xref: /openbmc/linux/kernel/rcu/srcutree.c (revision 31368ce8)
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  *		Documentation/RCU/ *.txt
26  *
27  */
28 
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate_wait.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/srcu.h>
39 
40 #include "rcu.h"
41 #include "rcu_segcblist.h"
42 
43 /* Holdoff in nanoseconds for auto-expediting. */
44 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
45 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
46 module_param(exp_holdoff, ulong, 0444);
47 
48 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
49 static ulong counter_wrap_check = (ULONG_MAX >> 2);
50 module_param(counter_wrap_check, ulong, 0444);
51 
52 static void srcu_invoke_callbacks(struct work_struct *work);
53 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
54 
55 /*
56  * Initialize SRCU combining tree.  Note that statically allocated
57  * srcu_struct structures might already have srcu_read_lock() and
58  * srcu_read_unlock() running against them.  So if the is_static parameter
59  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
60  */
61 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static)
62 {
63 	int cpu;
64 	int i;
65 	int level = 0;
66 	int levelspread[RCU_NUM_LVLS];
67 	struct srcu_data *sdp;
68 	struct srcu_node *snp;
69 	struct srcu_node *snp_first;
70 
71 	/* Work out the overall tree geometry. */
72 	sp->level[0] = &sp->node[0];
73 	for (i = 1; i < rcu_num_lvls; i++)
74 		sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1];
75 	rcu_init_levelspread(levelspread, num_rcu_lvl);
76 
77 	/* Each pass through this loop initializes one srcu_node structure. */
78 	rcu_for_each_node_breadth_first(sp, snp) {
79 		raw_spin_lock_init(&ACCESS_PRIVATE(snp, lock));
80 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
81 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
82 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
83 			snp->srcu_have_cbs[i] = 0;
84 			snp->srcu_data_have_cbs[i] = 0;
85 		}
86 		snp->srcu_gp_seq_needed_exp = 0;
87 		snp->grplo = -1;
88 		snp->grphi = -1;
89 		if (snp == &sp->node[0]) {
90 			/* Root node, special case. */
91 			snp->srcu_parent = NULL;
92 			continue;
93 		}
94 
95 		/* Non-root node. */
96 		if (snp == sp->level[level + 1])
97 			level++;
98 		snp->srcu_parent = sp->level[level - 1] +
99 				   (snp - sp->level[level]) /
100 				   levelspread[level - 1];
101 	}
102 
103 	/*
104 	 * Initialize the per-CPU srcu_data array, which feeds into the
105 	 * leaves of the srcu_node tree.
106 	 */
107 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
108 		     ARRAY_SIZE(sdp->srcu_unlock_count));
109 	level = rcu_num_lvls - 1;
110 	snp_first = sp->level[level];
111 	for_each_possible_cpu(cpu) {
112 		sdp = per_cpu_ptr(sp->sda, cpu);
113 		raw_spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
114 		rcu_segcblist_init(&sdp->srcu_cblist);
115 		sdp->srcu_cblist_invoking = false;
116 		sdp->srcu_gp_seq_needed = sp->srcu_gp_seq;
117 		sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq;
118 		sdp->mynode = &snp_first[cpu / levelspread[level]];
119 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
120 			if (snp->grplo < 0)
121 				snp->grplo = cpu;
122 			snp->grphi = cpu;
123 		}
124 		sdp->cpu = cpu;
125 		INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
126 		sdp->sp = sp;
127 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
128 		if (is_static)
129 			continue;
130 
131 		/* Dynamically allocated, better be no srcu_read_locks()! */
132 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
133 			sdp->srcu_lock_count[i] = 0;
134 			sdp->srcu_unlock_count[i] = 0;
135 		}
136 	}
137 }
138 
139 /*
140  * Initialize non-compile-time initialized fields, including the
141  * associated srcu_node and srcu_data structures.  The is_static
142  * parameter is passed through to init_srcu_struct_nodes(), and
143  * also tells us that ->sda has already been wired up to srcu_data.
144  */
145 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static)
146 {
147 	mutex_init(&sp->srcu_cb_mutex);
148 	mutex_init(&sp->srcu_gp_mutex);
149 	sp->srcu_idx = 0;
150 	sp->srcu_gp_seq = 0;
151 	sp->srcu_barrier_seq = 0;
152 	mutex_init(&sp->srcu_barrier_mutex);
153 	atomic_set(&sp->srcu_barrier_cpu_cnt, 0);
154 	INIT_DELAYED_WORK(&sp->work, process_srcu);
155 	if (!is_static)
156 		sp->sda = alloc_percpu(struct srcu_data);
157 	init_srcu_struct_nodes(sp, is_static);
158 	sp->srcu_gp_seq_needed_exp = 0;
159 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
160 	smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */
161 	return sp->sda ? 0 : -ENOMEM;
162 }
163 
164 #ifdef CONFIG_DEBUG_LOCK_ALLOC
165 
166 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
167 		       struct lock_class_key *key)
168 {
169 	/* Don't re-initialize a lock while it is held. */
170 	debug_check_no_locks_freed((void *)sp, sizeof(*sp));
171 	lockdep_init_map(&sp->dep_map, name, key, 0);
172 	raw_spin_lock_init(&ACCESS_PRIVATE(sp, lock));
173 	return init_srcu_struct_fields(sp, false);
174 }
175 EXPORT_SYMBOL_GPL(__init_srcu_struct);
176 
177 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
178 
179 /**
180  * init_srcu_struct - initialize a sleep-RCU structure
181  * @sp: structure to initialize.
182  *
183  * Must invoke this on a given srcu_struct before passing that srcu_struct
184  * to any other function.  Each srcu_struct represents a separate domain
185  * of SRCU protection.
186  */
187 int init_srcu_struct(struct srcu_struct *sp)
188 {
189 	raw_spin_lock_init(&ACCESS_PRIVATE(sp, lock));
190 	return init_srcu_struct_fields(sp, false);
191 }
192 EXPORT_SYMBOL_GPL(init_srcu_struct);
193 
194 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
195 
196 /*
197  * First-use initialization of statically allocated srcu_struct
198  * structure.  Wiring up the combining tree is more than can be
199  * done with compile-time initialization, so this check is added
200  * to each update-side SRCU primitive.  Use sp->lock, which -is-
201  * compile-time initialized, to resolve races involving multiple
202  * CPUs trying to garner first-use privileges.
203  */
204 static void check_init_srcu_struct(struct srcu_struct *sp)
205 {
206 	unsigned long flags;
207 
208 	WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT);
209 	/* The smp_load_acquire() pairs with the smp_store_release(). */
210 	if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/
211 		return; /* Already initialized. */
212 	raw_spin_lock_irqsave_rcu_node(sp, flags);
213 	if (!rcu_seq_state(sp->srcu_gp_seq_needed)) {
214 		raw_spin_unlock_irqrestore_rcu_node(sp, flags);
215 		return;
216 	}
217 	init_srcu_struct_fields(sp, true);
218 	raw_spin_unlock_irqrestore_rcu_node(sp, flags);
219 }
220 
221 /*
222  * Returns approximate total of the readers' ->srcu_lock_count[] values
223  * for the rank of per-CPU counters specified by idx.
224  */
225 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
226 {
227 	int cpu;
228 	unsigned long sum = 0;
229 
230 	for_each_possible_cpu(cpu) {
231 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
232 
233 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
234 	}
235 	return sum;
236 }
237 
238 /*
239  * Returns approximate total of the readers' ->srcu_unlock_count[] values
240  * for the rank of per-CPU counters specified by idx.
241  */
242 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
243 {
244 	int cpu;
245 	unsigned long sum = 0;
246 
247 	for_each_possible_cpu(cpu) {
248 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
249 
250 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
251 	}
252 	return sum;
253 }
254 
255 /*
256  * Return true if the number of pre-existing readers is determined to
257  * be zero.
258  */
259 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
260 {
261 	unsigned long unlocks;
262 
263 	unlocks = srcu_readers_unlock_idx(sp, idx);
264 
265 	/*
266 	 * Make sure that a lock is always counted if the corresponding
267 	 * unlock is counted. Needs to be a smp_mb() as the read side may
268 	 * contain a read from a variable that is written to before the
269 	 * synchronize_srcu() in the write side. In this case smp_mb()s
270 	 * A and B act like the store buffering pattern.
271 	 *
272 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
273 	 * after the synchronize_srcu() from being executed before the
274 	 * grace period ends.
275 	 */
276 	smp_mb(); /* A */
277 
278 	/*
279 	 * If the locks are the same as the unlocks, then there must have
280 	 * been no readers on this index at some time in between. This does
281 	 * not mean that there are no more readers, as one could have read
282 	 * the current index but not have incremented the lock counter yet.
283 	 *
284 	 * So suppose that the updater is preempted here for so long
285 	 * that more than ULONG_MAX non-nested readers come and go in
286 	 * the meantime.  It turns out that this cannot result in overflow
287 	 * because if a reader modifies its unlock count after we read it
288 	 * above, then that reader's next load of ->srcu_idx is guaranteed
289 	 * to get the new value, which will cause it to operate on the
290 	 * other bank of counters, where it cannot contribute to the
291 	 * overflow of these counters.  This means that there is a maximum
292 	 * of 2*NR_CPUS increments, which cannot overflow given current
293 	 * systems, especially not on 64-bit systems.
294 	 *
295 	 * OK, how about nesting?  This does impose a limit on nesting
296 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
297 	 * especially on 64-bit systems.
298 	 */
299 	return srcu_readers_lock_idx(sp, idx) == unlocks;
300 }
301 
302 /**
303  * srcu_readers_active - returns true if there are readers. and false
304  *                       otherwise
305  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
306  *
307  * Note that this is not an atomic primitive, and can therefore suffer
308  * severe errors when invoked on an active srcu_struct.  That said, it
309  * can be useful as an error check at cleanup time.
310  */
311 static bool srcu_readers_active(struct srcu_struct *sp)
312 {
313 	int cpu;
314 	unsigned long sum = 0;
315 
316 	for_each_possible_cpu(cpu) {
317 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
318 
319 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
320 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
321 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
322 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
323 	}
324 	return sum;
325 }
326 
327 #define SRCU_INTERVAL		1
328 
329 /*
330  * Return grace-period delay, zero if there are expedited grace
331  * periods pending, SRCU_INTERVAL otherwise.
332  */
333 static unsigned long srcu_get_delay(struct srcu_struct *sp)
334 {
335 	if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq),
336 			 READ_ONCE(sp->srcu_gp_seq_needed_exp)))
337 		return 0;
338 	return SRCU_INTERVAL;
339 }
340 
341 /**
342  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
343  * @sp: structure to clean up.
344  *
345  * Must invoke this after you are finished using a given srcu_struct that
346  * was initialized via init_srcu_struct(), else you leak memory.
347  */
348 void cleanup_srcu_struct(struct srcu_struct *sp)
349 {
350 	int cpu;
351 
352 	if (WARN_ON(!srcu_get_delay(sp)))
353 		return; /* Leakage unless caller handles error. */
354 	if (WARN_ON(srcu_readers_active(sp)))
355 		return; /* Leakage unless caller handles error. */
356 	flush_delayed_work(&sp->work);
357 	for_each_possible_cpu(cpu)
358 		flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work);
359 	if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
360 	    WARN_ON(srcu_readers_active(sp))) {
361 		pr_info("cleanup_srcu_struct: Active srcu_struct %p state: %d\n", sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
362 		return; /* Caller forgot to stop doing call_srcu()? */
363 	}
364 	free_percpu(sp->sda);
365 	sp->sda = NULL;
366 }
367 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
368 
369 /*
370  * Counts the new reader in the appropriate per-CPU element of the
371  * srcu_struct.
372  * Returns an index that must be passed to the matching srcu_read_unlock().
373  */
374 int __srcu_read_lock(struct srcu_struct *sp)
375 {
376 	int idx;
377 
378 	idx = READ_ONCE(sp->srcu_idx) & 0x1;
379 	this_cpu_inc(sp->sda->srcu_lock_count[idx]);
380 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
381 	return idx;
382 }
383 EXPORT_SYMBOL_GPL(__srcu_read_lock);
384 
385 /*
386  * Removes the count for the old reader from the appropriate per-CPU
387  * element of the srcu_struct.  Note that this may well be a different
388  * CPU than that which was incremented by the corresponding srcu_read_lock().
389  */
390 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
391 {
392 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
393 	this_cpu_inc(sp->sda->srcu_unlock_count[idx]);
394 }
395 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
396 
397 /*
398  * We use an adaptive strategy for synchronize_srcu() and especially for
399  * synchronize_srcu_expedited().  We spin for a fixed time period
400  * (defined below) to allow SRCU readers to exit their read-side critical
401  * sections.  If there are still some readers after a few microseconds,
402  * we repeatedly block for 1-millisecond time periods.
403  */
404 #define SRCU_RETRY_CHECK_DELAY		5
405 
406 /*
407  * Start an SRCU grace period.
408  */
409 static void srcu_gp_start(struct srcu_struct *sp)
410 {
411 	struct srcu_data *sdp = this_cpu_ptr(sp->sda);
412 	int state;
413 
414 	lockdep_assert_held(&sp->lock);
415 	WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
416 	rcu_segcblist_advance(&sdp->srcu_cblist,
417 			      rcu_seq_current(&sp->srcu_gp_seq));
418 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
419 				       rcu_seq_snap(&sp->srcu_gp_seq));
420 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
421 	rcu_seq_start(&sp->srcu_gp_seq);
422 	state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
423 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
424 }
425 
426 /*
427  * Track online CPUs to guide callback workqueue placement.
428  */
429 DEFINE_PER_CPU(bool, srcu_online);
430 
431 void srcu_online_cpu(unsigned int cpu)
432 {
433 	WRITE_ONCE(per_cpu(srcu_online, cpu), true);
434 }
435 
436 void srcu_offline_cpu(unsigned int cpu)
437 {
438 	WRITE_ONCE(per_cpu(srcu_online, cpu), false);
439 }
440 
441 /*
442  * Place the workqueue handler on the specified CPU if online, otherwise
443  * just run it whereever.  This is useful for placing workqueue handlers
444  * that are to invoke the specified CPU's callbacks.
445  */
446 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
447 				       struct delayed_work *dwork,
448 				       unsigned long delay)
449 {
450 	bool ret;
451 
452 	preempt_disable();
453 	if (READ_ONCE(per_cpu(srcu_online, cpu)))
454 		ret = queue_delayed_work_on(cpu, wq, dwork, delay);
455 	else
456 		ret = queue_delayed_work(wq, dwork, delay);
457 	preempt_enable();
458 	return ret;
459 }
460 
461 /*
462  * Schedule callback invocation for the specified srcu_data structure,
463  * if possible, on the corresponding CPU.
464  */
465 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
466 {
467 	srcu_queue_delayed_work_on(sdp->cpu, system_power_efficient_wq,
468 				   &sdp->work, delay);
469 }
470 
471 /*
472  * Schedule callback invocation for all srcu_data structures associated
473  * with the specified srcu_node structure that have callbacks for the
474  * just-completed grace period, the one corresponding to idx.  If possible,
475  * schedule this invocation on the corresponding CPUs.
476  */
477 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp,
478 				  unsigned long mask, unsigned long delay)
479 {
480 	int cpu;
481 
482 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
483 		if (!(mask & (1 << (cpu - snp->grplo))))
484 			continue;
485 		srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay);
486 	}
487 }
488 
489 /*
490  * Note the end of an SRCU grace period.  Initiates callback invocation
491  * and starts a new grace period if needed.
492  *
493  * The ->srcu_cb_mutex acquisition does not protect any data, but
494  * instead prevents more than one grace period from starting while we
495  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
496  * array to have a finite number of elements.
497  */
498 static void srcu_gp_end(struct srcu_struct *sp)
499 {
500 	unsigned long cbdelay;
501 	bool cbs;
502 	int cpu;
503 	unsigned long flags;
504 	unsigned long gpseq;
505 	int idx;
506 	int idxnext;
507 	unsigned long mask;
508 	struct srcu_data *sdp;
509 	struct srcu_node *snp;
510 
511 	/* Prevent more than one additional grace period. */
512 	mutex_lock(&sp->srcu_cb_mutex);
513 
514 	/* End the current grace period. */
515 	raw_spin_lock_irq_rcu_node(sp);
516 	idx = rcu_seq_state(sp->srcu_gp_seq);
517 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
518 	cbdelay = srcu_get_delay(sp);
519 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
520 	rcu_seq_end(&sp->srcu_gp_seq);
521 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
522 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq))
523 		sp->srcu_gp_seq_needed_exp = gpseq;
524 	raw_spin_unlock_irq_rcu_node(sp);
525 	mutex_unlock(&sp->srcu_gp_mutex);
526 	/* A new grace period can start at this point.  But only one. */
527 
528 	/* Initiate callback invocation as needed. */
529 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
530 	idxnext = (idx + 1) % ARRAY_SIZE(snp->srcu_have_cbs);
531 	rcu_for_each_node_breadth_first(sp, snp) {
532 		raw_spin_lock_irq_rcu_node(snp);
533 		cbs = false;
534 		if (snp >= sp->level[rcu_num_lvls - 1])
535 			cbs = snp->srcu_have_cbs[idx] == gpseq;
536 		snp->srcu_have_cbs[idx] = gpseq;
537 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
538 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
539 			snp->srcu_gp_seq_needed_exp = gpseq;
540 		mask = snp->srcu_data_have_cbs[idx];
541 		snp->srcu_data_have_cbs[idx] = 0;
542 		raw_spin_unlock_irq_rcu_node(snp);
543 		if (cbs)
544 			srcu_schedule_cbs_snp(sp, snp, mask, cbdelay);
545 
546 		/* Occasionally prevent srcu_data counter wrap. */
547 		if (!(gpseq & counter_wrap_check))
548 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
549 				sdp = per_cpu_ptr(sp->sda, cpu);
550 				raw_spin_lock_irqsave_rcu_node(sdp, flags);
551 				if (ULONG_CMP_GE(gpseq,
552 						 sdp->srcu_gp_seq_needed + 100))
553 					sdp->srcu_gp_seq_needed = gpseq;
554 				raw_spin_unlock_irqrestore_rcu_node(sdp, flags);
555 			}
556 	}
557 
558 	/* Callback initiation done, allow grace periods after next. */
559 	mutex_unlock(&sp->srcu_cb_mutex);
560 
561 	/* Start a new grace period if needed. */
562 	raw_spin_lock_irq_rcu_node(sp);
563 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
564 	if (!rcu_seq_state(gpseq) &&
565 	    ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) {
566 		srcu_gp_start(sp);
567 		raw_spin_unlock_irq_rcu_node(sp);
568 		/* Throttle expedited grace periods: Should be rare! */
569 		srcu_reschedule(sp, rcu_seq_ctr(gpseq) & 0x3ff
570 				    ? 0 : SRCU_INTERVAL);
571 	} else {
572 		raw_spin_unlock_irq_rcu_node(sp);
573 	}
574 }
575 
576 /*
577  * Funnel-locking scheme to scalably mediate many concurrent expedited
578  * grace-period requests.  This function is invoked for the first known
579  * expedited request for a grace period that has already been requested,
580  * but without expediting.  To start a completely new grace period,
581  * whether expedited or not, use srcu_funnel_gp_start() instead.
582  */
583 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp,
584 				  unsigned long s)
585 {
586 	unsigned long flags;
587 
588 	for (; snp != NULL; snp = snp->srcu_parent) {
589 		if (rcu_seq_done(&sp->srcu_gp_seq, s) ||
590 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
591 			return;
592 		raw_spin_lock_irqsave_rcu_node(snp, flags);
593 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
594 			raw_spin_unlock_irqrestore_rcu_node(snp, flags);
595 			return;
596 		}
597 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
598 		raw_spin_unlock_irqrestore_rcu_node(snp, flags);
599 	}
600 	raw_spin_lock_irqsave_rcu_node(sp, flags);
601 	if (!ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
602 		sp->srcu_gp_seq_needed_exp = s;
603 	raw_spin_unlock_irqrestore_rcu_node(sp, flags);
604 }
605 
606 /*
607  * Funnel-locking scheme to scalably mediate many concurrent grace-period
608  * requests.  The winner has to do the work of actually starting grace
609  * period s.  Losers must either ensure that their desired grace-period
610  * number is recorded on at least their leaf srcu_node structure, or they
611  * must take steps to invoke their own callbacks.
612  */
613 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp,
614 				 unsigned long s, bool do_norm)
615 {
616 	unsigned long flags;
617 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
618 	struct srcu_node *snp = sdp->mynode;
619 	unsigned long snp_seq;
620 
621 	/* Each pass through the loop does one level of the srcu_node tree. */
622 	for (; snp != NULL; snp = snp->srcu_parent) {
623 		if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode)
624 			return; /* GP already done and CBs recorded. */
625 		raw_spin_lock_irqsave_rcu_node(snp, flags);
626 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
627 			snp_seq = snp->srcu_have_cbs[idx];
628 			if (snp == sdp->mynode && snp_seq == s)
629 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
630 			raw_spin_unlock_irqrestore_rcu_node(snp, flags);
631 			if (snp == sdp->mynode && snp_seq != s) {
632 				srcu_schedule_cbs_sdp(sdp, do_norm
633 							   ? SRCU_INTERVAL
634 							   : 0);
635 				return;
636 			}
637 			if (!do_norm)
638 				srcu_funnel_exp_start(sp, snp, s);
639 			return;
640 		}
641 		snp->srcu_have_cbs[idx] = s;
642 		if (snp == sdp->mynode)
643 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
644 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
645 			snp->srcu_gp_seq_needed_exp = s;
646 		raw_spin_unlock_irqrestore_rcu_node(snp, flags);
647 	}
648 
649 	/* Top of tree, must ensure the grace period will be started. */
650 	raw_spin_lock_irqsave_rcu_node(sp, flags);
651 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) {
652 		/*
653 		 * Record need for grace period s.  Pair with load
654 		 * acquire setting up for initialization.
655 		 */
656 		smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/
657 	}
658 	if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
659 		sp->srcu_gp_seq_needed_exp = s;
660 
661 	/* If grace period not already done and none in progress, start it. */
662 	if (!rcu_seq_done(&sp->srcu_gp_seq, s) &&
663 	    rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) {
664 		WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
665 		srcu_gp_start(sp);
666 		queue_delayed_work(system_power_efficient_wq, &sp->work,
667 				   srcu_get_delay(sp));
668 	}
669 	raw_spin_unlock_irqrestore_rcu_node(sp, flags);
670 }
671 
672 /*
673  * Wait until all readers counted by array index idx complete, but
674  * loop an additional time if there is an expedited grace period pending.
675  * The caller must ensure that ->srcu_idx is not changed while checking.
676  */
677 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
678 {
679 	for (;;) {
680 		if (srcu_readers_active_idx_check(sp, idx))
681 			return true;
682 		if (--trycount + !srcu_get_delay(sp) <= 0)
683 			return false;
684 		udelay(SRCU_RETRY_CHECK_DELAY);
685 	}
686 }
687 
688 /*
689  * Increment the ->srcu_idx counter so that future SRCU readers will
690  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
691  * us to wait for pre-existing readers in a starvation-free manner.
692  */
693 static void srcu_flip(struct srcu_struct *sp)
694 {
695 	/*
696 	 * Ensure that if this updater saw a given reader's increment
697 	 * from __srcu_read_lock(), that reader was using an old value
698 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
699 	 * new value of ->srcu_idx, this updater's earlier scans cannot
700 	 * have seen that reader's increments (which is OK, because this
701 	 * grace period need not wait on that reader).
702 	 */
703 	smp_mb(); /* E */  /* Pairs with B and C. */
704 
705 	WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1);
706 
707 	/*
708 	 * Ensure that if the updater misses an __srcu_read_unlock()
709 	 * increment, that task's next __srcu_read_lock() will see the
710 	 * above counter update.  Note that both this memory barrier
711 	 * and the one in srcu_readers_active_idx_check() provide the
712 	 * guarantee for __srcu_read_lock().
713 	 */
714 	smp_mb(); /* D */  /* Pairs with C. */
715 }
716 
717 /*
718  * If SRCU is likely idle, return true, otherwise return false.
719  *
720  * Note that it is OK for several current from-idle requests for a new
721  * grace period from idle to specify expediting because they will all end
722  * up requesting the same grace period anyhow.  So no loss.
723  *
724  * Note also that if any CPU (including the current one) is still invoking
725  * callbacks, this function will nevertheless say "idle".  This is not
726  * ideal, but the overhead of checking all CPUs' callback lists is even
727  * less ideal, especially on large systems.  Furthermore, the wakeup
728  * can happen before the callback is fully removed, so we have no choice
729  * but to accept this type of error.
730  *
731  * This function is also subject to counter-wrap errors, but let's face
732  * it, if this function was preempted for enough time for the counters
733  * to wrap, it really doesn't matter whether or not we expedite the grace
734  * period.  The extra overhead of a needlessly expedited grace period is
735  * negligible when amoritized over that time period, and the extra latency
736  * of a needlessly non-expedited grace period is similarly negligible.
737  */
738 static bool srcu_might_be_idle(struct srcu_struct *sp)
739 {
740 	unsigned long curseq;
741 	unsigned long flags;
742 	struct srcu_data *sdp;
743 	unsigned long t;
744 
745 	/* If the local srcu_data structure has callbacks, not idle.  */
746 	local_irq_save(flags);
747 	sdp = this_cpu_ptr(sp->sda);
748 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
749 		local_irq_restore(flags);
750 		return false; /* Callbacks already present, so not idle. */
751 	}
752 	local_irq_restore(flags);
753 
754 	/*
755 	 * No local callbacks, so probabalistically probe global state.
756 	 * Exact information would require acquiring locks, which would
757 	 * kill scalability, hence the probabalistic nature of the probe.
758 	 */
759 
760 	/* First, see if enough time has passed since the last GP. */
761 	t = ktime_get_mono_fast_ns();
762 	if (exp_holdoff == 0 ||
763 	    time_in_range_open(t, sp->srcu_last_gp_end,
764 			       sp->srcu_last_gp_end + exp_holdoff))
765 		return false; /* Too soon after last GP. */
766 
767 	/* Next, check for probable idleness. */
768 	curseq = rcu_seq_current(&sp->srcu_gp_seq);
769 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
770 	if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed)))
771 		return false; /* Grace period in progress, so not idle. */
772 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
773 	if (curseq != rcu_seq_current(&sp->srcu_gp_seq))
774 		return false; /* GP # changed, so not idle. */
775 	return true; /* With reasonable probability, idle! */
776 }
777 
778 /*
779  * SRCU callback function to leak a callback.
780  */
781 static void srcu_leak_callback(struct rcu_head *rhp)
782 {
783 }
784 
785 /*
786  * Enqueue an SRCU callback on the srcu_data structure associated with
787  * the current CPU and the specified srcu_struct structure, initiating
788  * grace-period processing if it is not already running.
789  *
790  * Note that all CPUs must agree that the grace period extended beyond
791  * all pre-existing SRCU read-side critical section.  On systems with
792  * more than one CPU, this means that when "func()" is invoked, each CPU
793  * is guaranteed to have executed a full memory barrier since the end of
794  * its last corresponding SRCU read-side critical section whose beginning
795  * preceded the call to call_rcu().  It also means that each CPU executing
796  * an SRCU read-side critical section that continues beyond the start of
797  * "func()" must have executed a memory barrier after the call_rcu()
798  * but before the beginning of that SRCU read-side critical section.
799  * Note that these guarantees include CPUs that are offline, idle, or
800  * executing in user mode, as well as CPUs that are executing in the kernel.
801  *
802  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
803  * resulting SRCU callback function "func()", then both CPU A and CPU
804  * B are guaranteed to execute a full memory barrier during the time
805  * interval between the call to call_rcu() and the invocation of "func()".
806  * This guarantee applies even if CPU A and CPU B are the same CPU (but
807  * again only if the system has more than one CPU).
808  *
809  * Of course, these guarantees apply only for invocations of call_srcu(),
810  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
811  * srcu_struct structure.
812  */
813 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
814 		 rcu_callback_t func, bool do_norm)
815 {
816 	unsigned long flags;
817 	bool needexp = false;
818 	bool needgp = false;
819 	unsigned long s;
820 	struct srcu_data *sdp;
821 
822 	check_init_srcu_struct(sp);
823 	if (debug_rcu_head_queue(rhp)) {
824 		/* Probable double call_srcu(), so leak the callback. */
825 		WRITE_ONCE(rhp->func, srcu_leak_callback);
826 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
827 		return;
828 	}
829 	rhp->func = func;
830 	local_irq_save(flags);
831 	sdp = this_cpu_ptr(sp->sda);
832 	raw_spin_lock_rcu_node(sdp);
833 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
834 	rcu_segcblist_advance(&sdp->srcu_cblist,
835 			      rcu_seq_current(&sp->srcu_gp_seq));
836 	s = rcu_seq_snap(&sp->srcu_gp_seq);
837 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
838 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
839 		sdp->srcu_gp_seq_needed = s;
840 		needgp = true;
841 	}
842 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
843 		sdp->srcu_gp_seq_needed_exp = s;
844 		needexp = true;
845 	}
846 	raw_spin_unlock_irqrestore_rcu_node(sdp, flags);
847 	if (needgp)
848 		srcu_funnel_gp_start(sp, sdp, s, do_norm);
849 	else if (needexp)
850 		srcu_funnel_exp_start(sp, sdp->mynode, s);
851 }
852 
853 /**
854  * call_srcu() - Queue a callback for invocation after an SRCU grace period
855  * @sp: srcu_struct in queue the callback
856  * @head: structure to be used for queueing the SRCU callback.
857  * @func: function to be invoked after the SRCU grace period
858  *
859  * The callback function will be invoked some time after a full SRCU
860  * grace period elapses, in other words after all pre-existing SRCU
861  * read-side critical sections have completed.  However, the callback
862  * function might well execute concurrently with other SRCU read-side
863  * critical sections that started after call_srcu() was invoked.  SRCU
864  * read-side critical sections are delimited by srcu_read_lock() and
865  * srcu_read_unlock(), and may be nested.
866  *
867  * The callback will be invoked from process context, but must nevertheless
868  * be fast and must not block.
869  */
870 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
871 	       rcu_callback_t func)
872 {
873 	__call_srcu(sp, rhp, func, true);
874 }
875 EXPORT_SYMBOL_GPL(call_srcu);
876 
877 /*
878  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
879  */
880 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm)
881 {
882 	struct rcu_synchronize rcu;
883 
884 	RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
885 			 lock_is_held(&rcu_bh_lock_map) ||
886 			 lock_is_held(&rcu_lock_map) ||
887 			 lock_is_held(&rcu_sched_lock_map),
888 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
889 
890 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
891 		return;
892 	might_sleep();
893 	check_init_srcu_struct(sp);
894 	init_completion(&rcu.completion);
895 	init_rcu_head_on_stack(&rcu.head);
896 	__call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm);
897 	wait_for_completion(&rcu.completion);
898 	destroy_rcu_head_on_stack(&rcu.head);
899 }
900 
901 /**
902  * synchronize_srcu_expedited - Brute-force SRCU grace period
903  * @sp: srcu_struct with which to synchronize.
904  *
905  * Wait for an SRCU grace period to elapse, but be more aggressive about
906  * spinning rather than blocking when waiting.
907  *
908  * Note that synchronize_srcu_expedited() has the same deadlock and
909  * memory-ordering properties as does synchronize_srcu().
910  */
911 void synchronize_srcu_expedited(struct srcu_struct *sp)
912 {
913 	__synchronize_srcu(sp, rcu_gp_is_normal());
914 }
915 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
916 
917 /**
918  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
919  * @sp: srcu_struct with which to synchronize.
920  *
921  * Wait for the count to drain to zero of both indexes. To avoid the
922  * possible starvation of synchronize_srcu(), it waits for the count of
923  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
924  * and then flip the srcu_idx and wait for the count of the other index.
925  *
926  * Can block; must be called from process context.
927  *
928  * Note that it is illegal to call synchronize_srcu() from the corresponding
929  * SRCU read-side critical section; doing so will result in deadlock.
930  * However, it is perfectly legal to call synchronize_srcu() on one
931  * srcu_struct from some other srcu_struct's read-side critical section,
932  * as long as the resulting graph of srcu_structs is acyclic.
933  *
934  * There are memory-ordering constraints implied by synchronize_srcu().
935  * On systems with more than one CPU, when synchronize_srcu() returns,
936  * each CPU is guaranteed to have executed a full memory barrier since
937  * the end of its last corresponding SRCU-sched read-side critical section
938  * whose beginning preceded the call to synchronize_srcu().  In addition,
939  * each CPU having an SRCU read-side critical section that extends beyond
940  * the return from synchronize_srcu() is guaranteed to have executed a
941  * full memory barrier after the beginning of synchronize_srcu() and before
942  * the beginning of that SRCU read-side critical section.  Note that these
943  * guarantees include CPUs that are offline, idle, or executing in user mode,
944  * as well as CPUs that are executing in the kernel.
945  *
946  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
947  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
948  * to have executed a full memory barrier during the execution of
949  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
950  * are the same CPU, but again only if the system has more than one CPU.
951  *
952  * Of course, these memory-ordering guarantees apply only when
953  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
954  * passed the same srcu_struct structure.
955  *
956  * If SRCU is likely idle, expedite the first request.  This semantic
957  * was provided by Classic SRCU, and is relied upon by its users, so TREE
958  * SRCU must also provide it.  Note that detecting idleness is heuristic
959  * and subject to both false positives and negatives.
960  */
961 void synchronize_srcu(struct srcu_struct *sp)
962 {
963 	if (srcu_might_be_idle(sp) || rcu_gp_is_expedited())
964 		synchronize_srcu_expedited(sp);
965 	else
966 		__synchronize_srcu(sp, true);
967 }
968 EXPORT_SYMBOL_GPL(synchronize_srcu);
969 
970 /*
971  * Callback function for srcu_barrier() use.
972  */
973 static void srcu_barrier_cb(struct rcu_head *rhp)
974 {
975 	struct srcu_data *sdp;
976 	struct srcu_struct *sp;
977 
978 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
979 	sp = sdp->sp;
980 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
981 		complete(&sp->srcu_barrier_completion);
982 }
983 
984 /**
985  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
986  * @sp: srcu_struct on which to wait for in-flight callbacks.
987  */
988 void srcu_barrier(struct srcu_struct *sp)
989 {
990 	int cpu;
991 	struct srcu_data *sdp;
992 	unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq);
993 
994 	check_init_srcu_struct(sp);
995 	mutex_lock(&sp->srcu_barrier_mutex);
996 	if (rcu_seq_done(&sp->srcu_barrier_seq, s)) {
997 		smp_mb(); /* Force ordering following return. */
998 		mutex_unlock(&sp->srcu_barrier_mutex);
999 		return; /* Someone else did our work for us. */
1000 	}
1001 	rcu_seq_start(&sp->srcu_barrier_seq);
1002 	init_completion(&sp->srcu_barrier_completion);
1003 
1004 	/* Initial count prevents reaching zero until all CBs are posted. */
1005 	atomic_set(&sp->srcu_barrier_cpu_cnt, 1);
1006 
1007 	/*
1008 	 * Each pass through this loop enqueues a callback, but only
1009 	 * on CPUs already having callbacks enqueued.  Note that if
1010 	 * a CPU already has callbacks enqueue, it must have already
1011 	 * registered the need for a future grace period, so all we
1012 	 * need do is enqueue a callback that will use the same
1013 	 * grace period as the last callback already in the queue.
1014 	 */
1015 	for_each_possible_cpu(cpu) {
1016 		sdp = per_cpu_ptr(sp->sda, cpu);
1017 		raw_spin_lock_irq_rcu_node(sdp);
1018 		atomic_inc(&sp->srcu_barrier_cpu_cnt);
1019 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1020 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1021 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1022 					   &sdp->srcu_barrier_head, 0)) {
1023 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1024 			atomic_dec(&sp->srcu_barrier_cpu_cnt);
1025 		}
1026 		raw_spin_unlock_irq_rcu_node(sdp);
1027 	}
1028 
1029 	/* Remove the initial count, at which point reaching zero can happen. */
1030 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1031 		complete(&sp->srcu_barrier_completion);
1032 	wait_for_completion(&sp->srcu_barrier_completion);
1033 
1034 	rcu_seq_end(&sp->srcu_barrier_seq);
1035 	mutex_unlock(&sp->srcu_barrier_mutex);
1036 }
1037 EXPORT_SYMBOL_GPL(srcu_barrier);
1038 
1039 /**
1040  * srcu_batches_completed - return batches completed.
1041  * @sp: srcu_struct on which to report batch completion.
1042  *
1043  * Report the number of batches, correlated with, but not necessarily
1044  * precisely the same as, the number of grace periods that have elapsed.
1045  */
1046 unsigned long srcu_batches_completed(struct srcu_struct *sp)
1047 {
1048 	return sp->srcu_idx;
1049 }
1050 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1051 
1052 /*
1053  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1054  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1055  * completed in that state.
1056  */
1057 static void srcu_advance_state(struct srcu_struct *sp)
1058 {
1059 	int idx;
1060 
1061 	mutex_lock(&sp->srcu_gp_mutex);
1062 
1063 	/*
1064 	 * Because readers might be delayed for an extended period after
1065 	 * fetching ->srcu_idx for their index, at any point in time there
1066 	 * might well be readers using both idx=0 and idx=1.  We therefore
1067 	 * need to wait for readers to clear from both index values before
1068 	 * invoking a callback.
1069 	 *
1070 	 * The load-acquire ensures that we see the accesses performed
1071 	 * by the prior grace period.
1072 	 */
1073 	idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
1074 	if (idx == SRCU_STATE_IDLE) {
1075 		raw_spin_lock_irq_rcu_node(sp);
1076 		if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1077 			WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq));
1078 			raw_spin_unlock_irq_rcu_node(sp);
1079 			mutex_unlock(&sp->srcu_gp_mutex);
1080 			return;
1081 		}
1082 		idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
1083 		if (idx == SRCU_STATE_IDLE)
1084 			srcu_gp_start(sp);
1085 		raw_spin_unlock_irq_rcu_node(sp);
1086 		if (idx != SRCU_STATE_IDLE) {
1087 			mutex_unlock(&sp->srcu_gp_mutex);
1088 			return; /* Someone else started the grace period. */
1089 		}
1090 	}
1091 
1092 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1093 		idx = 1 ^ (sp->srcu_idx & 1);
1094 		if (!try_check_zero(sp, idx, 1)) {
1095 			mutex_unlock(&sp->srcu_gp_mutex);
1096 			return; /* readers present, retry later. */
1097 		}
1098 		srcu_flip(sp);
1099 		rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
1100 	}
1101 
1102 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1103 
1104 		/*
1105 		 * SRCU read-side critical sections are normally short,
1106 		 * so check at least twice in quick succession after a flip.
1107 		 */
1108 		idx = 1 ^ (sp->srcu_idx & 1);
1109 		if (!try_check_zero(sp, idx, 2)) {
1110 			mutex_unlock(&sp->srcu_gp_mutex);
1111 			return; /* readers present, retry later. */
1112 		}
1113 		srcu_gp_end(sp);  /* Releases ->srcu_gp_mutex. */
1114 	}
1115 }
1116 
1117 /*
1118  * Invoke a limited number of SRCU callbacks that have passed through
1119  * their grace period.  If there are more to do, SRCU will reschedule
1120  * the workqueue.  Note that needed memory barriers have been executed
1121  * in this task's context by srcu_readers_active_idx_check().
1122  */
1123 static void srcu_invoke_callbacks(struct work_struct *work)
1124 {
1125 	bool more;
1126 	struct rcu_cblist ready_cbs;
1127 	struct rcu_head *rhp;
1128 	struct srcu_data *sdp;
1129 	struct srcu_struct *sp;
1130 
1131 	sdp = container_of(work, struct srcu_data, work.work);
1132 	sp = sdp->sp;
1133 	rcu_cblist_init(&ready_cbs);
1134 	raw_spin_lock_irq_rcu_node(sdp);
1135 	rcu_segcblist_advance(&sdp->srcu_cblist,
1136 			      rcu_seq_current(&sp->srcu_gp_seq));
1137 	if (sdp->srcu_cblist_invoking ||
1138 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1139 		raw_spin_unlock_irq_rcu_node(sdp);
1140 		return;  /* Someone else on the job or nothing to do. */
1141 	}
1142 
1143 	/* We are on the job!  Extract and invoke ready callbacks. */
1144 	sdp->srcu_cblist_invoking = true;
1145 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1146 	raw_spin_unlock_irq_rcu_node(sdp);
1147 	rhp = rcu_cblist_dequeue(&ready_cbs);
1148 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1149 		debug_rcu_head_unqueue(rhp);
1150 		local_bh_disable();
1151 		rhp->func(rhp);
1152 		local_bh_enable();
1153 	}
1154 
1155 	/*
1156 	 * Update counts, accelerate new callbacks, and if needed,
1157 	 * schedule another round of callback invocation.
1158 	 */
1159 	raw_spin_lock_irq_rcu_node(sdp);
1160 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1161 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1162 				       rcu_seq_snap(&sp->srcu_gp_seq));
1163 	sdp->srcu_cblist_invoking = false;
1164 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1165 	raw_spin_unlock_irq_rcu_node(sdp);
1166 	if (more)
1167 		srcu_schedule_cbs_sdp(sdp, 0);
1168 }
1169 
1170 /*
1171  * Finished one round of SRCU grace period.  Start another if there are
1172  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1173  */
1174 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
1175 {
1176 	bool pushgp = true;
1177 
1178 	raw_spin_lock_irq_rcu_node(sp);
1179 	if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1180 		if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) {
1181 			/* All requests fulfilled, time to go idle. */
1182 			pushgp = false;
1183 		}
1184 	} else if (!rcu_seq_state(sp->srcu_gp_seq)) {
1185 		/* Outstanding request and no GP.  Start one. */
1186 		srcu_gp_start(sp);
1187 	}
1188 	raw_spin_unlock_irq_rcu_node(sp);
1189 
1190 	if (pushgp)
1191 		queue_delayed_work(system_power_efficient_wq, &sp->work, delay);
1192 }
1193 
1194 /*
1195  * This is the work-queue function that handles SRCU grace periods.
1196  */
1197 void process_srcu(struct work_struct *work)
1198 {
1199 	struct srcu_struct *sp;
1200 
1201 	sp = container_of(work, struct srcu_struct, work.work);
1202 
1203 	srcu_advance_state(sp);
1204 	srcu_reschedule(sp, srcu_get_delay(sp));
1205 }
1206 EXPORT_SYMBOL_GPL(process_srcu);
1207 
1208 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1209 			     struct srcu_struct *sp, int *flags,
1210 			     unsigned long *gpnum, unsigned long *completed)
1211 {
1212 	if (test_type != SRCU_FLAVOR)
1213 		return;
1214 	*flags = 0;
1215 	*completed = rcu_seq_ctr(sp->srcu_gp_seq);
1216 	*gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed);
1217 }
1218 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1219 
1220 static int __init srcu_bootup_announce(void)
1221 {
1222 	pr_info("Hierarchical SRCU implementation.\n");
1223 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1224 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1225 	return 0;
1226 }
1227 early_initcall(srcu_bootup_announce);
1228