xref: /openbmc/linux/kernel/rcu/srcutree.c (revision 4d2804b7)
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  *		Documentation/RCU/ *.txt
26  *
27  */
28 
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate_wait.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/srcu.h>
39 
40 #include "rcu.h"
41 #include "rcu_segcblist.h"
42 
43 ulong exp_holdoff = 25 * 1000; /* Holdoff (ns) for auto-expediting. */
44 module_param(exp_holdoff, ulong, 0444);
45 
46 static void srcu_invoke_callbacks(struct work_struct *work);
47 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
48 
49 /*
50  * Initialize SRCU combining tree.  Note that statically allocated
51  * srcu_struct structures might already have srcu_read_lock() and
52  * srcu_read_unlock() running against them.  So if the is_static parameter
53  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
54  */
55 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static)
56 {
57 	int cpu;
58 	int i;
59 	int level = 0;
60 	int levelspread[RCU_NUM_LVLS];
61 	struct srcu_data *sdp;
62 	struct srcu_node *snp;
63 	struct srcu_node *snp_first;
64 
65 	/* Work out the overall tree geometry. */
66 	sp->level[0] = &sp->node[0];
67 	for (i = 1; i < rcu_num_lvls; i++)
68 		sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1];
69 	rcu_init_levelspread(levelspread, num_rcu_lvl);
70 
71 	/* Each pass through this loop initializes one srcu_node structure. */
72 	rcu_for_each_node_breadth_first(sp, snp) {
73 		spin_lock_init(&snp->lock);
74 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
75 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
76 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
77 			snp->srcu_have_cbs[i] = 0;
78 			snp->srcu_data_have_cbs[i] = 0;
79 		}
80 		snp->srcu_gp_seq_needed_exp = 0;
81 		snp->grplo = -1;
82 		snp->grphi = -1;
83 		if (snp == &sp->node[0]) {
84 			/* Root node, special case. */
85 			snp->srcu_parent = NULL;
86 			continue;
87 		}
88 
89 		/* Non-root node. */
90 		if (snp == sp->level[level + 1])
91 			level++;
92 		snp->srcu_parent = sp->level[level - 1] +
93 				   (snp - sp->level[level]) /
94 				   levelspread[level - 1];
95 	}
96 
97 	/*
98 	 * Initialize the per-CPU srcu_data array, which feeds into the
99 	 * leaves of the srcu_node tree.
100 	 */
101 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
102 		     ARRAY_SIZE(sdp->srcu_unlock_count));
103 	level = rcu_num_lvls - 1;
104 	snp_first = sp->level[level];
105 	for_each_possible_cpu(cpu) {
106 		sdp = per_cpu_ptr(sp->sda, cpu);
107 		spin_lock_init(&sdp->lock);
108 		rcu_segcblist_init(&sdp->srcu_cblist);
109 		sdp->srcu_cblist_invoking = false;
110 		sdp->srcu_gp_seq_needed = sp->srcu_gp_seq;
111 		sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq;
112 		sdp->mynode = &snp_first[cpu / levelspread[level]];
113 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
114 			if (snp->grplo < 0)
115 				snp->grplo = cpu;
116 			snp->grphi = cpu;
117 		}
118 		sdp->cpu = cpu;
119 		INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
120 		sdp->sp = sp;
121 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
122 		if (is_static)
123 			continue;
124 
125 		/* Dynamically allocated, better be no srcu_read_locks()! */
126 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
127 			sdp->srcu_lock_count[i] = 0;
128 			sdp->srcu_unlock_count[i] = 0;
129 		}
130 	}
131 }
132 
133 /*
134  * Initialize non-compile-time initialized fields, including the
135  * associated srcu_node and srcu_data structures.  The is_static
136  * parameter is passed through to init_srcu_struct_nodes(), and
137  * also tells us that ->sda has already been wired up to srcu_data.
138  */
139 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static)
140 {
141 	mutex_init(&sp->srcu_cb_mutex);
142 	mutex_init(&sp->srcu_gp_mutex);
143 	sp->srcu_idx = 0;
144 	sp->srcu_gp_seq = 0;
145 	sp->srcu_barrier_seq = 0;
146 	mutex_init(&sp->srcu_barrier_mutex);
147 	atomic_set(&sp->srcu_barrier_cpu_cnt, 0);
148 	INIT_DELAYED_WORK(&sp->work, process_srcu);
149 	if (!is_static)
150 		sp->sda = alloc_percpu(struct srcu_data);
151 	init_srcu_struct_nodes(sp, is_static);
152 	sp->srcu_gp_seq_needed_exp = 0;
153 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
154 	smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */
155 	return sp->sda ? 0 : -ENOMEM;
156 }
157 
158 #ifdef CONFIG_DEBUG_LOCK_ALLOC
159 
160 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
161 		       struct lock_class_key *key)
162 {
163 	/* Don't re-initialize a lock while it is held. */
164 	debug_check_no_locks_freed((void *)sp, sizeof(*sp));
165 	lockdep_init_map(&sp->dep_map, name, key, 0);
166 	spin_lock_init(&sp->gp_lock);
167 	return init_srcu_struct_fields(sp, false);
168 }
169 EXPORT_SYMBOL_GPL(__init_srcu_struct);
170 
171 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
172 
173 /**
174  * init_srcu_struct - initialize a sleep-RCU structure
175  * @sp: structure to initialize.
176  *
177  * Must invoke this on a given srcu_struct before passing that srcu_struct
178  * to any other function.  Each srcu_struct represents a separate domain
179  * of SRCU protection.
180  */
181 int init_srcu_struct(struct srcu_struct *sp)
182 {
183 	spin_lock_init(&sp->gp_lock);
184 	return init_srcu_struct_fields(sp, false);
185 }
186 EXPORT_SYMBOL_GPL(init_srcu_struct);
187 
188 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
189 
190 /*
191  * First-use initialization of statically allocated srcu_struct
192  * structure.  Wiring up the combining tree is more than can be
193  * done with compile-time initialization, so this check is added
194  * to each update-side SRCU primitive.  Use ->gp_lock, which -is-
195  * compile-time initialized, to resolve races involving multiple
196  * CPUs trying to garner first-use privileges.
197  */
198 static void check_init_srcu_struct(struct srcu_struct *sp)
199 {
200 	unsigned long flags;
201 
202 	WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT);
203 	/* The smp_load_acquire() pairs with the smp_store_release(). */
204 	if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/
205 		return; /* Already initialized. */
206 	spin_lock_irqsave(&sp->gp_lock, flags);
207 	if (!rcu_seq_state(sp->srcu_gp_seq_needed)) {
208 		spin_unlock_irqrestore(&sp->gp_lock, flags);
209 		return;
210 	}
211 	init_srcu_struct_fields(sp, true);
212 	spin_unlock_irqrestore(&sp->gp_lock, flags);
213 }
214 
215 /*
216  * Returns approximate total of the readers' ->srcu_lock_count[] values
217  * for the rank of per-CPU counters specified by idx.
218  */
219 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
220 {
221 	int cpu;
222 	unsigned long sum = 0;
223 
224 	for_each_possible_cpu(cpu) {
225 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
226 
227 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
228 	}
229 	return sum;
230 }
231 
232 /*
233  * Returns approximate total of the readers' ->srcu_unlock_count[] values
234  * for the rank of per-CPU counters specified by idx.
235  */
236 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
237 {
238 	int cpu;
239 	unsigned long sum = 0;
240 
241 	for_each_possible_cpu(cpu) {
242 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
243 
244 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
245 	}
246 	return sum;
247 }
248 
249 /*
250  * Return true if the number of pre-existing readers is determined to
251  * be zero.
252  */
253 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
254 {
255 	unsigned long unlocks;
256 
257 	unlocks = srcu_readers_unlock_idx(sp, idx);
258 
259 	/*
260 	 * Make sure that a lock is always counted if the corresponding
261 	 * unlock is counted. Needs to be a smp_mb() as the read side may
262 	 * contain a read from a variable that is written to before the
263 	 * synchronize_srcu() in the write side. In this case smp_mb()s
264 	 * A and B act like the store buffering pattern.
265 	 *
266 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
267 	 * after the synchronize_srcu() from being executed before the
268 	 * grace period ends.
269 	 */
270 	smp_mb(); /* A */
271 
272 	/*
273 	 * If the locks are the same as the unlocks, then there must have
274 	 * been no readers on this index at some time in between. This does
275 	 * not mean that there are no more readers, as one could have read
276 	 * the current index but not have incremented the lock counter yet.
277 	 *
278 	 * Possible bug: There is no guarantee that there haven't been
279 	 * ULONG_MAX increments of ->srcu_lock_count[] since the unlocks were
280 	 * counted, meaning that this could return true even if there are
281 	 * still active readers.  Since there are no memory barriers around
282 	 * srcu_flip(), the CPU is not required to increment ->srcu_idx
283 	 * before running srcu_readers_unlock_idx(), which means that there
284 	 * could be an arbitrarily large number of critical sections that
285 	 * execute after srcu_readers_unlock_idx() but use the old value
286 	 * of ->srcu_idx.
287 	 */
288 	return srcu_readers_lock_idx(sp, idx) == unlocks;
289 }
290 
291 /**
292  * srcu_readers_active - returns true if there are readers. and false
293  *                       otherwise
294  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
295  *
296  * Note that this is not an atomic primitive, and can therefore suffer
297  * severe errors when invoked on an active srcu_struct.  That said, it
298  * can be useful as an error check at cleanup time.
299  */
300 static bool srcu_readers_active(struct srcu_struct *sp)
301 {
302 	int cpu;
303 	unsigned long sum = 0;
304 
305 	for_each_possible_cpu(cpu) {
306 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
307 
308 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
309 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
310 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
311 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
312 	}
313 	return sum;
314 }
315 
316 #define SRCU_INTERVAL		1
317 
318 /*
319  * Return grace-period delay, zero if there are expedited grace
320  * periods pending, SRCU_INTERVAL otherwise.
321  */
322 static unsigned long srcu_get_delay(struct srcu_struct *sp)
323 {
324 	if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq),
325 			 READ_ONCE(sp->srcu_gp_seq_needed_exp)))
326 		return 0;
327 	return SRCU_INTERVAL;
328 }
329 
330 /**
331  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
332  * @sp: structure to clean up.
333  *
334  * Must invoke this after you are finished using a given srcu_struct that
335  * was initialized via init_srcu_struct(), else you leak memory.
336  */
337 void cleanup_srcu_struct(struct srcu_struct *sp)
338 {
339 	int cpu;
340 
341 	if (WARN_ON(!srcu_get_delay(sp)))
342 		return; /* Leakage unless caller handles error. */
343 	if (WARN_ON(srcu_readers_active(sp)))
344 		return; /* Leakage unless caller handles error. */
345 	flush_delayed_work(&sp->work);
346 	for_each_possible_cpu(cpu)
347 		flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work);
348 	if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
349 	    WARN_ON(srcu_readers_active(sp))) {
350 		pr_info("cleanup_srcu_struct: Active srcu_struct %p state: %d\n", sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
351 		return; /* Caller forgot to stop doing call_srcu()? */
352 	}
353 	free_percpu(sp->sda);
354 	sp->sda = NULL;
355 }
356 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
357 
358 /*
359  * Counts the new reader in the appropriate per-CPU element of the
360  * srcu_struct.
361  * Returns an index that must be passed to the matching srcu_read_unlock().
362  */
363 int __srcu_read_lock(struct srcu_struct *sp)
364 {
365 	int idx;
366 
367 	idx = READ_ONCE(sp->srcu_idx) & 0x1;
368 	this_cpu_inc(sp->sda->srcu_lock_count[idx]);
369 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
370 	return idx;
371 }
372 EXPORT_SYMBOL_GPL(__srcu_read_lock);
373 
374 /*
375  * Removes the count for the old reader from the appropriate per-CPU
376  * element of the srcu_struct.  Note that this may well be a different
377  * CPU than that which was incremented by the corresponding srcu_read_lock().
378  */
379 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
380 {
381 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
382 	this_cpu_inc(sp->sda->srcu_unlock_count[idx]);
383 }
384 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
385 
386 /*
387  * We use an adaptive strategy for synchronize_srcu() and especially for
388  * synchronize_srcu_expedited().  We spin for a fixed time period
389  * (defined below) to allow SRCU readers to exit their read-side critical
390  * sections.  If there are still some readers after a few microseconds,
391  * we repeatedly block for 1-millisecond time periods.
392  */
393 #define SRCU_RETRY_CHECK_DELAY		5
394 
395 /*
396  * Start an SRCU grace period.
397  */
398 static void srcu_gp_start(struct srcu_struct *sp)
399 {
400 	struct srcu_data *sdp = this_cpu_ptr(sp->sda);
401 	int state;
402 
403 	RCU_LOCKDEP_WARN(!lockdep_is_held(&sp->gp_lock),
404 			 "Invoked srcu_gp_start() without ->gp_lock!");
405 	WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
406 	rcu_segcblist_advance(&sdp->srcu_cblist,
407 			      rcu_seq_current(&sp->srcu_gp_seq));
408 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
409 				       rcu_seq_snap(&sp->srcu_gp_seq));
410 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
411 	rcu_seq_start(&sp->srcu_gp_seq);
412 	state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
413 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
414 }
415 
416 /*
417  * Track online CPUs to guide callback workqueue placement.
418  */
419 DEFINE_PER_CPU(bool, srcu_online);
420 
421 void srcu_online_cpu(unsigned int cpu)
422 {
423 	WRITE_ONCE(per_cpu(srcu_online, cpu), true);
424 }
425 
426 void srcu_offline_cpu(unsigned int cpu)
427 {
428 	WRITE_ONCE(per_cpu(srcu_online, cpu), false);
429 }
430 
431 /*
432  * Place the workqueue handler on the specified CPU if online, otherwise
433  * just run it whereever.  This is useful for placing workqueue handlers
434  * that are to invoke the specified CPU's callbacks.
435  */
436 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
437 				       struct delayed_work *dwork,
438 				       unsigned long delay)
439 {
440 	bool ret;
441 
442 	preempt_disable();
443 	if (READ_ONCE(per_cpu(srcu_online, cpu)))
444 		ret = queue_delayed_work_on(cpu, wq, dwork, delay);
445 	else
446 		ret = queue_delayed_work(wq, dwork, delay);
447 	preempt_enable();
448 	return ret;
449 }
450 
451 /*
452  * Schedule callback invocation for the specified srcu_data structure,
453  * if possible, on the corresponding CPU.
454  */
455 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
456 {
457 	srcu_queue_delayed_work_on(sdp->cpu, system_power_efficient_wq,
458 				   &sdp->work, delay);
459 }
460 
461 /*
462  * Schedule callback invocation for all srcu_data structures associated
463  * with the specified srcu_node structure that have callbacks for the
464  * just-completed grace period, the one corresponding to idx.  If possible,
465  * schedule this invocation on the corresponding CPUs.
466  */
467 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp,
468 				  unsigned long mask, unsigned long delay)
469 {
470 	int cpu;
471 
472 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
473 		if (!(mask & (1 << (cpu - snp->grplo))))
474 			continue;
475 		srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay);
476 	}
477 }
478 
479 /*
480  * Note the end of an SRCU grace period.  Initiates callback invocation
481  * and starts a new grace period if needed.
482  *
483  * The ->srcu_cb_mutex acquisition does not protect any data, but
484  * instead prevents more than one grace period from starting while we
485  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
486  * array to have a finite number of elements.
487  */
488 static void srcu_gp_end(struct srcu_struct *sp)
489 {
490 	unsigned long cbdelay;
491 	bool cbs;
492 	unsigned long gpseq;
493 	int idx;
494 	int idxnext;
495 	unsigned long mask;
496 	struct srcu_node *snp;
497 
498 	/* Prevent more than one additional grace period. */
499 	mutex_lock(&sp->srcu_cb_mutex);
500 
501 	/* End the current grace period. */
502 	spin_lock_irq(&sp->gp_lock);
503 	idx = rcu_seq_state(sp->srcu_gp_seq);
504 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
505 	cbdelay = srcu_get_delay(sp);
506 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
507 	rcu_seq_end(&sp->srcu_gp_seq);
508 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
509 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq))
510 		sp->srcu_gp_seq_needed_exp = gpseq;
511 	spin_unlock_irq(&sp->gp_lock);
512 	mutex_unlock(&sp->srcu_gp_mutex);
513 	/* A new grace period can start at this point.  But only one. */
514 
515 	/* Initiate callback invocation as needed. */
516 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
517 	idxnext = (idx + 1) % ARRAY_SIZE(snp->srcu_have_cbs);
518 	rcu_for_each_node_breadth_first(sp, snp) {
519 		spin_lock_irq(&snp->lock);
520 		cbs = false;
521 		if (snp >= sp->level[rcu_num_lvls - 1])
522 			cbs = snp->srcu_have_cbs[idx] == gpseq;
523 		snp->srcu_have_cbs[idx] = gpseq;
524 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
525 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
526 			snp->srcu_gp_seq_needed_exp = gpseq;
527 		mask = snp->srcu_data_have_cbs[idx];
528 		snp->srcu_data_have_cbs[idx] = 0;
529 		spin_unlock_irq(&snp->lock);
530 		if (cbs) {
531 			smp_mb(); /* GP end before CB invocation. */
532 			srcu_schedule_cbs_snp(sp, snp, mask, cbdelay);
533 		}
534 	}
535 
536 	/* Callback initiation done, allow grace periods after next. */
537 	mutex_unlock(&sp->srcu_cb_mutex);
538 
539 	/* Start a new grace period if needed. */
540 	spin_lock_irq(&sp->gp_lock);
541 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
542 	if (!rcu_seq_state(gpseq) &&
543 	    ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) {
544 		srcu_gp_start(sp);
545 		spin_unlock_irq(&sp->gp_lock);
546 		/* Throttle expedited grace periods: Should be rare! */
547 		srcu_reschedule(sp, rcu_seq_ctr(gpseq) & 0x3ff
548 				    ? 0 : SRCU_INTERVAL);
549 	} else {
550 		spin_unlock_irq(&sp->gp_lock);
551 	}
552 }
553 
554 /*
555  * Funnel-locking scheme to scalably mediate many concurrent expedited
556  * grace-period requests.  This function is invoked for the first known
557  * expedited request for a grace period that has already been requested,
558  * but without expediting.  To start a completely new grace period,
559  * whether expedited or not, use srcu_funnel_gp_start() instead.
560  */
561 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp,
562 				  unsigned long s)
563 {
564 	unsigned long flags;
565 
566 	for (; snp != NULL; snp = snp->srcu_parent) {
567 		if (rcu_seq_done(&sp->srcu_gp_seq, s) ||
568 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
569 			return;
570 		spin_lock_irqsave(&snp->lock, flags);
571 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
572 			spin_unlock_irqrestore(&snp->lock, flags);
573 			return;
574 		}
575 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
576 		spin_unlock_irqrestore(&snp->lock, flags);
577 	}
578 	spin_lock_irqsave(&sp->gp_lock, flags);
579 	if (!ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
580 		sp->srcu_gp_seq_needed_exp = s;
581 	spin_unlock_irqrestore(&sp->gp_lock, flags);
582 }
583 
584 /*
585  * Funnel-locking scheme to scalably mediate many concurrent grace-period
586  * requests.  The winner has to do the work of actually starting grace
587  * period s.  Losers must either ensure that their desired grace-period
588  * number is recorded on at least their leaf srcu_node structure, or they
589  * must take steps to invoke their own callbacks.
590  */
591 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp,
592 				 unsigned long s, bool do_norm)
593 {
594 	unsigned long flags;
595 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
596 	struct srcu_node *snp = sdp->mynode;
597 	unsigned long snp_seq;
598 
599 	/* Each pass through the loop does one level of the srcu_node tree. */
600 	for (; snp != NULL; snp = snp->srcu_parent) {
601 		if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode)
602 			return; /* GP already done and CBs recorded. */
603 		spin_lock_irqsave(&snp->lock, flags);
604 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
605 			snp_seq = snp->srcu_have_cbs[idx];
606 			if (snp == sdp->mynode && snp_seq == s)
607 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
608 			spin_unlock_irqrestore(&snp->lock, flags);
609 			if (snp == sdp->mynode && snp_seq != s) {
610 				smp_mb(); /* CBs after GP! */
611 				srcu_schedule_cbs_sdp(sdp, do_norm
612 							   ? SRCU_INTERVAL
613 							   : 0);
614 				return;
615 			}
616 			if (!do_norm)
617 				srcu_funnel_exp_start(sp, snp, s);
618 			return;
619 		}
620 		snp->srcu_have_cbs[idx] = s;
621 		if (snp == sdp->mynode)
622 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
623 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
624 			snp->srcu_gp_seq_needed_exp = s;
625 		spin_unlock_irqrestore(&snp->lock, flags);
626 	}
627 
628 	/* Top of tree, must ensure the grace period will be started. */
629 	spin_lock_irqsave(&sp->gp_lock, flags);
630 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) {
631 		/*
632 		 * Record need for grace period s.  Pair with load
633 		 * acquire setting up for initialization.
634 		 */
635 		smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/
636 	}
637 	if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
638 		sp->srcu_gp_seq_needed_exp = s;
639 
640 	/* If grace period not already done and none in progress, start it. */
641 	if (!rcu_seq_done(&sp->srcu_gp_seq, s) &&
642 	    rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) {
643 		WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
644 		srcu_gp_start(sp);
645 		queue_delayed_work(system_power_efficient_wq, &sp->work,
646 				   srcu_get_delay(sp));
647 	}
648 	spin_unlock_irqrestore(&sp->gp_lock, flags);
649 }
650 
651 /*
652  * Wait until all readers counted by array index idx complete, but
653  * loop an additional time if there is an expedited grace period pending.
654  * The caller must ensure that ->srcu_idx is not changed while checking.
655  */
656 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
657 {
658 	for (;;) {
659 		if (srcu_readers_active_idx_check(sp, idx))
660 			return true;
661 		if (--trycount + !srcu_get_delay(sp) <= 0)
662 			return false;
663 		udelay(SRCU_RETRY_CHECK_DELAY);
664 	}
665 }
666 
667 /*
668  * Increment the ->srcu_idx counter so that future SRCU readers will
669  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
670  * us to wait for pre-existing readers in a starvation-free manner.
671  */
672 static void srcu_flip(struct srcu_struct *sp)
673 {
674 	WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1);
675 
676 	/*
677 	 * Ensure that if the updater misses an __srcu_read_unlock()
678 	 * increment, that task's next __srcu_read_lock() will see the
679 	 * above counter update.  Note that both this memory barrier
680 	 * and the one in srcu_readers_active_idx_check() provide the
681 	 * guarantee for __srcu_read_lock().
682 	 */
683 	smp_mb(); /* D */  /* Pairs with C. */
684 }
685 
686 /*
687  * If SRCU is likely idle, return true, otherwise return false.
688  *
689  * Note that it is OK for several current from-idle requests for a new
690  * grace period from idle to specify expediting because they will all end
691  * up requesting the same grace period anyhow.  So no loss.
692  *
693  * Note also that if any CPU (including the current one) is still invoking
694  * callbacks, this function will nevertheless say "idle".  This is not
695  * ideal, but the overhead of checking all CPUs' callback lists is even
696  * less ideal, especially on large systems.  Furthermore, the wakeup
697  * can happen before the callback is fully removed, so we have no choice
698  * but to accept this type of error.
699  *
700  * This function is also subject to counter-wrap errors, but let's face
701  * it, if this function was preempted for enough time for the counters
702  * to wrap, it really doesn't matter whether or not we expedite the grace
703  * period.  The extra overhead of a needlessly expedited grace period is
704  * negligible when amoritized over that time period, and the extra latency
705  * of a needlessly non-expedited grace period is similarly negligible.
706  */
707 static bool srcu_might_be_idle(struct srcu_struct *sp)
708 {
709 	unsigned long curseq;
710 	unsigned long flags;
711 	struct srcu_data *sdp;
712 	unsigned long t;
713 
714 	/* If the local srcu_data structure has callbacks, not idle.  */
715 	local_irq_save(flags);
716 	sdp = this_cpu_ptr(sp->sda);
717 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
718 		local_irq_restore(flags);
719 		return false; /* Callbacks already present, so not idle. */
720 	}
721 	local_irq_restore(flags);
722 
723 	/*
724 	 * No local callbacks, so probabalistically probe global state.
725 	 * Exact information would require acquiring locks, which would
726 	 * kill scalability, hence the probabalistic nature of the probe.
727 	 */
728 
729 	/* First, see if enough time has passed since the last GP. */
730 	t = ktime_get_mono_fast_ns();
731 	if (exp_holdoff == 0 ||
732 	    time_in_range_open(t, sp->srcu_last_gp_end,
733 			       sp->srcu_last_gp_end + exp_holdoff))
734 		return false; /* Too soon after last GP. */
735 
736 	/* Next, check for probable idleness. */
737 	curseq = rcu_seq_current(&sp->srcu_gp_seq);
738 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
739 	if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed)))
740 		return false; /* Grace period in progress, so not idle. */
741 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
742 	if (curseq != rcu_seq_current(&sp->srcu_gp_seq))
743 		return false; /* GP # changed, so not idle. */
744 	return true; /* With reasonable probability, idle! */
745 }
746 
747 /*
748  * Enqueue an SRCU callback on the srcu_data structure associated with
749  * the current CPU and the specified srcu_struct structure, initiating
750  * grace-period processing if it is not already running.
751  *
752  * Note that all CPUs must agree that the grace period extended beyond
753  * all pre-existing SRCU read-side critical section.  On systems with
754  * more than one CPU, this means that when "func()" is invoked, each CPU
755  * is guaranteed to have executed a full memory barrier since the end of
756  * its last corresponding SRCU read-side critical section whose beginning
757  * preceded the call to call_rcu().  It also means that each CPU executing
758  * an SRCU read-side critical section that continues beyond the start of
759  * "func()" must have executed a memory barrier after the call_rcu()
760  * but before the beginning of that SRCU read-side critical section.
761  * Note that these guarantees include CPUs that are offline, idle, or
762  * executing in user mode, as well as CPUs that are executing in the kernel.
763  *
764  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
765  * resulting SRCU callback function "func()", then both CPU A and CPU
766  * B are guaranteed to execute a full memory barrier during the time
767  * interval between the call to call_rcu() and the invocation of "func()".
768  * This guarantee applies even if CPU A and CPU B are the same CPU (but
769  * again only if the system has more than one CPU).
770  *
771  * Of course, these guarantees apply only for invocations of call_srcu(),
772  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
773  * srcu_struct structure.
774  */
775 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
776 		 rcu_callback_t func, bool do_norm)
777 {
778 	unsigned long flags;
779 	bool needexp = false;
780 	bool needgp = false;
781 	unsigned long s;
782 	struct srcu_data *sdp;
783 
784 	check_init_srcu_struct(sp);
785 	rhp->func = func;
786 	local_irq_save(flags);
787 	sdp = this_cpu_ptr(sp->sda);
788 	spin_lock(&sdp->lock);
789 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
790 	rcu_segcblist_advance(&sdp->srcu_cblist,
791 			      rcu_seq_current(&sp->srcu_gp_seq));
792 	s = rcu_seq_snap(&sp->srcu_gp_seq);
793 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
794 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
795 		sdp->srcu_gp_seq_needed = s;
796 		needgp = true;
797 	}
798 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
799 		sdp->srcu_gp_seq_needed_exp = s;
800 		needexp = true;
801 	}
802 	spin_unlock_irqrestore(&sdp->lock, flags);
803 	if (needgp)
804 		srcu_funnel_gp_start(sp, sdp, s, do_norm);
805 	else if (needexp)
806 		srcu_funnel_exp_start(sp, sdp->mynode, s);
807 }
808 
809 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
810 	       rcu_callback_t func)
811 {
812 	__call_srcu(sp, rhp, func, true);
813 }
814 EXPORT_SYMBOL_GPL(call_srcu);
815 
816 /*
817  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
818  */
819 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm)
820 {
821 	struct rcu_synchronize rcu;
822 
823 	RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
824 			 lock_is_held(&rcu_bh_lock_map) ||
825 			 lock_is_held(&rcu_lock_map) ||
826 			 lock_is_held(&rcu_sched_lock_map),
827 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
828 
829 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
830 		return;
831 	might_sleep();
832 	check_init_srcu_struct(sp);
833 	init_completion(&rcu.completion);
834 	init_rcu_head_on_stack(&rcu.head);
835 	__call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm);
836 	wait_for_completion(&rcu.completion);
837 	destroy_rcu_head_on_stack(&rcu.head);
838 }
839 
840 /**
841  * synchronize_srcu_expedited - Brute-force SRCU grace period
842  * @sp: srcu_struct with which to synchronize.
843  *
844  * Wait for an SRCU grace period to elapse, but be more aggressive about
845  * spinning rather than blocking when waiting.
846  *
847  * Note that synchronize_srcu_expedited() has the same deadlock and
848  * memory-ordering properties as does synchronize_srcu().
849  */
850 void synchronize_srcu_expedited(struct srcu_struct *sp)
851 {
852 	__synchronize_srcu(sp, rcu_gp_is_normal());
853 }
854 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
855 
856 /**
857  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
858  * @sp: srcu_struct with which to synchronize.
859  *
860  * Wait for the count to drain to zero of both indexes. To avoid the
861  * possible starvation of synchronize_srcu(), it waits for the count of
862  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
863  * and then flip the srcu_idx and wait for the count of the other index.
864  *
865  * Can block; must be called from process context.
866  *
867  * Note that it is illegal to call synchronize_srcu() from the corresponding
868  * SRCU read-side critical section; doing so will result in deadlock.
869  * However, it is perfectly legal to call synchronize_srcu() on one
870  * srcu_struct from some other srcu_struct's read-side critical section,
871  * as long as the resulting graph of srcu_structs is acyclic.
872  *
873  * There are memory-ordering constraints implied by synchronize_srcu().
874  * On systems with more than one CPU, when synchronize_srcu() returns,
875  * each CPU is guaranteed to have executed a full memory barrier since
876  * the end of its last corresponding SRCU-sched read-side critical section
877  * whose beginning preceded the call to synchronize_srcu().  In addition,
878  * each CPU having an SRCU read-side critical section that extends beyond
879  * the return from synchronize_srcu() is guaranteed to have executed a
880  * full memory barrier after the beginning of synchronize_srcu() and before
881  * the beginning of that SRCU read-side critical section.  Note that these
882  * guarantees include CPUs that are offline, idle, or executing in user mode,
883  * as well as CPUs that are executing in the kernel.
884  *
885  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
886  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
887  * to have executed a full memory barrier during the execution of
888  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
889  * are the same CPU, but again only if the system has more than one CPU.
890  *
891  * Of course, these memory-ordering guarantees apply only when
892  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
893  * passed the same srcu_struct structure.
894  *
895  * If SRCU is likely idle, expedite the first request.  This semantic
896  * was provided by Classic SRCU, and is relied upon by its users, so TREE
897  * SRCU must also provide it.  Note that detecting idleness is heuristic
898  * and subject to both false positives and negatives.
899  */
900 void synchronize_srcu(struct srcu_struct *sp)
901 {
902 	if (srcu_might_be_idle(sp) || rcu_gp_is_expedited())
903 		synchronize_srcu_expedited(sp);
904 	else
905 		__synchronize_srcu(sp, true);
906 }
907 EXPORT_SYMBOL_GPL(synchronize_srcu);
908 
909 /*
910  * Callback function for srcu_barrier() use.
911  */
912 static void srcu_barrier_cb(struct rcu_head *rhp)
913 {
914 	struct srcu_data *sdp;
915 	struct srcu_struct *sp;
916 
917 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
918 	sp = sdp->sp;
919 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
920 		complete(&sp->srcu_barrier_completion);
921 }
922 
923 /**
924  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
925  * @sp: srcu_struct on which to wait for in-flight callbacks.
926  */
927 void srcu_barrier(struct srcu_struct *sp)
928 {
929 	int cpu;
930 	struct srcu_data *sdp;
931 	unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq);
932 
933 	check_init_srcu_struct(sp);
934 	mutex_lock(&sp->srcu_barrier_mutex);
935 	if (rcu_seq_done(&sp->srcu_barrier_seq, s)) {
936 		smp_mb(); /* Force ordering following return. */
937 		mutex_unlock(&sp->srcu_barrier_mutex);
938 		return; /* Someone else did our work for us. */
939 	}
940 	rcu_seq_start(&sp->srcu_barrier_seq);
941 	init_completion(&sp->srcu_barrier_completion);
942 
943 	/* Initial count prevents reaching zero until all CBs are posted. */
944 	atomic_set(&sp->srcu_barrier_cpu_cnt, 1);
945 
946 	/*
947 	 * Each pass through this loop enqueues a callback, but only
948 	 * on CPUs already having callbacks enqueued.  Note that if
949 	 * a CPU already has callbacks enqueue, it must have already
950 	 * registered the need for a future grace period, so all we
951 	 * need do is enqueue a callback that will use the same
952 	 * grace period as the last callback already in the queue.
953 	 */
954 	for_each_possible_cpu(cpu) {
955 		sdp = per_cpu_ptr(sp->sda, cpu);
956 		spin_lock_irq(&sdp->lock);
957 		atomic_inc(&sp->srcu_barrier_cpu_cnt);
958 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
959 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
960 					   &sdp->srcu_barrier_head, 0))
961 			atomic_dec(&sp->srcu_barrier_cpu_cnt);
962 		spin_unlock_irq(&sdp->lock);
963 	}
964 
965 	/* Remove the initial count, at which point reaching zero can happen. */
966 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
967 		complete(&sp->srcu_barrier_completion);
968 	wait_for_completion(&sp->srcu_barrier_completion);
969 
970 	rcu_seq_end(&sp->srcu_barrier_seq);
971 	mutex_unlock(&sp->srcu_barrier_mutex);
972 }
973 EXPORT_SYMBOL_GPL(srcu_barrier);
974 
975 /**
976  * srcu_batches_completed - return batches completed.
977  * @sp: srcu_struct on which to report batch completion.
978  *
979  * Report the number of batches, correlated with, but not necessarily
980  * precisely the same as, the number of grace periods that have elapsed.
981  */
982 unsigned long srcu_batches_completed(struct srcu_struct *sp)
983 {
984 	return sp->srcu_idx;
985 }
986 EXPORT_SYMBOL_GPL(srcu_batches_completed);
987 
988 /*
989  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
990  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
991  * completed in that state.
992  */
993 static void srcu_advance_state(struct srcu_struct *sp)
994 {
995 	int idx;
996 
997 	mutex_lock(&sp->srcu_gp_mutex);
998 
999 	/*
1000 	 * Because readers might be delayed for an extended period after
1001 	 * fetching ->srcu_idx for their index, at any point in time there
1002 	 * might well be readers using both idx=0 and idx=1.  We therefore
1003 	 * need to wait for readers to clear from both index values before
1004 	 * invoking a callback.
1005 	 *
1006 	 * The load-acquire ensures that we see the accesses performed
1007 	 * by the prior grace period.
1008 	 */
1009 	idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
1010 	if (idx == SRCU_STATE_IDLE) {
1011 		spin_lock_irq(&sp->gp_lock);
1012 		if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1013 			WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq));
1014 			spin_unlock_irq(&sp->gp_lock);
1015 			mutex_unlock(&sp->srcu_gp_mutex);
1016 			return;
1017 		}
1018 		idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
1019 		if (idx == SRCU_STATE_IDLE)
1020 			srcu_gp_start(sp);
1021 		spin_unlock_irq(&sp->gp_lock);
1022 		if (idx != SRCU_STATE_IDLE) {
1023 			mutex_unlock(&sp->srcu_gp_mutex);
1024 			return; /* Someone else started the grace period. */
1025 		}
1026 	}
1027 
1028 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1029 		idx = 1 ^ (sp->srcu_idx & 1);
1030 		if (!try_check_zero(sp, idx, 1)) {
1031 			mutex_unlock(&sp->srcu_gp_mutex);
1032 			return; /* readers present, retry later. */
1033 		}
1034 		srcu_flip(sp);
1035 		rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
1036 	}
1037 
1038 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1039 
1040 		/*
1041 		 * SRCU read-side critical sections are normally short,
1042 		 * so check at least twice in quick succession after a flip.
1043 		 */
1044 		idx = 1 ^ (sp->srcu_idx & 1);
1045 		if (!try_check_zero(sp, idx, 2)) {
1046 			mutex_unlock(&sp->srcu_gp_mutex);
1047 			return; /* readers present, retry later. */
1048 		}
1049 		srcu_gp_end(sp);  /* Releases ->srcu_gp_mutex. */
1050 	}
1051 }
1052 
1053 /*
1054  * Invoke a limited number of SRCU callbacks that have passed through
1055  * their grace period.  If there are more to do, SRCU will reschedule
1056  * the workqueue.  Note that needed memory barriers have been executed
1057  * in this task's context by srcu_readers_active_idx_check().
1058  */
1059 static void srcu_invoke_callbacks(struct work_struct *work)
1060 {
1061 	bool more;
1062 	struct rcu_cblist ready_cbs;
1063 	struct rcu_head *rhp;
1064 	struct srcu_data *sdp;
1065 	struct srcu_struct *sp;
1066 
1067 	sdp = container_of(work, struct srcu_data, work.work);
1068 	sp = sdp->sp;
1069 	rcu_cblist_init(&ready_cbs);
1070 	spin_lock_irq(&sdp->lock);
1071 	smp_mb(); /* Old grace periods before callback invocation! */
1072 	rcu_segcblist_advance(&sdp->srcu_cblist,
1073 			      rcu_seq_current(&sp->srcu_gp_seq));
1074 	if (sdp->srcu_cblist_invoking ||
1075 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1076 		spin_unlock_irq(&sdp->lock);
1077 		return;  /* Someone else on the job or nothing to do. */
1078 	}
1079 
1080 	/* We are on the job!  Extract and invoke ready callbacks. */
1081 	sdp->srcu_cblist_invoking = true;
1082 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1083 	spin_unlock_irq(&sdp->lock);
1084 	rhp = rcu_cblist_dequeue(&ready_cbs);
1085 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1086 		local_bh_disable();
1087 		rhp->func(rhp);
1088 		local_bh_enable();
1089 	}
1090 
1091 	/*
1092 	 * Update counts, accelerate new callbacks, and if needed,
1093 	 * schedule another round of callback invocation.
1094 	 */
1095 	spin_lock_irq(&sdp->lock);
1096 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1097 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1098 				       rcu_seq_snap(&sp->srcu_gp_seq));
1099 	sdp->srcu_cblist_invoking = false;
1100 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1101 	spin_unlock_irq(&sdp->lock);
1102 	if (more)
1103 		srcu_schedule_cbs_sdp(sdp, 0);
1104 }
1105 
1106 /*
1107  * Finished one round of SRCU grace period.  Start another if there are
1108  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1109  */
1110 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
1111 {
1112 	bool pushgp = true;
1113 
1114 	spin_lock_irq(&sp->gp_lock);
1115 	if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1116 		if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) {
1117 			/* All requests fulfilled, time to go idle. */
1118 			pushgp = false;
1119 		}
1120 	} else if (!rcu_seq_state(sp->srcu_gp_seq)) {
1121 		/* Outstanding request and no GP.  Start one. */
1122 		srcu_gp_start(sp);
1123 	}
1124 	spin_unlock_irq(&sp->gp_lock);
1125 
1126 	if (pushgp)
1127 		queue_delayed_work(system_power_efficient_wq, &sp->work, delay);
1128 }
1129 
1130 /*
1131  * This is the work-queue function that handles SRCU grace periods.
1132  */
1133 void process_srcu(struct work_struct *work)
1134 {
1135 	struct srcu_struct *sp;
1136 
1137 	sp = container_of(work, struct srcu_struct, work.work);
1138 
1139 	srcu_advance_state(sp);
1140 	srcu_reschedule(sp, srcu_get_delay(sp));
1141 }
1142 EXPORT_SYMBOL_GPL(process_srcu);
1143 
1144 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1145 			     struct srcu_struct *sp, int *flags,
1146 			     unsigned long *gpnum, unsigned long *completed)
1147 {
1148 	if (test_type != SRCU_FLAVOR)
1149 		return;
1150 	*flags = 0;
1151 	*completed = rcu_seq_ctr(sp->srcu_gp_seq);
1152 	*gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed);
1153 }
1154 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1155