xref: /openbmc/linux/kernel/rcu/srcutree.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/srcu.h>
28 
29 #include "rcu.h"
30 #include "rcu_segcblist.h"
31 
32 /* Holdoff in nanoseconds for auto-expediting. */
33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
35 module_param(exp_holdoff, ulong, 0444);
36 
37 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
38 static ulong counter_wrap_check = (ULONG_MAX >> 2);
39 module_param(counter_wrap_check, ulong, 0444);
40 
41 /* Early-boot callback-management, so early that no lock is required! */
42 static LIST_HEAD(srcu_boot_list);
43 static bool __read_mostly srcu_init_done;
44 
45 static void srcu_invoke_callbacks(struct work_struct *work);
46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
47 static void process_srcu(struct work_struct *work);
48 static void srcu_delay_timer(struct timer_list *t);
49 
50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
51 #define spin_lock_rcu_node(p)					\
52 do {									\
53 	spin_lock(&ACCESS_PRIVATE(p, lock));			\
54 	smp_mb__after_unlock_lock();					\
55 } while (0)
56 
57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
58 
59 #define spin_lock_irq_rcu_node(p)					\
60 do {									\
61 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
62 	smp_mb__after_unlock_lock();					\
63 } while (0)
64 
65 #define spin_unlock_irq_rcu_node(p)					\
66 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
67 
68 #define spin_lock_irqsave_rcu_node(p, flags)			\
69 do {									\
70 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
71 	smp_mb__after_unlock_lock();					\
72 } while (0)
73 
74 #define spin_unlock_irqrestore_rcu_node(p, flags)			\
75 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
76 
77 /*
78  * Initialize SRCU combining tree.  Note that statically allocated
79  * srcu_struct structures might already have srcu_read_lock() and
80  * srcu_read_unlock() running against them.  So if the is_static parameter
81  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
82  */
83 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
84 {
85 	int cpu;
86 	int i;
87 	int level = 0;
88 	int levelspread[RCU_NUM_LVLS];
89 	struct srcu_data *sdp;
90 	struct srcu_node *snp;
91 	struct srcu_node *snp_first;
92 
93 	/* Work out the overall tree geometry. */
94 	ssp->level[0] = &ssp->node[0];
95 	for (i = 1; i < rcu_num_lvls; i++)
96 		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
97 	rcu_init_levelspread(levelspread, num_rcu_lvl);
98 
99 	/* Each pass through this loop initializes one srcu_node structure. */
100 	srcu_for_each_node_breadth_first(ssp, snp) {
101 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
102 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
103 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
104 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
105 			snp->srcu_have_cbs[i] = 0;
106 			snp->srcu_data_have_cbs[i] = 0;
107 		}
108 		snp->srcu_gp_seq_needed_exp = 0;
109 		snp->grplo = -1;
110 		snp->grphi = -1;
111 		if (snp == &ssp->node[0]) {
112 			/* Root node, special case. */
113 			snp->srcu_parent = NULL;
114 			continue;
115 		}
116 
117 		/* Non-root node. */
118 		if (snp == ssp->level[level + 1])
119 			level++;
120 		snp->srcu_parent = ssp->level[level - 1] +
121 				   (snp - ssp->level[level]) /
122 				   levelspread[level - 1];
123 	}
124 
125 	/*
126 	 * Initialize the per-CPU srcu_data array, which feeds into the
127 	 * leaves of the srcu_node tree.
128 	 */
129 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
130 		     ARRAY_SIZE(sdp->srcu_unlock_count));
131 	level = rcu_num_lvls - 1;
132 	snp_first = ssp->level[level];
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
140 		sdp->mynode = &snp_first[cpu / levelspread[level]];
141 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
142 			if (snp->grplo < 0)
143 				snp->grplo = cpu;
144 			snp->grphi = cpu;
145 		}
146 		sdp->cpu = cpu;
147 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
148 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
149 		sdp->ssp = ssp;
150 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
151 		if (is_static)
152 			continue;
153 
154 		/* Dynamically allocated, better be no srcu_read_locks()! */
155 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
156 			sdp->srcu_lock_count[i] = 0;
157 			sdp->srcu_unlock_count[i] = 0;
158 		}
159 	}
160 }
161 
162 /*
163  * Initialize non-compile-time initialized fields, including the
164  * associated srcu_node and srcu_data structures.  The is_static
165  * parameter is passed through to init_srcu_struct_nodes(), and
166  * also tells us that ->sda has already been wired up to srcu_data.
167  */
168 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
169 {
170 	mutex_init(&ssp->srcu_cb_mutex);
171 	mutex_init(&ssp->srcu_gp_mutex);
172 	ssp->srcu_idx = 0;
173 	ssp->srcu_gp_seq = 0;
174 	ssp->srcu_barrier_seq = 0;
175 	mutex_init(&ssp->srcu_barrier_mutex);
176 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
177 	INIT_DELAYED_WORK(&ssp->work, process_srcu);
178 	if (!is_static)
179 		ssp->sda = alloc_percpu(struct srcu_data);
180 	if (!ssp->sda)
181 		return -ENOMEM;
182 	init_srcu_struct_nodes(ssp, is_static);
183 	ssp->srcu_gp_seq_needed_exp = 0;
184 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
185 	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
186 	return 0;
187 }
188 
189 #ifdef CONFIG_DEBUG_LOCK_ALLOC
190 
191 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
192 		       struct lock_class_key *key)
193 {
194 	/* Don't re-initialize a lock while it is held. */
195 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
196 	lockdep_init_map(&ssp->dep_map, name, key, 0);
197 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
198 	return init_srcu_struct_fields(ssp, false);
199 }
200 EXPORT_SYMBOL_GPL(__init_srcu_struct);
201 
202 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
203 
204 /**
205  * init_srcu_struct - initialize a sleep-RCU structure
206  * @ssp: structure to initialize.
207  *
208  * Must invoke this on a given srcu_struct before passing that srcu_struct
209  * to any other function.  Each srcu_struct represents a separate domain
210  * of SRCU protection.
211  */
212 int init_srcu_struct(struct srcu_struct *ssp)
213 {
214 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
215 	return init_srcu_struct_fields(ssp, false);
216 }
217 EXPORT_SYMBOL_GPL(init_srcu_struct);
218 
219 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
220 
221 /*
222  * First-use initialization of statically allocated srcu_struct
223  * structure.  Wiring up the combining tree is more than can be
224  * done with compile-time initialization, so this check is added
225  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
226  * compile-time initialized, to resolve races involving multiple
227  * CPUs trying to garner first-use privileges.
228  */
229 static void check_init_srcu_struct(struct srcu_struct *ssp)
230 {
231 	unsigned long flags;
232 
233 	/* The smp_load_acquire() pairs with the smp_store_release(). */
234 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
235 		return; /* Already initialized. */
236 	spin_lock_irqsave_rcu_node(ssp, flags);
237 	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
238 		spin_unlock_irqrestore_rcu_node(ssp, flags);
239 		return;
240 	}
241 	init_srcu_struct_fields(ssp, true);
242 	spin_unlock_irqrestore_rcu_node(ssp, flags);
243 }
244 
245 /*
246  * Returns approximate total of the readers' ->srcu_lock_count[] values
247  * for the rank of per-CPU counters specified by idx.
248  */
249 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
250 {
251 	int cpu;
252 	unsigned long sum = 0;
253 
254 	for_each_possible_cpu(cpu) {
255 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
256 
257 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
258 	}
259 	return sum;
260 }
261 
262 /*
263  * Returns approximate total of the readers' ->srcu_unlock_count[] values
264  * for the rank of per-CPU counters specified by idx.
265  */
266 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
267 {
268 	int cpu;
269 	unsigned long sum = 0;
270 
271 	for_each_possible_cpu(cpu) {
272 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
273 
274 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
275 	}
276 	return sum;
277 }
278 
279 /*
280  * Return true if the number of pre-existing readers is determined to
281  * be zero.
282  */
283 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
284 {
285 	unsigned long unlocks;
286 
287 	unlocks = srcu_readers_unlock_idx(ssp, idx);
288 
289 	/*
290 	 * Make sure that a lock is always counted if the corresponding
291 	 * unlock is counted. Needs to be a smp_mb() as the read side may
292 	 * contain a read from a variable that is written to before the
293 	 * synchronize_srcu() in the write side. In this case smp_mb()s
294 	 * A and B act like the store buffering pattern.
295 	 *
296 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
297 	 * after the synchronize_srcu() from being executed before the
298 	 * grace period ends.
299 	 */
300 	smp_mb(); /* A */
301 
302 	/*
303 	 * If the locks are the same as the unlocks, then there must have
304 	 * been no readers on this index at some time in between. This does
305 	 * not mean that there are no more readers, as one could have read
306 	 * the current index but not have incremented the lock counter yet.
307 	 *
308 	 * So suppose that the updater is preempted here for so long
309 	 * that more than ULONG_MAX non-nested readers come and go in
310 	 * the meantime.  It turns out that this cannot result in overflow
311 	 * because if a reader modifies its unlock count after we read it
312 	 * above, then that reader's next load of ->srcu_idx is guaranteed
313 	 * to get the new value, which will cause it to operate on the
314 	 * other bank of counters, where it cannot contribute to the
315 	 * overflow of these counters.  This means that there is a maximum
316 	 * of 2*NR_CPUS increments, which cannot overflow given current
317 	 * systems, especially not on 64-bit systems.
318 	 *
319 	 * OK, how about nesting?  This does impose a limit on nesting
320 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
321 	 * especially on 64-bit systems.
322 	 */
323 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
324 }
325 
326 /**
327  * srcu_readers_active - returns true if there are readers. and false
328  *                       otherwise
329  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
330  *
331  * Note that this is not an atomic primitive, and can therefore suffer
332  * severe errors when invoked on an active srcu_struct.  That said, it
333  * can be useful as an error check at cleanup time.
334  */
335 static bool srcu_readers_active(struct srcu_struct *ssp)
336 {
337 	int cpu;
338 	unsigned long sum = 0;
339 
340 	for_each_possible_cpu(cpu) {
341 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
342 
343 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
344 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
345 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
346 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
347 	}
348 	return sum;
349 }
350 
351 #define SRCU_INTERVAL		1
352 
353 /*
354  * Return grace-period delay, zero if there are expedited grace
355  * periods pending, SRCU_INTERVAL otherwise.
356  */
357 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
358 {
359 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
360 			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
361 		return 0;
362 	return SRCU_INTERVAL;
363 }
364 
365 /**
366  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
367  * @ssp: structure to clean up.
368  *
369  * Must invoke this after you are finished using a given srcu_struct that
370  * was initialized via init_srcu_struct(), else you leak memory.
371  */
372 void cleanup_srcu_struct(struct srcu_struct *ssp)
373 {
374 	int cpu;
375 
376 	if (WARN_ON(!srcu_get_delay(ssp)))
377 		return; /* Just leak it! */
378 	if (WARN_ON(srcu_readers_active(ssp)))
379 		return; /* Just leak it! */
380 	flush_delayed_work(&ssp->work);
381 	for_each_possible_cpu(cpu) {
382 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
383 
384 		del_timer_sync(&sdp->delay_work);
385 		flush_work(&sdp->work);
386 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
387 			return; /* Forgot srcu_barrier(), so just leak it! */
388 	}
389 	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
390 	    WARN_ON(srcu_readers_active(ssp))) {
391 		pr_info("%s: Active srcu_struct %p state: %d\n",
392 			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
393 		return; /* Caller forgot to stop doing call_srcu()? */
394 	}
395 	free_percpu(ssp->sda);
396 	ssp->sda = NULL;
397 }
398 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
399 
400 /*
401  * Counts the new reader in the appropriate per-CPU element of the
402  * srcu_struct.
403  * Returns an index that must be passed to the matching srcu_read_unlock().
404  */
405 int __srcu_read_lock(struct srcu_struct *ssp)
406 {
407 	int idx;
408 
409 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
410 	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
411 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
412 	return idx;
413 }
414 EXPORT_SYMBOL_GPL(__srcu_read_lock);
415 
416 /*
417  * Removes the count for the old reader from the appropriate per-CPU
418  * element of the srcu_struct.  Note that this may well be a different
419  * CPU than that which was incremented by the corresponding srcu_read_lock().
420  */
421 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
422 {
423 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
424 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
425 }
426 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
427 
428 /*
429  * We use an adaptive strategy for synchronize_srcu() and especially for
430  * synchronize_srcu_expedited().  We spin for a fixed time period
431  * (defined below) to allow SRCU readers to exit their read-side critical
432  * sections.  If there are still some readers after a few microseconds,
433  * we repeatedly block for 1-millisecond time periods.
434  */
435 #define SRCU_RETRY_CHECK_DELAY		5
436 
437 /*
438  * Start an SRCU grace period.
439  */
440 static void srcu_gp_start(struct srcu_struct *ssp)
441 {
442 	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
443 	int state;
444 
445 	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
446 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
447 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
448 	rcu_segcblist_advance(&sdp->srcu_cblist,
449 			      rcu_seq_current(&ssp->srcu_gp_seq));
450 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
451 				       rcu_seq_snap(&ssp->srcu_gp_seq));
452 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
453 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
454 	rcu_seq_start(&ssp->srcu_gp_seq);
455 	state = rcu_seq_state(ssp->srcu_gp_seq);
456 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
457 }
458 
459 
460 static void srcu_delay_timer(struct timer_list *t)
461 {
462 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
463 
464 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
465 }
466 
467 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
468 				       unsigned long delay)
469 {
470 	if (!delay) {
471 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
472 		return;
473 	}
474 
475 	timer_reduce(&sdp->delay_work, jiffies + delay);
476 }
477 
478 /*
479  * Schedule callback invocation for the specified srcu_data structure,
480  * if possible, on the corresponding CPU.
481  */
482 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
483 {
484 	srcu_queue_delayed_work_on(sdp, delay);
485 }
486 
487 /*
488  * Schedule callback invocation for all srcu_data structures associated
489  * with the specified srcu_node structure that have callbacks for the
490  * just-completed grace period, the one corresponding to idx.  If possible,
491  * schedule this invocation on the corresponding CPUs.
492  */
493 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
494 				  unsigned long mask, unsigned long delay)
495 {
496 	int cpu;
497 
498 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
499 		if (!(mask & (1 << (cpu - snp->grplo))))
500 			continue;
501 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
502 	}
503 }
504 
505 /*
506  * Note the end of an SRCU grace period.  Initiates callback invocation
507  * and starts a new grace period if needed.
508  *
509  * The ->srcu_cb_mutex acquisition does not protect any data, but
510  * instead prevents more than one grace period from starting while we
511  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
512  * array to have a finite number of elements.
513  */
514 static void srcu_gp_end(struct srcu_struct *ssp)
515 {
516 	unsigned long cbdelay;
517 	bool cbs;
518 	bool last_lvl;
519 	int cpu;
520 	unsigned long flags;
521 	unsigned long gpseq;
522 	int idx;
523 	unsigned long mask;
524 	struct srcu_data *sdp;
525 	struct srcu_node *snp;
526 
527 	/* Prevent more than one additional grace period. */
528 	mutex_lock(&ssp->srcu_cb_mutex);
529 
530 	/* End the current grace period. */
531 	spin_lock_irq_rcu_node(ssp);
532 	idx = rcu_seq_state(ssp->srcu_gp_seq);
533 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
534 	cbdelay = srcu_get_delay(ssp);
535 	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
536 	rcu_seq_end(&ssp->srcu_gp_seq);
537 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
538 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
539 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
540 	spin_unlock_irq_rcu_node(ssp);
541 	mutex_unlock(&ssp->srcu_gp_mutex);
542 	/* A new grace period can start at this point.  But only one. */
543 
544 	/* Initiate callback invocation as needed. */
545 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
546 	srcu_for_each_node_breadth_first(ssp, snp) {
547 		spin_lock_irq_rcu_node(snp);
548 		cbs = false;
549 		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
550 		if (last_lvl)
551 			cbs = snp->srcu_have_cbs[idx] == gpseq;
552 		snp->srcu_have_cbs[idx] = gpseq;
553 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
554 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
555 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
556 		mask = snp->srcu_data_have_cbs[idx];
557 		snp->srcu_data_have_cbs[idx] = 0;
558 		spin_unlock_irq_rcu_node(snp);
559 		if (cbs)
560 			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
561 
562 		/* Occasionally prevent srcu_data counter wrap. */
563 		if (!(gpseq & counter_wrap_check) && last_lvl)
564 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
565 				sdp = per_cpu_ptr(ssp->sda, cpu);
566 				spin_lock_irqsave_rcu_node(sdp, flags);
567 				if (ULONG_CMP_GE(gpseq,
568 						 sdp->srcu_gp_seq_needed + 100))
569 					sdp->srcu_gp_seq_needed = gpseq;
570 				if (ULONG_CMP_GE(gpseq,
571 						 sdp->srcu_gp_seq_needed_exp + 100))
572 					sdp->srcu_gp_seq_needed_exp = gpseq;
573 				spin_unlock_irqrestore_rcu_node(sdp, flags);
574 			}
575 	}
576 
577 	/* Callback initiation done, allow grace periods after next. */
578 	mutex_unlock(&ssp->srcu_cb_mutex);
579 
580 	/* Start a new grace period if needed. */
581 	spin_lock_irq_rcu_node(ssp);
582 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
583 	if (!rcu_seq_state(gpseq) &&
584 	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
585 		srcu_gp_start(ssp);
586 		spin_unlock_irq_rcu_node(ssp);
587 		srcu_reschedule(ssp, 0);
588 	} else {
589 		spin_unlock_irq_rcu_node(ssp);
590 	}
591 }
592 
593 /*
594  * Funnel-locking scheme to scalably mediate many concurrent expedited
595  * grace-period requests.  This function is invoked for the first known
596  * expedited request for a grace period that has already been requested,
597  * but without expediting.  To start a completely new grace period,
598  * whether expedited or not, use srcu_funnel_gp_start() instead.
599  */
600 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
601 				  unsigned long s)
602 {
603 	unsigned long flags;
604 
605 	for (; snp != NULL; snp = snp->srcu_parent) {
606 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
607 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
608 			return;
609 		spin_lock_irqsave_rcu_node(snp, flags);
610 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
611 			spin_unlock_irqrestore_rcu_node(snp, flags);
612 			return;
613 		}
614 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
615 		spin_unlock_irqrestore_rcu_node(snp, flags);
616 	}
617 	spin_lock_irqsave_rcu_node(ssp, flags);
618 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
619 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
620 	spin_unlock_irqrestore_rcu_node(ssp, flags);
621 }
622 
623 /*
624  * Funnel-locking scheme to scalably mediate many concurrent grace-period
625  * requests.  The winner has to do the work of actually starting grace
626  * period s.  Losers must either ensure that their desired grace-period
627  * number is recorded on at least their leaf srcu_node structure, or they
628  * must take steps to invoke their own callbacks.
629  *
630  * Note that this function also does the work of srcu_funnel_exp_start(),
631  * in some cases by directly invoking it.
632  */
633 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
634 				 unsigned long s, bool do_norm)
635 {
636 	unsigned long flags;
637 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
638 	struct srcu_node *snp = sdp->mynode;
639 	unsigned long snp_seq;
640 
641 	/* Each pass through the loop does one level of the srcu_node tree. */
642 	for (; snp != NULL; snp = snp->srcu_parent) {
643 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
644 			return; /* GP already done and CBs recorded. */
645 		spin_lock_irqsave_rcu_node(snp, flags);
646 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
647 			snp_seq = snp->srcu_have_cbs[idx];
648 			if (snp == sdp->mynode && snp_seq == s)
649 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
650 			spin_unlock_irqrestore_rcu_node(snp, flags);
651 			if (snp == sdp->mynode && snp_seq != s) {
652 				srcu_schedule_cbs_sdp(sdp, do_norm
653 							   ? SRCU_INTERVAL
654 							   : 0);
655 				return;
656 			}
657 			if (!do_norm)
658 				srcu_funnel_exp_start(ssp, snp, s);
659 			return;
660 		}
661 		snp->srcu_have_cbs[idx] = s;
662 		if (snp == sdp->mynode)
663 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
664 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
665 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
666 		spin_unlock_irqrestore_rcu_node(snp, flags);
667 	}
668 
669 	/* Top of tree, must ensure the grace period will be started. */
670 	spin_lock_irqsave_rcu_node(ssp, flags);
671 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
672 		/*
673 		 * Record need for grace period s.  Pair with load
674 		 * acquire setting up for initialization.
675 		 */
676 		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
677 	}
678 	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
679 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
680 
681 	/* If grace period not already done and none in progress, start it. */
682 	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
683 	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
684 		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
685 		srcu_gp_start(ssp);
686 		if (likely(srcu_init_done))
687 			queue_delayed_work(rcu_gp_wq, &ssp->work,
688 					   srcu_get_delay(ssp));
689 		else if (list_empty(&ssp->work.work.entry))
690 			list_add(&ssp->work.work.entry, &srcu_boot_list);
691 	}
692 	spin_unlock_irqrestore_rcu_node(ssp, flags);
693 }
694 
695 /*
696  * Wait until all readers counted by array index idx complete, but
697  * loop an additional time if there is an expedited grace period pending.
698  * The caller must ensure that ->srcu_idx is not changed while checking.
699  */
700 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
701 {
702 	for (;;) {
703 		if (srcu_readers_active_idx_check(ssp, idx))
704 			return true;
705 		if (--trycount + !srcu_get_delay(ssp) <= 0)
706 			return false;
707 		udelay(SRCU_RETRY_CHECK_DELAY);
708 	}
709 }
710 
711 /*
712  * Increment the ->srcu_idx counter so that future SRCU readers will
713  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
714  * us to wait for pre-existing readers in a starvation-free manner.
715  */
716 static void srcu_flip(struct srcu_struct *ssp)
717 {
718 	/*
719 	 * Ensure that if this updater saw a given reader's increment
720 	 * from __srcu_read_lock(), that reader was using an old value
721 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
722 	 * new value of ->srcu_idx, this updater's earlier scans cannot
723 	 * have seen that reader's increments (which is OK, because this
724 	 * grace period need not wait on that reader).
725 	 */
726 	smp_mb(); /* E */  /* Pairs with B and C. */
727 
728 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
729 
730 	/*
731 	 * Ensure that if the updater misses an __srcu_read_unlock()
732 	 * increment, that task's next __srcu_read_lock() will see the
733 	 * above counter update.  Note that both this memory barrier
734 	 * and the one in srcu_readers_active_idx_check() provide the
735 	 * guarantee for __srcu_read_lock().
736 	 */
737 	smp_mb(); /* D */  /* Pairs with C. */
738 }
739 
740 /*
741  * If SRCU is likely idle, return true, otherwise return false.
742  *
743  * Note that it is OK for several current from-idle requests for a new
744  * grace period from idle to specify expediting because they will all end
745  * up requesting the same grace period anyhow.  So no loss.
746  *
747  * Note also that if any CPU (including the current one) is still invoking
748  * callbacks, this function will nevertheless say "idle".  This is not
749  * ideal, but the overhead of checking all CPUs' callback lists is even
750  * less ideal, especially on large systems.  Furthermore, the wakeup
751  * can happen before the callback is fully removed, so we have no choice
752  * but to accept this type of error.
753  *
754  * This function is also subject to counter-wrap errors, but let's face
755  * it, if this function was preempted for enough time for the counters
756  * to wrap, it really doesn't matter whether or not we expedite the grace
757  * period.  The extra overhead of a needlessly expedited grace period is
758  * negligible when amortized over that time period, and the extra latency
759  * of a needlessly non-expedited grace period is similarly negligible.
760  */
761 static bool srcu_might_be_idle(struct srcu_struct *ssp)
762 {
763 	unsigned long curseq;
764 	unsigned long flags;
765 	struct srcu_data *sdp;
766 	unsigned long t;
767 	unsigned long tlast;
768 
769 	check_init_srcu_struct(ssp);
770 	/* If the local srcu_data structure has callbacks, not idle.  */
771 	sdp = raw_cpu_ptr(ssp->sda);
772 	spin_lock_irqsave_rcu_node(sdp, flags);
773 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
774 		spin_unlock_irqrestore_rcu_node(sdp, flags);
775 		return false; /* Callbacks already present, so not idle. */
776 	}
777 	spin_unlock_irqrestore_rcu_node(sdp, flags);
778 
779 	/*
780 	 * No local callbacks, so probabalistically probe global state.
781 	 * Exact information would require acquiring locks, which would
782 	 * kill scalability, hence the probabalistic nature of the probe.
783 	 */
784 
785 	/* First, see if enough time has passed since the last GP. */
786 	t = ktime_get_mono_fast_ns();
787 	tlast = READ_ONCE(ssp->srcu_last_gp_end);
788 	if (exp_holdoff == 0 ||
789 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
790 		return false; /* Too soon after last GP. */
791 
792 	/* Next, check for probable idleness. */
793 	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
794 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
795 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
796 		return false; /* Grace period in progress, so not idle. */
797 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
798 	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
799 		return false; /* GP # changed, so not idle. */
800 	return true; /* With reasonable probability, idle! */
801 }
802 
803 /*
804  * SRCU callback function to leak a callback.
805  */
806 static void srcu_leak_callback(struct rcu_head *rhp)
807 {
808 }
809 
810 /*
811  * Start an SRCU grace period, and also queue the callback if non-NULL.
812  */
813 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
814 					     struct rcu_head *rhp, bool do_norm)
815 {
816 	unsigned long flags;
817 	int idx;
818 	bool needexp = false;
819 	bool needgp = false;
820 	unsigned long s;
821 	struct srcu_data *sdp;
822 
823 	check_init_srcu_struct(ssp);
824 	idx = srcu_read_lock(ssp);
825 	sdp = raw_cpu_ptr(ssp->sda);
826 	spin_lock_irqsave_rcu_node(sdp, flags);
827 	if (rhp)
828 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
829 	rcu_segcblist_advance(&sdp->srcu_cblist,
830 			      rcu_seq_current(&ssp->srcu_gp_seq));
831 	s = rcu_seq_snap(&ssp->srcu_gp_seq);
832 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
833 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
834 		sdp->srcu_gp_seq_needed = s;
835 		needgp = true;
836 	}
837 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
838 		sdp->srcu_gp_seq_needed_exp = s;
839 		needexp = true;
840 	}
841 	spin_unlock_irqrestore_rcu_node(sdp, flags);
842 	if (needgp)
843 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
844 	else if (needexp)
845 		srcu_funnel_exp_start(ssp, sdp->mynode, s);
846 	srcu_read_unlock(ssp, idx);
847 	return s;
848 }
849 
850 /*
851  * Enqueue an SRCU callback on the srcu_data structure associated with
852  * the current CPU and the specified srcu_struct structure, initiating
853  * grace-period processing if it is not already running.
854  *
855  * Note that all CPUs must agree that the grace period extended beyond
856  * all pre-existing SRCU read-side critical section.  On systems with
857  * more than one CPU, this means that when "func()" is invoked, each CPU
858  * is guaranteed to have executed a full memory barrier since the end of
859  * its last corresponding SRCU read-side critical section whose beginning
860  * preceded the call to call_srcu().  It also means that each CPU executing
861  * an SRCU read-side critical section that continues beyond the start of
862  * "func()" must have executed a memory barrier after the call_srcu()
863  * but before the beginning of that SRCU read-side critical section.
864  * Note that these guarantees include CPUs that are offline, idle, or
865  * executing in user mode, as well as CPUs that are executing in the kernel.
866  *
867  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
868  * resulting SRCU callback function "func()", then both CPU A and CPU
869  * B are guaranteed to execute a full memory barrier during the time
870  * interval between the call to call_srcu() and the invocation of "func()".
871  * This guarantee applies even if CPU A and CPU B are the same CPU (but
872  * again only if the system has more than one CPU).
873  *
874  * Of course, these guarantees apply only for invocations of call_srcu(),
875  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
876  * srcu_struct structure.
877  */
878 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
879 			rcu_callback_t func, bool do_norm)
880 {
881 	if (debug_rcu_head_queue(rhp)) {
882 		/* Probable double call_srcu(), so leak the callback. */
883 		WRITE_ONCE(rhp->func, srcu_leak_callback);
884 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
885 		return;
886 	}
887 	rhp->func = func;
888 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
889 }
890 
891 /**
892  * call_srcu() - Queue a callback for invocation after an SRCU grace period
893  * @ssp: srcu_struct in queue the callback
894  * @rhp: structure to be used for queueing the SRCU callback.
895  * @func: function to be invoked after the SRCU grace period
896  *
897  * The callback function will be invoked some time after a full SRCU
898  * grace period elapses, in other words after all pre-existing SRCU
899  * read-side critical sections have completed.  However, the callback
900  * function might well execute concurrently with other SRCU read-side
901  * critical sections that started after call_srcu() was invoked.  SRCU
902  * read-side critical sections are delimited by srcu_read_lock() and
903  * srcu_read_unlock(), and may be nested.
904  *
905  * The callback will be invoked from process context, but must nevertheless
906  * be fast and must not block.
907  */
908 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
909 	       rcu_callback_t func)
910 {
911 	__call_srcu(ssp, rhp, func, true);
912 }
913 EXPORT_SYMBOL_GPL(call_srcu);
914 
915 /*
916  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
917  */
918 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
919 {
920 	struct rcu_synchronize rcu;
921 
922 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
923 			 lock_is_held(&rcu_bh_lock_map) ||
924 			 lock_is_held(&rcu_lock_map) ||
925 			 lock_is_held(&rcu_sched_lock_map),
926 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
927 
928 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
929 		return;
930 	might_sleep();
931 	check_init_srcu_struct(ssp);
932 	init_completion(&rcu.completion);
933 	init_rcu_head_on_stack(&rcu.head);
934 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
935 	wait_for_completion(&rcu.completion);
936 	destroy_rcu_head_on_stack(&rcu.head);
937 
938 	/*
939 	 * Make sure that later code is ordered after the SRCU grace
940 	 * period.  This pairs with the spin_lock_irq_rcu_node()
941 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
942 	 * because the current CPU might have been totally uninvolved with
943 	 * (and thus unordered against) that grace period.
944 	 */
945 	smp_mb();
946 }
947 
948 /**
949  * synchronize_srcu_expedited - Brute-force SRCU grace period
950  * @ssp: srcu_struct with which to synchronize.
951  *
952  * Wait for an SRCU grace period to elapse, but be more aggressive about
953  * spinning rather than blocking when waiting.
954  *
955  * Note that synchronize_srcu_expedited() has the same deadlock and
956  * memory-ordering properties as does synchronize_srcu().
957  */
958 void synchronize_srcu_expedited(struct srcu_struct *ssp)
959 {
960 	__synchronize_srcu(ssp, rcu_gp_is_normal());
961 }
962 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
963 
964 /**
965  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
966  * @ssp: srcu_struct with which to synchronize.
967  *
968  * Wait for the count to drain to zero of both indexes. To avoid the
969  * possible starvation of synchronize_srcu(), it waits for the count of
970  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
971  * and then flip the srcu_idx and wait for the count of the other index.
972  *
973  * Can block; must be called from process context.
974  *
975  * Note that it is illegal to call synchronize_srcu() from the corresponding
976  * SRCU read-side critical section; doing so will result in deadlock.
977  * However, it is perfectly legal to call synchronize_srcu() on one
978  * srcu_struct from some other srcu_struct's read-side critical section,
979  * as long as the resulting graph of srcu_structs is acyclic.
980  *
981  * There are memory-ordering constraints implied by synchronize_srcu().
982  * On systems with more than one CPU, when synchronize_srcu() returns,
983  * each CPU is guaranteed to have executed a full memory barrier since
984  * the end of its last corresponding SRCU read-side critical section
985  * whose beginning preceded the call to synchronize_srcu().  In addition,
986  * each CPU having an SRCU read-side critical section that extends beyond
987  * the return from synchronize_srcu() is guaranteed to have executed a
988  * full memory barrier after the beginning of synchronize_srcu() and before
989  * the beginning of that SRCU read-side critical section.  Note that these
990  * guarantees include CPUs that are offline, idle, or executing in user mode,
991  * as well as CPUs that are executing in the kernel.
992  *
993  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
994  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
995  * to have executed a full memory barrier during the execution of
996  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
997  * are the same CPU, but again only if the system has more than one CPU.
998  *
999  * Of course, these memory-ordering guarantees apply only when
1000  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1001  * passed the same srcu_struct structure.
1002  *
1003  * If SRCU is likely idle, expedite the first request.  This semantic
1004  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1005  * SRCU must also provide it.  Note that detecting idleness is heuristic
1006  * and subject to both false positives and negatives.
1007  */
1008 void synchronize_srcu(struct srcu_struct *ssp)
1009 {
1010 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1011 		synchronize_srcu_expedited(ssp);
1012 	else
1013 		__synchronize_srcu(ssp, true);
1014 }
1015 EXPORT_SYMBOL_GPL(synchronize_srcu);
1016 
1017 /**
1018  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1019  * @ssp: srcu_struct to provide cookie for.
1020  *
1021  * This function returns a cookie that can be passed to
1022  * poll_state_synchronize_srcu(), which will return true if a full grace
1023  * period has elapsed in the meantime.  It is the caller's responsibility
1024  * to make sure that grace period happens, for example, by invoking
1025  * call_srcu() after return from get_state_synchronize_srcu().
1026  */
1027 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1028 {
1029 	// Any prior manipulation of SRCU-protected data must happen
1030 	// before the load from ->srcu_gp_seq.
1031 	smp_mb();
1032 	return rcu_seq_snap(&ssp->srcu_gp_seq);
1033 }
1034 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1035 
1036 /**
1037  * start_poll_synchronize_srcu - Provide cookie and start grace period
1038  * @ssp: srcu_struct to provide cookie for.
1039  *
1040  * This function returns a cookie that can be passed to
1041  * poll_state_synchronize_srcu(), which will return true if a full grace
1042  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1043  * this function also ensures that any needed SRCU grace period will be
1044  * started.  This convenience does come at a cost in terms of CPU overhead.
1045  */
1046 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1047 {
1048 	return srcu_gp_start_if_needed(ssp, NULL, true);
1049 }
1050 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1051 
1052 /**
1053  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1054  * @ssp: srcu_struct to provide cookie for.
1055  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1056  *
1057  * This function takes the cookie that was returned from either
1058  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1059  * returns @true if an SRCU grace period elapsed since the time that the
1060  * cookie was created.
1061  *
1062  * Because cookies are finite in size, wrapping/overflow is possible.
1063  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1064  * where in theory wrapping could happen in about 14 hours assuming
1065  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1066  * overflow lower bound is on the order of 24 days in the case of
1067  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1068  * system requires geologic timespans, as in more than seven million years
1069  * even for expedited SRCU grace periods.
1070  *
1071  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1072  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1073  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1074  * few minutes.  If this proves to be a problem, this counter will be
1075  * expanded to the same size as for Tree SRCU.
1076  */
1077 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1078 {
1079 	if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie))
1080 		return false;
1081 	// Ensure that the end of the SRCU grace period happens before
1082 	// any subsequent code that the caller might execute.
1083 	smp_mb(); // ^^^
1084 	return true;
1085 }
1086 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1087 
1088 /*
1089  * Callback function for srcu_barrier() use.
1090  */
1091 static void srcu_barrier_cb(struct rcu_head *rhp)
1092 {
1093 	struct srcu_data *sdp;
1094 	struct srcu_struct *ssp;
1095 
1096 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1097 	ssp = sdp->ssp;
1098 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1099 		complete(&ssp->srcu_barrier_completion);
1100 }
1101 
1102 /**
1103  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1104  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1105  */
1106 void srcu_barrier(struct srcu_struct *ssp)
1107 {
1108 	int cpu;
1109 	struct srcu_data *sdp;
1110 	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1111 
1112 	check_init_srcu_struct(ssp);
1113 	mutex_lock(&ssp->srcu_barrier_mutex);
1114 	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1115 		smp_mb(); /* Force ordering following return. */
1116 		mutex_unlock(&ssp->srcu_barrier_mutex);
1117 		return; /* Someone else did our work for us. */
1118 	}
1119 	rcu_seq_start(&ssp->srcu_barrier_seq);
1120 	init_completion(&ssp->srcu_barrier_completion);
1121 
1122 	/* Initial count prevents reaching zero until all CBs are posted. */
1123 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1124 
1125 	/*
1126 	 * Each pass through this loop enqueues a callback, but only
1127 	 * on CPUs already having callbacks enqueued.  Note that if
1128 	 * a CPU already has callbacks enqueue, it must have already
1129 	 * registered the need for a future grace period, so all we
1130 	 * need do is enqueue a callback that will use the same
1131 	 * grace period as the last callback already in the queue.
1132 	 */
1133 	for_each_possible_cpu(cpu) {
1134 		sdp = per_cpu_ptr(ssp->sda, cpu);
1135 		spin_lock_irq_rcu_node(sdp);
1136 		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1137 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1138 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1139 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1140 					   &sdp->srcu_barrier_head)) {
1141 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1142 			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1143 		}
1144 		spin_unlock_irq_rcu_node(sdp);
1145 	}
1146 
1147 	/* Remove the initial count, at which point reaching zero can happen. */
1148 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1149 		complete(&ssp->srcu_barrier_completion);
1150 	wait_for_completion(&ssp->srcu_barrier_completion);
1151 
1152 	rcu_seq_end(&ssp->srcu_barrier_seq);
1153 	mutex_unlock(&ssp->srcu_barrier_mutex);
1154 }
1155 EXPORT_SYMBOL_GPL(srcu_barrier);
1156 
1157 /**
1158  * srcu_batches_completed - return batches completed.
1159  * @ssp: srcu_struct on which to report batch completion.
1160  *
1161  * Report the number of batches, correlated with, but not necessarily
1162  * precisely the same as, the number of grace periods that have elapsed.
1163  */
1164 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1165 {
1166 	return READ_ONCE(ssp->srcu_idx);
1167 }
1168 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1169 
1170 /*
1171  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1172  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1173  * completed in that state.
1174  */
1175 static void srcu_advance_state(struct srcu_struct *ssp)
1176 {
1177 	int idx;
1178 
1179 	mutex_lock(&ssp->srcu_gp_mutex);
1180 
1181 	/*
1182 	 * Because readers might be delayed for an extended period after
1183 	 * fetching ->srcu_idx for their index, at any point in time there
1184 	 * might well be readers using both idx=0 and idx=1.  We therefore
1185 	 * need to wait for readers to clear from both index values before
1186 	 * invoking a callback.
1187 	 *
1188 	 * The load-acquire ensures that we see the accesses performed
1189 	 * by the prior grace period.
1190 	 */
1191 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1192 	if (idx == SRCU_STATE_IDLE) {
1193 		spin_lock_irq_rcu_node(ssp);
1194 		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1195 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1196 			spin_unlock_irq_rcu_node(ssp);
1197 			mutex_unlock(&ssp->srcu_gp_mutex);
1198 			return;
1199 		}
1200 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1201 		if (idx == SRCU_STATE_IDLE)
1202 			srcu_gp_start(ssp);
1203 		spin_unlock_irq_rcu_node(ssp);
1204 		if (idx != SRCU_STATE_IDLE) {
1205 			mutex_unlock(&ssp->srcu_gp_mutex);
1206 			return; /* Someone else started the grace period. */
1207 		}
1208 	}
1209 
1210 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1211 		idx = 1 ^ (ssp->srcu_idx & 1);
1212 		if (!try_check_zero(ssp, idx, 1)) {
1213 			mutex_unlock(&ssp->srcu_gp_mutex);
1214 			return; /* readers present, retry later. */
1215 		}
1216 		srcu_flip(ssp);
1217 		spin_lock_irq_rcu_node(ssp);
1218 		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1219 		spin_unlock_irq_rcu_node(ssp);
1220 	}
1221 
1222 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1223 
1224 		/*
1225 		 * SRCU read-side critical sections are normally short,
1226 		 * so check at least twice in quick succession after a flip.
1227 		 */
1228 		idx = 1 ^ (ssp->srcu_idx & 1);
1229 		if (!try_check_zero(ssp, idx, 2)) {
1230 			mutex_unlock(&ssp->srcu_gp_mutex);
1231 			return; /* readers present, retry later. */
1232 		}
1233 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1234 	}
1235 }
1236 
1237 /*
1238  * Invoke a limited number of SRCU callbacks that have passed through
1239  * their grace period.  If there are more to do, SRCU will reschedule
1240  * the workqueue.  Note that needed memory barriers have been executed
1241  * in this task's context by srcu_readers_active_idx_check().
1242  */
1243 static void srcu_invoke_callbacks(struct work_struct *work)
1244 {
1245 	long len;
1246 	bool more;
1247 	struct rcu_cblist ready_cbs;
1248 	struct rcu_head *rhp;
1249 	struct srcu_data *sdp;
1250 	struct srcu_struct *ssp;
1251 
1252 	sdp = container_of(work, struct srcu_data, work);
1253 
1254 	ssp = sdp->ssp;
1255 	rcu_cblist_init(&ready_cbs);
1256 	spin_lock_irq_rcu_node(sdp);
1257 	rcu_segcblist_advance(&sdp->srcu_cblist,
1258 			      rcu_seq_current(&ssp->srcu_gp_seq));
1259 	if (sdp->srcu_cblist_invoking ||
1260 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1261 		spin_unlock_irq_rcu_node(sdp);
1262 		return;  /* Someone else on the job or nothing to do. */
1263 	}
1264 
1265 	/* We are on the job!  Extract and invoke ready callbacks. */
1266 	sdp->srcu_cblist_invoking = true;
1267 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1268 	len = ready_cbs.len;
1269 	spin_unlock_irq_rcu_node(sdp);
1270 	rhp = rcu_cblist_dequeue(&ready_cbs);
1271 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1272 		debug_rcu_head_unqueue(rhp);
1273 		local_bh_disable();
1274 		rhp->func(rhp);
1275 		local_bh_enable();
1276 	}
1277 	WARN_ON_ONCE(ready_cbs.len);
1278 
1279 	/*
1280 	 * Update counts, accelerate new callbacks, and if needed,
1281 	 * schedule another round of callback invocation.
1282 	 */
1283 	spin_lock_irq_rcu_node(sdp);
1284 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1285 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1286 				       rcu_seq_snap(&ssp->srcu_gp_seq));
1287 	sdp->srcu_cblist_invoking = false;
1288 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1289 	spin_unlock_irq_rcu_node(sdp);
1290 	if (more)
1291 		srcu_schedule_cbs_sdp(sdp, 0);
1292 }
1293 
1294 /*
1295  * Finished one round of SRCU grace period.  Start another if there are
1296  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1297  */
1298 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1299 {
1300 	bool pushgp = true;
1301 
1302 	spin_lock_irq_rcu_node(ssp);
1303 	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1304 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1305 			/* All requests fulfilled, time to go idle. */
1306 			pushgp = false;
1307 		}
1308 	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1309 		/* Outstanding request and no GP.  Start one. */
1310 		srcu_gp_start(ssp);
1311 	}
1312 	spin_unlock_irq_rcu_node(ssp);
1313 
1314 	if (pushgp)
1315 		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1316 }
1317 
1318 /*
1319  * This is the work-queue function that handles SRCU grace periods.
1320  */
1321 static void process_srcu(struct work_struct *work)
1322 {
1323 	struct srcu_struct *ssp;
1324 
1325 	ssp = container_of(work, struct srcu_struct, work.work);
1326 
1327 	srcu_advance_state(ssp);
1328 	srcu_reschedule(ssp, srcu_get_delay(ssp));
1329 }
1330 
1331 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1332 			     struct srcu_struct *ssp, int *flags,
1333 			     unsigned long *gp_seq)
1334 {
1335 	if (test_type != SRCU_FLAVOR)
1336 		return;
1337 	*flags = 0;
1338 	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1339 }
1340 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1341 
1342 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1343 {
1344 	int cpu;
1345 	int idx;
1346 	unsigned long s0 = 0, s1 = 0;
1347 
1348 	idx = ssp->srcu_idx & 0x1;
1349 	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1350 		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1351 	for_each_possible_cpu(cpu) {
1352 		unsigned long l0, l1;
1353 		unsigned long u0, u1;
1354 		long c0, c1;
1355 		struct srcu_data *sdp;
1356 
1357 		sdp = per_cpu_ptr(ssp->sda, cpu);
1358 		u0 = data_race(sdp->srcu_unlock_count[!idx]);
1359 		u1 = data_race(sdp->srcu_unlock_count[idx]);
1360 
1361 		/*
1362 		 * Make sure that a lock is always counted if the corresponding
1363 		 * unlock is counted.
1364 		 */
1365 		smp_rmb();
1366 
1367 		l0 = data_race(sdp->srcu_lock_count[!idx]);
1368 		l1 = data_race(sdp->srcu_lock_count[idx]);
1369 
1370 		c0 = l0 - u0;
1371 		c1 = l1 - u1;
1372 		pr_cont(" %d(%ld,%ld %c)",
1373 			cpu, c0, c1,
1374 			"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1375 		s0 += c0;
1376 		s1 += c1;
1377 	}
1378 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1379 }
1380 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1381 
1382 static int __init srcu_bootup_announce(void)
1383 {
1384 	pr_info("Hierarchical SRCU implementation.\n");
1385 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1386 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1387 	return 0;
1388 }
1389 early_initcall(srcu_bootup_announce);
1390 
1391 void __init srcu_init(void)
1392 {
1393 	struct srcu_struct *ssp;
1394 
1395 	srcu_init_done = true;
1396 	while (!list_empty(&srcu_boot_list)) {
1397 		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1398 				      work.work.entry);
1399 		check_init_srcu_struct(ssp);
1400 		list_del_init(&ssp->work.work.entry);
1401 		queue_work(rcu_gp_wq, &ssp->work.work);
1402 	}
1403 }
1404 
1405 #ifdef CONFIG_MODULES
1406 
1407 /* Initialize any global-scope srcu_struct structures used by this module. */
1408 static int srcu_module_coming(struct module *mod)
1409 {
1410 	int i;
1411 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1412 	int ret;
1413 
1414 	for (i = 0; i < mod->num_srcu_structs; i++) {
1415 		ret = init_srcu_struct(*(sspp++));
1416 		if (WARN_ON_ONCE(ret))
1417 			return ret;
1418 	}
1419 	return 0;
1420 }
1421 
1422 /* Clean up any global-scope srcu_struct structures used by this module. */
1423 static void srcu_module_going(struct module *mod)
1424 {
1425 	int i;
1426 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1427 
1428 	for (i = 0; i < mod->num_srcu_structs; i++)
1429 		cleanup_srcu_struct(*(sspp++));
1430 }
1431 
1432 /* Handle one module, either coming or going. */
1433 static int srcu_module_notify(struct notifier_block *self,
1434 			      unsigned long val, void *data)
1435 {
1436 	struct module *mod = data;
1437 	int ret = 0;
1438 
1439 	switch (val) {
1440 	case MODULE_STATE_COMING:
1441 		ret = srcu_module_coming(mod);
1442 		break;
1443 	case MODULE_STATE_GOING:
1444 		srcu_module_going(mod);
1445 		break;
1446 	default:
1447 		break;
1448 	}
1449 	return ret;
1450 }
1451 
1452 static struct notifier_block srcu_module_nb = {
1453 	.notifier_call = srcu_module_notify,
1454 	.priority = 0,
1455 };
1456 
1457 static __init int init_srcu_module_notifier(void)
1458 {
1459 	int ret;
1460 
1461 	ret = register_module_notifier(&srcu_module_nb);
1462 	if (ret)
1463 		pr_warn("Failed to register srcu module notifier\n");
1464 	return ret;
1465 }
1466 late_initcall(init_srcu_module_notifier);
1467 
1468 #endif /* #ifdef CONFIG_MODULES */
1469