GP already done and CBs recorded. */ 643 spin_lock_irqsave_rcu_node(snp, flags); 644 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 645 snp_seq = snp->srcu_have_cbs[idx]; 646 if (snp == sdp->mynode && snp_seq == s) 647 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 648 spin_unlock_irqrestore_rcu_node(snp, flags); 649 if (snp == sdp->mynode && snp_seq != s) { 650 srcu_schedule_cbs_sdp(sdp, do_norm 651 ? SRCU_INTERVAL 652 : 0); 653 return; 654 } 655 if (!do_norm) 656 srcu_funnel_exp_start(ssp, snp, s); 657 return; 658 } 659 snp->srcu_have_cbs[idx] = s; 660 if (snp == sdp->mynode) 661 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 662 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 663 snp->srcu_gp_seq_needed_exp = s; 664 spin_unlock_irqrestore_rcu_node(snp, flags); 665 } 666 667 /* Top of tree, must ensure the grace period will be started. */ 668 spin_lock_irqsave_rcu_node(ssp, flags); 669 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) { 670 /* 671 * Record need for grace period s. Pair with load 672 * acquire setting up for initialization. 673 */ 674 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/ 675 } 676 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 677 ssp->srcu_gp_seq_needed_exp = s; 678 679 /* If grace period not already done and none in progress, start it. */ 680 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) && 681 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) { 682 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 683 srcu_gp_start(ssp); 684 if (likely(srcu_init_done)) 685 queue_delayed_work(rcu_gp_wq, &ssp->work, 686 srcu_get_delay(ssp)); 687 else if (list_empty(&ssp->work.work.entry)) 688 list_add(&ssp->work.work.entry, &srcu_boot_list); 689 } 690 spin_unlock_irqrestore_rcu_node(ssp, flags); 691 } 692 693 /* 694 * Wait until all readers counted by array index idx complete, but 695 * loop an additional time if there is an expedited grace period pending. 696 * The caller must ensure that ->srcu_idx is not changed while checking. 697 */ 698 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 699 { 700 for (;;) { 701 if (srcu_readers_active_idx_check(ssp, idx)) 702 return true; 703 if (--trycount + !srcu_get_delay(ssp) <= 0) 704 return false; 705 udelay(SRCU_RETRY_CHECK_DELAY); 706 } 707 } 708 709 /* 710 * Increment the ->srcu_idx counter so that future SRCU readers will 711 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 712 * us to wait for pre-existing readers in a starvation-free manner. 713 */ 714 static void srcu_flip(struct srcu_struct *ssp) 715 { 716 /* 717 * Ensure that if this updater saw a given reader's increment 718 * from __srcu_read_lock(), that reader was using an old value 719 * of ->srcu_idx. Also ensure that if a given reader sees the 720 * new value of ->srcu_idx, this updater's earlier scans cannot 721 * have seen that reader's increments (which is OK, because this 722 * grace period need not wait on that reader). 723 */ 724 smp_mb(); /* E */ /* Pairs with B and C. */ 725 726 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); 727 728 /* 729 * Ensure that if the updater misses an __srcu_read_unlock() 730 * increment, that task's next __srcu_read_lock() will see the 731 * above counter update. Note that both this memory barrier 732 * and the one in srcu_readers_active_idx_check() provide the 733 * guarantee for __srcu_read_lock(). 734 */ 735 smp_mb(); /* D */ /* Pairs with C. */ 736 } 737 738 /* 739 * If SRCU is likely idle, return true, otherwise return false. 740 * 741 * Note that it is OK for several current from-idle requests for a new 742 * grace period from idle to specify expediting because they will all end 743 * up requesting the same grace period anyhow. So no loss. 744 * 745 * Note also that if any CPU (including the current one) is still invoking 746 * callbacks, this function will nevertheless say "idle". This is not 747 * ideal, but the overhead of checking all CPUs' callback lists is even 748 * less ideal, especially on large systems. Furthermore, the wakeup 749 * can happen before the callback is fully removed, so we have no choice 750 * but to accept this type of error. 751 * 752 * This function is also subject to counter-wrap errors, but let's face 753 * it, if this function was preempted for enough time for the counters 754 * to wrap, it really doesn't matter whether or not we expedite the grace 755 * period. The extra overhead of a needlessly expedited grace period is 756 * negligible when amoritized over that time period, and the extra latency 757 * of a needlessly non-expedited grace period is similarly negligible. 758 */ 759 static bool srcu_might_be_idle(struct srcu_struct *ssp) 760 { 761 unsigned long curseq; 762 unsigned long flags; 763 struct srcu_data *sdp; 764 unsigned long t; 765 766 /* If the local srcu_data structure has callbacks, not idle. */ 767 local_irq_save(flags); 768 sdp = this_cpu_ptr(ssp->sda); 769 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 770 local_irq_restore(flags); 771 return false; /* Callbacks already present, so not idle. */ 772 } 773 local_irq_restore(flags); 774 775 /* 776 * No local callbacks, so probabalistically probe global state. 777 * Exact information would require acquiring locks, which would 778 * kill scalability, hence the probabalistic nature of the probe. 779 */ 780 781 /* First, see if enough time has passed since the last GP. */ 782 t = ktime_get_mono_fast_ns(); 783 if (exp_holdoff == 0 || 784 time_in_range_open(t, ssp->srcu_last_gp_end, 785 ssp->srcu_last_gp_end + exp_holdoff)) 786 return false; /* Too soon after last GP. */ 787 788 /* Next, check for probable idleness. */ 789 curseq = rcu_seq_current(&ssp->srcu_gp_seq); 790 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 791 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed))) 792 return false; /* Grace period in progress, so not idle. */ 793 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 794 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq)) 795 return false; /* GP # changed, so not idle. */ 796 return true; /* With reasonable probability, idle! */ 797 } 798 799 /* 800 * SRCU callback function to leak a callback. 801 */ 802 static void srcu_leak_callback(struct rcu_head *rhp) 803 { 804 } 805 806 /* 807 * Enqueue an SRCU callback on the srcu_data structure associated with 808 * the current CPU and the specified srcu_struct structure, initiating 809 * grace-period processing if it is not already running. 810 * 811 * Note that all CPUs must agree that the grace period extended beyond 812 * all pre-existing SRCU read-side critical section. On systems with 813 * more than one CPU, this means that when "func()" is invoked, each CPU 814 * is guaranteed to have executed a full memory barrier since the end of 815 * its last corresponding SRCU read-side critical section whose beginning 816 * preceded the call to call_srcu(). It also means that each CPU executing 817 * an SRCU read-side critical section that continues beyond the start of 818 * "func()" must have executed a memory barrier after the call_srcu() 819 * but before the beginning of that SRCU read-side critical section. 820 * Note that these guarantees include CPUs that are offline, idle, or 821 * executing in user mode, as well as CPUs that are executing in the kernel. 822 * 823 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 824 * resulting SRCU callback function "func()", then both CPU A and CPU 825 * B are guaranteed to execute a full memory barrier during the time 826 * interval between the call to call_srcu() and the invocation of "func()". 827 * This guarantee applies even if CPU A and CPU B are the same CPU (but 828 * again only if the system has more than one CPU). 829 * 830 * Of course, these guarantees apply only for invocations of call_srcu(), 831 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 832 * srcu_struct structure. 833 */ 834 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 835 rcu_callback_t func, bool do_norm) 836 { 837 unsigned long flags; 838 int idx; 839 bool needexp = false; 840 bool needgp = false; 841 unsigned long s; 842 struct srcu_data *sdp; 843 844 check_init_srcu_struct(ssp); 845 if (debug_rcu_head_queue(rhp)) { 846 /* Probable double call_srcu(), so leak the callback. */ 847 WRITE_ONCE(rhp->func, srcu_leak_callback); 848 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 849 return; 850 } 851 rhp->func = func; 852 idx = srcu_read_lock(ssp); 853 local_irq_save(flags); 854 sdp = this_cpu_ptr(ssp->sda); 855 spin_lock_rcu_node(sdp); 856 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false); 857 rcu_segcblist_advance(&sdp->srcu_cblist, 858 rcu_seq_current(&ssp->srcu_gp_seq)); 859 s = rcu_seq_snap(&ssp->srcu_gp_seq); 860 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 861 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 862 sdp->srcu_gp_seq_needed = s; 863 needgp = true; 864 } 865 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 866 sdp->srcu_gp_seq_needed_exp = s; 867 needexp = true; 868 } 869 spin_unlock_irqrestore_rcu_node(sdp, flags); 870 if (needgp) 871 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 872 else if (needexp) 873 srcu_funnel_exp_start(ssp, sdp->mynode, s); 874 srcu_read_unlock(ssp, idx); 875 } 876 877 /** 878 * call_srcu() - Queue a callback for invocation after an SRCU grace period 879 * @ssp: srcu_struct in queue the callback 880 * @rhp: structure to be used for queueing the SRCU callback. 881 * @func: function to be invoked after the SRCU grace period 882 * 883 * The callback function will be invoked some time after a full SRCU 884 * grace period elapses, in other words after all pre-existing SRCU 885 * read-side critical sections have completed. However, the callback 886 * function might well execute concurrently with other SRCU read-side 887 * critical sections that started after call_srcu() was invoked. SRCU 888 * read-side critical sections are delimited by srcu_read_lock() and 889 * srcu_read_unlock(), and may be nested. 890 * 891 * The callback will be invoked from process context, but must nevertheless 892 * be fast and must not block. 893 */ 894 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 895 rcu_callback_t func) 896 { 897 __call_srcu(ssp, rhp, func, true); 898 } 899 EXPORT_SYMBOL_GPL(call_srcu); 900 901 /* 902 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 903 */ 904 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 905 { 906 struct rcu_synchronize rcu; 907 908 RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) || 909 lock_is_held(&rcu_bh_lock_map) || 910 lock_is_held(&rcu_lock_map) || 911 lock_is_held(&rcu_sched_lock_map), 912 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 913 914 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 915 return; 916 might_sleep(); 917 check_init_srcu_struct(ssp); 918 init_completion(&rcu.completion); 919 init_rcu_head_on_stack(&rcu.head); 920 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 921 wait_for_completion(&rcu.completion); 922 destroy_rcu_head_on_stack(&rcu.head); 923 924 /* 925 * Make sure that later code is ordered after the SRCU grace 926 * period. This pairs with the spin_lock_irq_rcu_node() 927 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 928 * because the current CPU might have been totally uninvolved with 929 * (and thus unordered against) that grace period. 930 */ 931 smp_mb(); 932 } 933 934 /** 935 * synchronize_srcu_expedited - Brute-force SRCU grace period 936 * @ssp: srcu_struct with which to synchronize. 937 * 938 * Wait for an SRCU grace period to elapse, but be more aggressive about 939 * spinning rather than blocking when waiting. 940 * 941 * Note that synchronize_srcu_expedited() has the same deadlock and 942 * memory-ordering properties as does synchronize_srcu(). 943 */ 944 void synchronize_srcu_expedited(struct srcu_struct *ssp) 945 { 946 __synchronize_srcu(ssp, rcu_gp_is_normal()); 947 } 948 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 949 950 /** 951 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 952 * @ssp: srcu_struct with which to synchronize. 953 * 954 * Wait for the count to drain to zero of both indexes. To avoid the 955 * possible starvation of synchronize_srcu(), it waits for the count of 956 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 957 * and then flip the srcu_idx and wait for the count of the other index. 958 * 959 * Can block; must be called from process context. 960 * 961 * Note that it is illegal to call synchronize_srcu() from the corresponding 962 * SRCU read-side critical section; doing so will result in deadlock. 963 * However, it is perfectly legal to call synchronize_srcu() on one 964 * srcu_struct from some other srcu_struct's read-side critical section, 965 * as long as the resulting graph of srcu_structs is acyclic. 966 * 967 * There are memory-ordering constraints implied by synchronize_srcu(). 968 * On systems with more than one CPU, when synchronize_srcu() returns, 969 * each CPU is guaranteed to have executed a full memory barrier since 970 * the end of its last corresponding SRCU read-side critical section 971 * whose beginning preceded the call to synchronize_srcu(). In addition, 972 * each CPU having an SRCU read-side critical section that extends beyond 973 * the return from synchronize_srcu() is guaranteed to have executed a 974 * full memory barrier after the beginning of synchronize_srcu() and before 975 * the beginning of that SRCU read-side critical section. Note that these 976 * guarantees include CPUs that are offline, idle, or executing in user mode, 977 * as well as CPUs that are executing in the kernel. 978 * 979 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 980 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 981 * to have executed a full memory barrier during the execution of 982 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 983 * are the same CPU, but again only if the system has more than one CPU. 984 * 985 * Of course, these memory-ordering guarantees apply only when 986 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 987 * passed the same srcu_struct structure. 988 * 989 * If SRCU is likely idle, expedite the first request. This semantic 990 * was provided by Classic SRCU, and is relied upon by its users, so TREE 991 * SRCU must also provide it. Note that detecting idleness is heuristic 992 * and subject to both false positives and negatives. 993 */ 994 void synchronize_srcu(struct srcu_struct *ssp) 995 { 996 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 997 synchronize_srcu_expedited(ssp); 998 else 999 __synchronize_srcu(ssp, true); 1000 } 1001 EXPORT_SYMBOL_GPL(synchronize_srcu); 1002 1003 /* 1004 * Callback function for srcu_barrier() use. 1005 */ 1006 static void srcu_barrier_cb(struct rcu_head *rhp) 1007 { 1008 struct srcu_data *sdp; 1009 struct srcu_struct *ssp; 1010 1011 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1012 ssp = sdp->ssp; 1013 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1014 complete(&ssp->srcu_barrier_completion); 1015 } 1016 1017 /** 1018 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1019 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1020 */ 1021 void srcu_barrier(struct srcu_struct *ssp) 1022 { 1023 int cpu; 1024 struct srcu_data *sdp; 1025 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq); 1026 1027 check_init_srcu_struct(ssp); 1028 mutex_lock(&ssp->srcu_barrier_mutex); 1029 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) { 1030 smp_mb(); /* Force ordering following return. */ 1031 mutex_unlock(&ssp->srcu_barrier_mutex); 1032 return; /* Someone else did our work for us. */ 1033 } 1034 rcu_seq_start(&ssp->srcu_barrier_seq); 1035 init_completion(&ssp->srcu_barrier_completion); 1036 1037 /* Initial count prevents reaching zero until all CBs are posted. */ 1038 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1); 1039 1040 /* 1041 * Each pass through this loop enqueues a callback, but only 1042 * on CPUs already having callbacks enqueued. Note that if 1043 * a CPU already has callbacks enqueue, it must have already 1044 * registered the need for a future grace period, so all we 1045 * need do is enqueue a callback that will use the same 1046 * grace period as the last callback already in the queue. 1047 */ 1048 for_each_possible_cpu(cpu) { 1049 sdp = per_cpu_ptr(ssp->sda, cpu); 1050 spin_lock_irq_rcu_node(sdp); 1051 atomic_inc(&ssp->srcu_barrier_cpu_cnt); 1052 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1053 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1054 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1055 &sdp->srcu_barrier_head, 0)) { 1056 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1057 atomic_dec(&ssp->srcu_barrier_cpu_cnt); 1058 } 1059 spin_unlock_irq_rcu_node(sdp); 1060 } 1061 1062 /* Remove the initial count, at which point reaching zero can happen. */ 1063 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1064 complete(&ssp->srcu_barrier_completion); 1065 wait_for_completion(&ssp->srcu_barrier_completion); 1066 1067 rcu_seq_end(&ssp->srcu_barrier_seq); 1068 mutex_unlock(&ssp->srcu_barrier_mutex); 1069 } 1070 EXPORT_SYMBOL_GPL(srcu_barrier); 1071 1072 /** 1073 * srcu_batches_completed - return batches completed. 1074 * @ssp: srcu_struct on which to report batch completion. 1075 * 1076 * Report the number of batches, correlated with, but not necessarily 1077 * precisely the same as, the number of grace periods that have elapsed. 1078 */ 1079 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1080 { 1081 return ssp->srcu_idx; 1082 } 1083 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1084 1085 /* 1086 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1087 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1088 * completed in that state. 1089 */ 1090 static void srcu_advance_state(struct srcu_struct *ssp) 1091 { 1092 int idx; 1093 1094 mutex_lock(&ssp->srcu_gp_mutex); 1095 1096 /* 1097 * Because readers might be delayed for an extended period after 1098 * fetching ->srcu_idx for their index, at any point in time there 1099 * might well be readers using both idx=0 and idx=1. We therefore 1100 * need to wait for readers to clear from both index values before 1101 * invoking a callback. 1102 * 1103 * The load-acquire ensures that we see the accesses performed 1104 * by the prior grace period. 1105 */ 1106 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */ 1107 if (idx == SRCU_STATE_IDLE) { 1108 spin_lock_irq_rcu_node(ssp); 1109 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1110 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq)); 1111 spin_unlock_irq_rcu_node(ssp); 1112 mutex_unlock(&ssp->srcu_gp_mutex); 1113 return; 1114 } 1115 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 1116 if (idx == SRCU_STATE_IDLE) 1117 srcu_gp_start(ssp); 1118 spin_unlock_irq_rcu_node(ssp); 1119 if (idx != SRCU_STATE_IDLE) { 1120 mutex_unlock(&ssp->srcu_gp_mutex); 1121 return; /* Someone else started the grace period. */ 1122 } 1123 } 1124 1125 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1126 idx = 1 ^ (ssp->srcu_idx & 1); 1127 if (!try_check_zero(ssp, idx, 1)) { 1128 mutex_unlock(&ssp->srcu_gp_mutex); 1129 return; /* readers present, retry later. */ 1130 } 1131 srcu_flip(ssp); 1132 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2); 1133 } 1134 1135 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1136 1137 /* 1138 * SRCU read-side critical sections are normally short, 1139 * so check at least twice in quick succession after a flip. 1140 */ 1141 idx = 1 ^ (ssp->srcu_idx & 1); 1142 if (!try_check_zero(ssp, idx, 2)) { 1143 mutex_unlock(&ssp->srcu_gp_mutex); 1144 return; /* readers present, retry later. */ 1145 } 1146 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1147 } 1148 } 1149 1150 /* 1151 * Invoke a limited number of SRCU callbacks that have passed through 1152 * their grace period. If there are more to do, SRCU will reschedule 1153 * the workqueue. Note that needed memory barriers have been executed 1154 * in this task's context by srcu_readers_active_idx_check(). 1155 */ 1156 static void srcu_invoke_callbacks(struct work_struct *work) 1157 { 1158 bool more; 1159 struct rcu_cblist ready_cbs; 1160 struct rcu_head *rhp; 1161 struct srcu_data *sdp; 1162 struct srcu_struct *ssp; 1163 1164 sdp = container_of(work, struct srcu_data, work); 1165 1166 ssp = sdp->ssp; 1167 rcu_cblist_init(&ready_cbs); 1168 spin_lock_irq_rcu_node(sdp); 1169 rcu_segcblist_advance(&sdp->srcu_cblist, 1170 rcu_seq_current(&ssp->srcu_gp_seq)); 1171 if (sdp->srcu_cblist_invoking || 1172 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1173 spin_unlock_irq_rcu_node(sdp); 1174 return; /* Someone else on the job or nothing to do. */ 1175 } 1176 1177 /* We are on the job! Extract and invoke ready callbacks. */ 1178 sdp->srcu_cblist_invoking = true; 1179 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1180 spin_unlock_irq_rcu_node(sdp); 1181 rhp = rcu_cblist_dequeue(&ready_cbs); 1182 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1183 debug_rcu_head_unqueue(rhp); 1184 local_bh_disable(); 1185 rhp->func(rhp); 1186 local_bh_enable(); 1187 } 1188 1189 /* 1190 * Update counts, accelerate new callbacks, and if needed, 1191 * schedule another round of callback invocation. 1192 */ 1193 spin_lock_irq_rcu_node(sdp); 1194 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); 1195 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1196 rcu_seq_snap(&ssp->srcu_gp_seq)); 1197 sdp->srcu_cblist_invoking = false; 1198 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1199 spin_unlock_irq_rcu_node(sdp); 1200 if (more) 1201 srcu_schedule_cbs_sdp(sdp, 0); 1202 } 1203 1204 /* 1205 * Finished one round of SRCU grace period. Start another if there are 1206 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1207 */ 1208 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1209 { 1210 bool pushgp = true; 1211 1212 spin_lock_irq_rcu_node(ssp); 1213 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1214 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) { 1215 /* All requests fulfilled, time to go idle. */ 1216 pushgp = false; 1217 } 1218 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) { 1219 /* Outstanding request and no GP. Start one. */ 1220 srcu_gp_start(ssp); 1221 } 1222 spin_unlock_irq_rcu_node(ssp); 1223 1224 if (pushgp) 1225 queue_delayed_work(rcu_gp_wq, &ssp->work, delay); 1226 } 1227 1228 /* 1229 * This is the work-queue function that handles SRCU grace periods. 1230 */ 1231 static void process_srcu(struct work_struct *work) 1232 { 1233 struct srcu_struct *ssp; 1234 1235 ssp = container_of(work, struct srcu_struct, work.work); 1236 1237 srcu_advance_state(ssp); 1238 srcu_reschedule(ssp, srcu_get_delay(ssp)); 1239 } 1240 1241 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1242 struct srcu_struct *ssp, int *flags, 1243 unsigned long *gp_seq) 1244 { 1245 if (test_type != SRCU_FLAVOR) 1246 return; 1247 *flags = 0; 1248 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq); 1249 } 1250 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1251 1252 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1253 { 1254 int cpu; 1255 int idx; 1256 unsigned long s0 = 0, s1 = 0; 1257 1258 idx = ssp->srcu_idx & 0x1; 1259 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):", 1260 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx); 1261 for_each_possible_cpu(cpu) { 1262 unsigned long l0, l1; 1263 unsigned long u0, u1; 1264 long c0, c1; 1265 struct srcu_data *sdp; 1266 1267 sdp = per_cpu_ptr(ssp->sda, cpu); 1268 u0 = sdp->srcu_unlock_count[!idx]; 1269 u1 = sdp->srcu_unlock_count[idx]; 1270 1271 /* 1272 * Make sure that a lock is always counted if the corresponding 1273 * unlock is counted. 1274 */ 1275 smp_rmb(); 1276 1277 l0 = sdp->srcu_lock_count[!idx]; 1278 l1 = sdp->srcu_lock_count[idx]; 1279 1280 c0 = l0 - u0; 1281 c1 = l1 - u1; 1282 pr_cont(" %d(%ld,%ld %1p)", 1283 cpu, c0, c1, rcu_segcblist_head(&sdp->srcu_cblist)); 1284 s0 += c0; 1285 s1 += c1; 1286 } 1287 pr_cont(" T(%ld,%ld)\n", s0, s1); 1288 } 1289 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1290 1291 static int __init srcu_bootup_announce(void) 1292 { 1293 pr_info("Hierarchical SRCU implementation.\n"); 1294 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1295 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1296 return 0; 1297 } 1298 early_initcall(srcu_bootup_announce); 1299 1300 void __init srcu_init(void) 1301 { 1302 struct srcu_struct *ssp; 1303 1304 srcu_init_done = true; 1305 while (!list_empty(&srcu_boot_list)) { 1306 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct, 1307 work.work.entry); 1308 check_init_srcu_struct(ssp); 1309 list_del_init(&ssp->work.work.entry); 1310 queue_work(rcu_gp_wq, &ssp->work.work); 1311 } 1312 } 1313 1314 #ifdef CONFIG_MODULES 1315 1316 /* Initialize any global-scope srcu_struct structures used by this module. */ 1317 static int srcu_module_coming(struct module *mod) 1318 { 1319 int i; 1320 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1321 int ret; 1322 1323 for (i = 0; i < mod->num_srcu_structs; i++) { 1324 ret = init_srcu_struct(*(sspp++)); 1325 if (WARN_ON_ONCE(ret)) 1326 return ret; 1327 } 1328 return 0; 1329 } 1330 1331 /* Clean up any global-scope srcu_struct structures used by this module. */ 1332 static void srcu_module_going(struct module *mod) 1333 { 1334 int i; 1335 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1336 1337 for (i = 0; i < mod->num_srcu_structs; i++) 1338 cleanup_srcu_struct(*(sspp++)); 1339 } 1340 1341 /* Handle one module, either coming or going. */ 1342 static int srcu_module_notify(struct notifier_block *self, 1343 unsigned long val, void *data) 1344 { 1345 struct module *mod = data; 1346 int ret = 0; 1347 1348 switch (val) { 1349 case MODULE_STATE_COMING: 1350 ret = srcu_module_coming(mod); 1351 break; 1352 case MODULE_STATE_GOING: 1353 srcu_module_going(mod); 1354 break; 1355 default: 1356 break; 1357 } 1358 return ret; 1359 } 1360 1361 static struct notifier_block srcu_module_nb = { 1362 .notifier_call = srcu_module_notify, 1363 .priority = 0, 1364 }; 1365 1366 static __init int init_srcu_module_notifier(void) 1367 { 1368 int ret; 1369 1370 ret = register_module_notifier(&srcu_module_nb); 1371 if (ret) 1372 pr_warn("Failed to register srcu module notifier\n"); 1373 return ret; 1374 } 1375 late_initcall(init_srcu_module_notifier); 1376 1377 #endif /* #ifdef CONFIG_MODULES */ 1378