1 /* 2 * Sleepable Read-Copy Update mechanism for mutual exclusion. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright (C) IBM Corporation, 2006 19 * Copyright (C) Fujitsu, 2012 20 * 21 * Author: Paul McKenney <paulmck@us.ibm.com> 22 * Lai Jiangshan <laijs@cn.fujitsu.com> 23 * 24 * For detailed explanation of Read-Copy Update mechanism see - 25 * Documentation/RCU/ *.txt 26 * 27 */ 28 29 #define pr_fmt(fmt) "rcu: " fmt 30 31 #include <linux/export.h> 32 #include <linux/mutex.h> 33 #include <linux/percpu.h> 34 #include <linux/preempt.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/sched.h> 37 #include <linux/smp.h> 38 #include <linux/delay.h> 39 #include <linux/module.h> 40 #include <linux/srcu.h> 41 42 #include "rcu.h" 43 #include "rcu_segcblist.h" 44 45 /* Holdoff in nanoseconds for auto-expediting. */ 46 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 47 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 48 module_param(exp_holdoff, ulong, 0444); 49 50 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 51 static ulong counter_wrap_check = (ULONG_MAX >> 2); 52 module_param(counter_wrap_check, ulong, 0444); 53 54 static void srcu_invoke_callbacks(struct work_struct *work); 55 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay); 56 static void process_srcu(struct work_struct *work); 57 58 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 59 #define spin_lock_rcu_node(p) \ 60 do { \ 61 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 62 smp_mb__after_unlock_lock(); \ 63 } while (0) 64 65 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 66 67 #define spin_lock_irq_rcu_node(p) \ 68 do { \ 69 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 70 smp_mb__after_unlock_lock(); \ 71 } while (0) 72 73 #define spin_unlock_irq_rcu_node(p) \ 74 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 75 76 #define spin_lock_irqsave_rcu_node(p, flags) \ 77 do { \ 78 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 79 smp_mb__after_unlock_lock(); \ 80 } while (0) 81 82 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 83 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 84 85 /* 86 * Initialize SRCU combining tree. Note that statically allocated 87 * srcu_struct structures might already have srcu_read_lock() and 88 * srcu_read_unlock() running against them. So if the is_static parameter 89 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 90 */ 91 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static) 92 { 93 int cpu; 94 int i; 95 int level = 0; 96 int levelspread[RCU_NUM_LVLS]; 97 struct srcu_data *sdp; 98 struct srcu_node *snp; 99 struct srcu_node *snp_first; 100 101 /* Work out the overall tree geometry. */ 102 sp->level[0] = &sp->node[0]; 103 for (i = 1; i < rcu_num_lvls; i++) 104 sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1]; 105 rcu_init_levelspread(levelspread, num_rcu_lvl); 106 107 /* Each pass through this loop initializes one srcu_node structure. */ 108 rcu_for_each_node_breadth_first(sp, snp) { 109 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 110 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 111 ARRAY_SIZE(snp->srcu_data_have_cbs)); 112 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 113 snp->srcu_have_cbs[i] = 0; 114 snp->srcu_data_have_cbs[i] = 0; 115 } 116 snp->srcu_gp_seq_needed_exp = 0; 117 snp->grplo = -1; 118 snp->grphi = -1; 119 if (snp == &sp->node[0]) { 120 /* Root node, special case. */ 121 snp->srcu_parent = NULL; 122 continue; 123 } 124 125 /* Non-root node. */ 126 if (snp == sp->level[level + 1]) 127 level++; 128 snp->srcu_parent = sp->level[level - 1] + 129 (snp - sp->level[level]) / 130 levelspread[level - 1]; 131 } 132 133 /* 134 * Initialize the per-CPU srcu_data array, which feeds into the 135 * leaves of the srcu_node tree. 136 */ 137 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 138 ARRAY_SIZE(sdp->srcu_unlock_count)); 139 level = rcu_num_lvls - 1; 140 snp_first = sp->level[level]; 141 for_each_possible_cpu(cpu) { 142 sdp = per_cpu_ptr(sp->sda, cpu); 143 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 144 rcu_segcblist_init(&sdp->srcu_cblist); 145 sdp->srcu_cblist_invoking = false; 146 sdp->srcu_gp_seq_needed = sp->srcu_gp_seq; 147 sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq; 148 sdp->mynode = &snp_first[cpu / levelspread[level]]; 149 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 150 if (snp->grplo < 0) 151 snp->grplo = cpu; 152 snp->grphi = cpu; 153 } 154 sdp->cpu = cpu; 155 INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks); 156 sdp->sp = sp; 157 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 158 if (is_static) 159 continue; 160 161 /* Dynamically allocated, better be no srcu_read_locks()! */ 162 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 163 sdp->srcu_lock_count[i] = 0; 164 sdp->srcu_unlock_count[i] = 0; 165 } 166 } 167 } 168 169 /* 170 * Initialize non-compile-time initialized fields, including the 171 * associated srcu_node and srcu_data structures. The is_static 172 * parameter is passed through to init_srcu_struct_nodes(), and 173 * also tells us that ->sda has already been wired up to srcu_data. 174 */ 175 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static) 176 { 177 mutex_init(&sp->srcu_cb_mutex); 178 mutex_init(&sp->srcu_gp_mutex); 179 sp->srcu_idx = 0; 180 sp->srcu_gp_seq = 0; 181 sp->srcu_barrier_seq = 0; 182 mutex_init(&sp->srcu_barrier_mutex); 183 atomic_set(&sp->srcu_barrier_cpu_cnt, 0); 184 INIT_DELAYED_WORK(&sp->work, process_srcu); 185 if (!is_static) 186 sp->sda = alloc_percpu(struct srcu_data); 187 init_srcu_struct_nodes(sp, is_static); 188 sp->srcu_gp_seq_needed_exp = 0; 189 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 190 smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */ 191 return sp->sda ? 0 : -ENOMEM; 192 } 193 194 #ifdef CONFIG_DEBUG_LOCK_ALLOC 195 196 int __init_srcu_struct(struct srcu_struct *sp, const char *name, 197 struct lock_class_key *key) 198 { 199 /* Don't re-initialize a lock while it is held. */ 200 debug_check_no_locks_freed((void *)sp, sizeof(*sp)); 201 lockdep_init_map(&sp->dep_map, name, key, 0); 202 spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 203 return init_srcu_struct_fields(sp, false); 204 } 205 EXPORT_SYMBOL_GPL(__init_srcu_struct); 206 207 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 208 209 /** 210 * init_srcu_struct - initialize a sleep-RCU structure 211 * @sp: structure to initialize. 212 * 213 * Must invoke this on a given srcu_struct before passing that srcu_struct 214 * to any other function. Each srcu_struct represents a separate domain 215 * of SRCU protection. 216 */ 217 int init_srcu_struct(struct srcu_struct *sp) 218 { 219 spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 220 return init_srcu_struct_fields(sp, false); 221 } 222 EXPORT_SYMBOL_GPL(init_srcu_struct); 223 224 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 225 226 /* 227 * First-use initialization of statically allocated srcu_struct 228 * structure. Wiring up the combining tree is more than can be 229 * done with compile-time initialization, so this check is added 230 * to each update-side SRCU primitive. Use sp->lock, which -is- 231 * compile-time initialized, to resolve races involving multiple 232 * CPUs trying to garner first-use privileges. 233 */ 234 static void check_init_srcu_struct(struct srcu_struct *sp) 235 { 236 unsigned long flags; 237 238 WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT); 239 /* The smp_load_acquire() pairs with the smp_store_release(). */ 240 if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/ 241 return; /* Already initialized. */ 242 spin_lock_irqsave_rcu_node(sp, flags); 243 if (!rcu_seq_state(sp->srcu_gp_seq_needed)) { 244 spin_unlock_irqrestore_rcu_node(sp, flags); 245 return; 246 } 247 init_srcu_struct_fields(sp, true); 248 spin_unlock_irqrestore_rcu_node(sp, flags); 249 } 250 251 /* 252 * Returns approximate total of the readers' ->srcu_lock_count[] values 253 * for the rank of per-CPU counters specified by idx. 254 */ 255 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx) 256 { 257 int cpu; 258 unsigned long sum = 0; 259 260 for_each_possible_cpu(cpu) { 261 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 262 263 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 264 } 265 return sum; 266 } 267 268 /* 269 * Returns approximate total of the readers' ->srcu_unlock_count[] values 270 * for the rank of per-CPU counters specified by idx. 271 */ 272 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx) 273 { 274 int cpu; 275 unsigned long sum = 0; 276 277 for_each_possible_cpu(cpu) { 278 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 279 280 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 281 } 282 return sum; 283 } 284 285 /* 286 * Return true if the number of pre-existing readers is determined to 287 * be zero. 288 */ 289 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx) 290 { 291 unsigned long unlocks; 292 293 unlocks = srcu_readers_unlock_idx(sp, idx); 294 295 /* 296 * Make sure that a lock is always counted if the corresponding 297 * unlock is counted. Needs to be a smp_mb() as the read side may 298 * contain a read from a variable that is written to before the 299 * synchronize_srcu() in the write side. In this case smp_mb()s 300 * A and B act like the store buffering pattern. 301 * 302 * This smp_mb() also pairs with smp_mb() C to prevent accesses 303 * after the synchronize_srcu() from being executed before the 304 * grace period ends. 305 */ 306 smp_mb(); /* A */ 307 308 /* 309 * If the locks are the same as the unlocks, then there must have 310 * been no readers on this index at some time in between. This does 311 * not mean that there are no more readers, as one could have read 312 * the current index but not have incremented the lock counter yet. 313 * 314 * So suppose that the updater is preempted here for so long 315 * that more than ULONG_MAX non-nested readers come and go in 316 * the meantime. It turns out that this cannot result in overflow 317 * because if a reader modifies its unlock count after we read it 318 * above, then that reader's next load of ->srcu_idx is guaranteed 319 * to get the new value, which will cause it to operate on the 320 * other bank of counters, where it cannot contribute to the 321 * overflow of these counters. This means that there is a maximum 322 * of 2*NR_CPUS increments, which cannot overflow given current 323 * systems, especially not on 64-bit systems. 324 * 325 * OK, how about nesting? This does impose a limit on nesting 326 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 327 * especially on 64-bit systems. 328 */ 329 return srcu_readers_lock_idx(sp, idx) == unlocks; 330 } 331 332 /** 333 * srcu_readers_active - returns true if there are readers. and false 334 * otherwise 335 * @sp: which srcu_struct to count active readers (holding srcu_read_lock). 336 * 337 * Note that this is not an atomic primitive, and can therefore suffer 338 * severe errors when invoked on an active srcu_struct. That said, it 339 * can be useful as an error check at cleanup time. 340 */ 341 static bool srcu_readers_active(struct srcu_struct *sp) 342 { 343 int cpu; 344 unsigned long sum = 0; 345 346 for_each_possible_cpu(cpu) { 347 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 348 349 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 350 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 351 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 352 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 353 } 354 return sum; 355 } 356 357 #define SRCU_INTERVAL 1 358 359 /* 360 * Return grace-period delay, zero if there are expedited grace 361 * periods pending, SRCU_INTERVAL otherwise. 362 */ 363 static unsigned long srcu_get_delay(struct srcu_struct *sp) 364 { 365 if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq), 366 READ_ONCE(sp->srcu_gp_seq_needed_exp))) 367 return 0; 368 return SRCU_INTERVAL; 369 } 370 371 /* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */ 372 void _cleanup_srcu_struct(struct srcu_struct *sp, bool quiesced) 373 { 374 int cpu; 375 376 if (WARN_ON(!srcu_get_delay(sp))) 377 return; /* Just leak it! */ 378 if (WARN_ON(srcu_readers_active(sp))) 379 return; /* Just leak it! */ 380 if (quiesced) { 381 if (WARN_ON(delayed_work_pending(&sp->work))) 382 return; /* Just leak it! */ 383 } else { 384 flush_delayed_work(&sp->work); 385 } 386 for_each_possible_cpu(cpu) 387 if (quiesced) { 388 if (WARN_ON(delayed_work_pending(&per_cpu_ptr(sp->sda, cpu)->work))) 389 return; /* Just leak it! */ 390 } else { 391 flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work); 392 } 393 if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 394 WARN_ON(srcu_readers_active(sp))) { 395 pr_info("%s: Active srcu_struct %p state: %d\n", 396 __func__, sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq))); 397 return; /* Caller forgot to stop doing call_srcu()? */ 398 } 399 free_percpu(sp->sda); 400 sp->sda = NULL; 401 } 402 EXPORT_SYMBOL_GPL(_cleanup_srcu_struct); 403 404 /* 405 * Counts the new reader in the appropriate per-CPU element of the 406 * srcu_struct. 407 * Returns an index that must be passed to the matching srcu_read_unlock(). 408 */ 409 int __srcu_read_lock(struct srcu_struct *sp) 410 { 411 int idx; 412 413 idx = READ_ONCE(sp->srcu_idx) & 0x1; 414 this_cpu_inc(sp->sda->srcu_lock_count[idx]); 415 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 416 return idx; 417 } 418 EXPORT_SYMBOL_GPL(__srcu_read_lock); 419 420 /* 421 * Removes the count for the old reader from the appropriate per-CPU 422 * element of the srcu_struct. Note that this may well be a different 423 * CPU than that which was incremented by the corresponding srcu_read_lock(). 424 */ 425 void __srcu_read_unlock(struct srcu_struct *sp, int idx) 426 { 427 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 428 this_cpu_inc(sp->sda->srcu_unlock_count[idx]); 429 } 430 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 431 432 /* 433 * We use an adaptive strategy for synchronize_srcu() and especially for 434 * synchronize_srcu_expedited(). We spin for a fixed time period 435 * (defined below) to allow SRCU readers to exit their read-side critical 436 * sections. If there are still some readers after a few microseconds, 437 * we repeatedly block for 1-millisecond time periods. 438 */ 439 #define SRCU_RETRY_CHECK_DELAY 5 440 441 /* 442 * Start an SRCU grace period. 443 */ 444 static void srcu_gp_start(struct srcu_struct *sp) 445 { 446 struct srcu_data *sdp = this_cpu_ptr(sp->sda); 447 int state; 448 449 lockdep_assert_held(&ACCESS_PRIVATE(sp, lock)); 450 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 451 rcu_segcblist_advance(&sdp->srcu_cblist, 452 rcu_seq_current(&sp->srcu_gp_seq)); 453 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 454 rcu_seq_snap(&sp->srcu_gp_seq)); 455 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 456 rcu_seq_start(&sp->srcu_gp_seq); 457 state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 458 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 459 } 460 461 /* 462 * Track online CPUs to guide callback workqueue placement. 463 */ 464 DEFINE_PER_CPU(bool, srcu_online); 465 466 void srcu_online_cpu(unsigned int cpu) 467 { 468 WRITE_ONCE(per_cpu(srcu_online, cpu), true); 469 } 470 471 void srcu_offline_cpu(unsigned int cpu) 472 { 473 WRITE_ONCE(per_cpu(srcu_online, cpu), false); 474 } 475 476 /* 477 * Place the workqueue handler on the specified CPU if online, otherwise 478 * just run it whereever. This is useful for placing workqueue handlers 479 * that are to invoke the specified CPU's callbacks. 480 */ 481 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 482 struct delayed_work *dwork, 483 unsigned long delay) 484 { 485 bool ret; 486 487 preempt_disable(); 488 if (READ_ONCE(per_cpu(srcu_online, cpu))) 489 ret = queue_delayed_work_on(cpu, wq, dwork, delay); 490 else 491 ret = queue_delayed_work(wq, dwork, delay); 492 preempt_enable(); 493 return ret; 494 } 495 496 /* 497 * Schedule callback invocation for the specified srcu_data structure, 498 * if possible, on the corresponding CPU. 499 */ 500 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 501 { 502 srcu_queue_delayed_work_on(sdp->cpu, rcu_gp_wq, &sdp->work, delay); 503 } 504 505 /* 506 * Schedule callback invocation for all srcu_data structures associated 507 * with the specified srcu_node structure that have callbacks for the 508 * just-completed grace period, the one corresponding to idx. If possible, 509 * schedule this invocation on the corresponding CPUs. 510 */ 511 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp, 512 unsigned long mask, unsigned long delay) 513 { 514 int cpu; 515 516 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 517 if (!(mask & (1 << (cpu - snp->grplo)))) 518 continue; 519 srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay); 520 } 521 } 522 523 /* 524 * Note the end of an SRCU grace period. Initiates callback invocation 525 * and starts a new grace period if needed. 526 * 527 * The ->srcu_cb_mutex acquisition does not protect any data, but 528 * instead prevents more than one grace period from starting while we 529 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 530 * array to have a finite number of elements. 531 */ 532 static void srcu_gp_end(struct srcu_struct *sp) 533 { 534 unsigned long cbdelay; 535 bool cbs; 536 bool last_lvl; 537 int cpu; 538 unsigned long flags; 539 unsigned long gpseq; 540 int idx; 541 unsigned long mask; 542 struct srcu_data *sdp; 543 struct srcu_node *snp; 544 545 /* Prevent more than one additional grace period. */ 546 mutex_lock(&sp->srcu_cb_mutex); 547 548 /* End the current grace period. */ 549 spin_lock_irq_rcu_node(sp); 550 idx = rcu_seq_state(sp->srcu_gp_seq); 551 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 552 cbdelay = srcu_get_delay(sp); 553 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 554 rcu_seq_end(&sp->srcu_gp_seq); 555 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 556 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq)) 557 sp->srcu_gp_seq_needed_exp = gpseq; 558 spin_unlock_irq_rcu_node(sp); 559 mutex_unlock(&sp->srcu_gp_mutex); 560 /* A new grace period can start at this point. But only one. */ 561 562 /* Initiate callback invocation as needed. */ 563 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 564 rcu_for_each_node_breadth_first(sp, snp) { 565 spin_lock_irq_rcu_node(snp); 566 cbs = false; 567 last_lvl = snp >= sp->level[rcu_num_lvls - 1]; 568 if (last_lvl) 569 cbs = snp->srcu_have_cbs[idx] == gpseq; 570 snp->srcu_have_cbs[idx] = gpseq; 571 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 572 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 573 snp->srcu_gp_seq_needed_exp = gpseq; 574 mask = snp->srcu_data_have_cbs[idx]; 575 snp->srcu_data_have_cbs[idx] = 0; 576 spin_unlock_irq_rcu_node(snp); 577 if (cbs) 578 srcu_schedule_cbs_snp(sp, snp, mask, cbdelay); 579 580 /* Occasionally prevent srcu_data counter wrap. */ 581 if (!(gpseq & counter_wrap_check) && last_lvl) 582 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 583 sdp = per_cpu_ptr(sp->sda, cpu); 584 spin_lock_irqsave_rcu_node(sdp, flags); 585 if (ULONG_CMP_GE(gpseq, 586 sdp->srcu_gp_seq_needed + 100)) 587 sdp->srcu_gp_seq_needed = gpseq; 588 if (ULONG_CMP_GE(gpseq, 589 sdp->srcu_gp_seq_needed_exp + 100)) 590 sdp->srcu_gp_seq_needed_exp = gpseq; 591 spin_unlock_irqrestore_rcu_node(sdp, flags); 592 } 593 } 594 595 /* Callback initiation done, allow grace periods after next. */ 596 mutex_unlock(&sp->srcu_cb_mutex); 597 598 /* Start a new grace period if needed. */ 599 spin_lock_irq_rcu_node(sp); 600 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 601 if (!rcu_seq_state(gpseq) && 602 ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) { 603 srcu_gp_start(sp); 604 spin_unlock_irq_rcu_node(sp); 605 srcu_reschedule(sp, 0); 606 } else { 607 spin_unlock_irq_rcu_node(sp); 608 } 609 } 610 611 /* 612 * Funnel-locking scheme to scalably mediate many concurrent expedited 613 * grace-period requests. This function is invoked for the first known 614 * expedited request for a grace period that has already been requested, 615 * but without expediting. To start a completely new grace period, 616 * whether expedited or not, use srcu_funnel_gp_start() instead. 617 */ 618 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp, 619 unsigned long s) 620 { 621 unsigned long flags; 622 623 for (; snp != NULL; snp = snp->srcu_parent) { 624 if (rcu_seq_done(&sp->srcu_gp_seq, s) || 625 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 626 return; 627 spin_lock_irqsave_rcu_node(snp, flags); 628 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 629 spin_unlock_irqrestore_rcu_node(snp, flags); 630 return; 631 } 632 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 633 spin_unlock_irqrestore_rcu_node(snp, flags); 634 } 635 spin_lock_irqsave_rcu_node(sp, flags); 636 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 637 sp->srcu_gp_seq_needed_exp = s; 638 spin_unlock_irqrestore_rcu_node(sp, flags); 639 } 640 641 /* 642 * Funnel-locking scheme to scalably mediate many concurrent grace-period 643 * requests. The winner has to do the work of actually starting grace 644 * period s. Losers must either ensure that their desired grace-period 645 * number is recorded on at least their leaf srcu_node structure, or they 646 * must take steps to invoke their own callbacks. 647 * 648 * Note that this function also does the work of srcu_funnel_exp_start(), 649 * in some cases by directly invoking it. 650 */ 651 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp, 652 unsigned long s, bool do_norm) 653 { 654 unsigned long flags; 655 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 656 struct srcu_node *snp = sdp->mynode; 657 unsigned long snp_seq; 658 659 /* Each pass through the loop does one level of the srcu_node tree. */ 660 for (; snp != NULL; snp = snp->srcu_parent) { 661 if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode) 662 return; /* GP already done and CBs recorded. */ 663 spin_lock_irqsave_rcu_node(snp, flags); 664 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 665 snp_seq = snp->srcu_have_cbs[idx]; 666 if (snp == sdp->mynode && snp_seq == s) 667 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 668 spin_unlock_irqrestore_rcu_node(snp, flags); 669 if (snp == sdp->mynode && snp_seq != s) { 670 srcu_schedule_cbs_sdp(sdp, do_norm 671 ? SRCU_INTERVAL 672 : 0); 673 return; 674 } 675 if (!do_norm) 676 srcu_funnel_exp_start(sp, snp, s); 677 return; 678 } 679 snp->srcu_have_cbs[idx] = s; 680 if (snp == sdp->mynode) 681 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 682 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 683 snp->srcu_gp_seq_needed_exp = s; 684 spin_unlock_irqrestore_rcu_node(snp, flags); 685 } 686 687 /* Top of tree, must ensure the grace period will be started. */ 688 spin_lock_irqsave_rcu_node(sp, flags); 689 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) { 690 /* 691 * Record need for grace period s. Pair with load 692 * acquire setting up for initialization. 693 */ 694 smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/ 695 } 696 if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 697 sp->srcu_gp_seq_needed_exp = s; 698 699 /* If grace period not already done and none in progress, start it. */ 700 if (!rcu_seq_done(&sp->srcu_gp_seq, s) && 701 rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) { 702 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 703 srcu_gp_start(sp); 704 queue_delayed_work(rcu_gp_wq, &sp->work, srcu_get_delay(sp)); 705 } 706 spin_unlock_irqrestore_rcu_node(sp, flags); 707 } 708 709 /* 710 * Wait until all readers counted by array index idx complete, but 711 * loop an additional time if there is an expedited grace period pending. 712 * The caller must ensure that ->srcu_idx is not changed while checking. 713 */ 714 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount) 715 { 716 for (;;) { 717 if (srcu_readers_active_idx_check(sp, idx)) 718 return true; 719 if (--trycount + !srcu_get_delay(sp) <= 0) 720 return false; 721 udelay(SRCU_RETRY_CHECK_DELAY); 722 } 723 } 724 725 /* 726 * Increment the ->srcu_idx counter so that future SRCU readers will 727 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 728 * us to wait for pre-existing readers in a starvation-free manner. 729 */ 730 static void srcu_flip(struct srcu_struct *sp) 731 { 732 /* 733 * Ensure that if this updater saw a given reader's increment 734 * from __srcu_read_lock(), that reader was using an old value 735 * of ->srcu_idx. Also ensure that if a given reader sees the 736 * new value of ->srcu_idx, this updater's earlier scans cannot 737 * have seen that reader's increments (which is OK, because this 738 * grace period need not wait on that reader). 739 */ 740 smp_mb(); /* E */ /* Pairs with B and C. */ 741 742 WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1); 743 744 /* 745 * Ensure that if the updater misses an __srcu_read_unlock() 746 * increment, that task's next __srcu_read_lock() will see the 747 * above counter update. Note that both this memory barrier 748 * and the one in srcu_readers_active_idx_check() provide the 749 * guarantee for __srcu_read_lock(). 750 */ 751 smp_mb(); /* D */ /* Pairs with C. */ 752 } 753 754 /* 755 * If SRCU is likely idle, return true, otherwise return false. 756 * 757 * Note that it is OK for several current from-idle requests for a new 758 * grace period from idle to specify expediting because they will all end 759 * up requesting the same grace period anyhow. So no loss. 760 * 761 * Note also that if any CPU (including the current one) is still invoking 762 * callbacks, this function will nevertheless say "idle". This is not 763 * ideal, but the overhead of checking all CPUs' callback lists is even 764 * less ideal, especially on large systems. Furthermore, the wakeup 765 * can happen before the callback is fully removed, so we have no choice 766 * but to accept this type of error. 767 * 768 * This function is also subject to counter-wrap errors, but let's face 769 * it, if this function was preempted for enough time for the counters 770 * to wrap, it really doesn't matter whether or not we expedite the grace 771 * period. The extra overhead of a needlessly expedited grace period is 772 * negligible when amoritized over that time period, and the extra latency 773 * of a needlessly non-expedited grace period is similarly negligible. 774 */ 775 static bool srcu_might_be_idle(struct srcu_struct *sp) 776 { 777 unsigned long curseq; 778 unsigned long flags; 779 struct srcu_data *sdp; 780 unsigned long t; 781 782 /* If the local srcu_data structure has callbacks, not idle. */ 783 local_irq_save(flags); 784 sdp = this_cpu_ptr(sp->sda); 785 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 786 local_irq_restore(flags); 787 return false; /* Callbacks already present, so not idle. */ 788 } 789 local_irq_restore(flags); 790 791 /* 792 * No local callbacks, so probabalistically probe global state. 793 * Exact information would require acquiring locks, which would 794 * kill scalability, hence the probabalistic nature of the probe. 795 */ 796 797 /* First, see if enough time has passed since the last GP. */ 798 t = ktime_get_mono_fast_ns(); 799 if (exp_holdoff == 0 || 800 time_in_range_open(t, sp->srcu_last_gp_end, 801 sp->srcu_last_gp_end + exp_holdoff)) 802 return false; /* Too soon after last GP. */ 803 804 /* Next, check for probable idleness. */ 805 curseq = rcu_seq_current(&sp->srcu_gp_seq); 806 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 807 if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed))) 808 return false; /* Grace period in progress, so not idle. */ 809 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 810 if (curseq != rcu_seq_current(&sp->srcu_gp_seq)) 811 return false; /* GP # changed, so not idle. */ 812 return true; /* With reasonable probability, idle! */ 813 } 814 815 /* 816 * SRCU callback function to leak a callback. 817 */ 818 static void srcu_leak_callback(struct rcu_head *rhp) 819 { 820 } 821 822 /* 823 * Enqueue an SRCU callback on the srcu_data structure associated with 824 * the current CPU and the specified srcu_struct structure, initiating 825 * grace-period processing if it is not already running. 826 * 827 * Note that all CPUs must agree that the grace period extended beyond 828 * all pre-existing SRCU read-side critical section. On systems with 829 * more than one CPU, this means that when "func()" is invoked, each CPU 830 * is guaranteed to have executed a full memory barrier since the end of 831 * its last corresponding SRCU read-side critical section whose beginning 832 * preceded the call to call_srcu(). It also means that each CPU executing 833 * an SRCU read-side critical section that continues beyond the start of 834 * "func()" must have executed a memory barrier after the call_srcu() 835 * but before the beginning of that SRCU read-side critical section. 836 * Note that these guarantees include CPUs that are offline, idle, or 837 * executing in user mode, as well as CPUs that are executing in the kernel. 838 * 839 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 840 * resulting SRCU callback function "func()", then both CPU A and CPU 841 * B are guaranteed to execute a full memory barrier during the time 842 * interval between the call to call_srcu() and the invocation of "func()". 843 * This guarantee applies even if CPU A and CPU B are the same CPU (but 844 * again only if the system has more than one CPU). 845 * 846 * Of course, these guarantees apply only for invocations of call_srcu(), 847 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 848 * srcu_struct structure. 849 */ 850 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 851 rcu_callback_t func, bool do_norm) 852 { 853 unsigned long flags; 854 bool needexp = false; 855 bool needgp = false; 856 unsigned long s; 857 struct srcu_data *sdp; 858 859 check_init_srcu_struct(sp); 860 if (debug_rcu_head_queue(rhp)) { 861 /* Probable double call_srcu(), so leak the callback. */ 862 WRITE_ONCE(rhp->func, srcu_leak_callback); 863 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 864 return; 865 } 866 rhp->func = func; 867 local_irq_save(flags); 868 sdp = this_cpu_ptr(sp->sda); 869 spin_lock_rcu_node(sdp); 870 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false); 871 rcu_segcblist_advance(&sdp->srcu_cblist, 872 rcu_seq_current(&sp->srcu_gp_seq)); 873 s = rcu_seq_snap(&sp->srcu_gp_seq); 874 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 875 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 876 sdp->srcu_gp_seq_needed = s; 877 needgp = true; 878 } 879 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 880 sdp->srcu_gp_seq_needed_exp = s; 881 needexp = true; 882 } 883 spin_unlock_irqrestore_rcu_node(sdp, flags); 884 if (needgp) 885 srcu_funnel_gp_start(sp, sdp, s, do_norm); 886 else if (needexp) 887 srcu_funnel_exp_start(sp, sdp->mynode, s); 888 } 889 890 /** 891 * call_srcu() - Queue a callback for invocation after an SRCU grace period 892 * @sp: srcu_struct in queue the callback 893 * @rhp: structure to be used for queueing the SRCU callback. 894 * @func: function to be invoked after the SRCU grace period 895 * 896 * The callback function will be invoked some time after a full SRCU 897 * grace period elapses, in other words after all pre-existing SRCU 898 * read-side critical sections have completed. However, the callback 899 * function might well execute concurrently with other SRCU read-side 900 * critical sections that started after call_srcu() was invoked. SRCU 901 * read-side critical sections are delimited by srcu_read_lock() and 902 * srcu_read_unlock(), and may be nested. 903 * 904 * The callback will be invoked from process context, but must nevertheless 905 * be fast and must not block. 906 */ 907 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 908 rcu_callback_t func) 909 { 910 __call_srcu(sp, rhp, func, true); 911 } 912 EXPORT_SYMBOL_GPL(call_srcu); 913 914 /* 915 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 916 */ 917 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm) 918 { 919 struct rcu_synchronize rcu; 920 921 RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) || 922 lock_is_held(&rcu_bh_lock_map) || 923 lock_is_held(&rcu_lock_map) || 924 lock_is_held(&rcu_sched_lock_map), 925 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 926 927 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 928 return; 929 might_sleep(); 930 check_init_srcu_struct(sp); 931 init_completion(&rcu.completion); 932 init_rcu_head_on_stack(&rcu.head); 933 __call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm); 934 wait_for_completion(&rcu.completion); 935 destroy_rcu_head_on_stack(&rcu.head); 936 937 /* 938 * Make sure that later code is ordered after the SRCU grace 939 * period. This pairs with the spin_lock_irq_rcu_node() 940 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 941 * because the current CPU might have been totally uninvolved with 942 * (and thus unordered against) that grace period. 943 */ 944 smp_mb(); 945 } 946 947 /** 948 * synchronize_srcu_expedited - Brute-force SRCU grace period 949 * @sp: srcu_struct with which to synchronize. 950 * 951 * Wait for an SRCU grace period to elapse, but be more aggressive about 952 * spinning rather than blocking when waiting. 953 * 954 * Note that synchronize_srcu_expedited() has the same deadlock and 955 * memory-ordering properties as does synchronize_srcu(). 956 */ 957 void synchronize_srcu_expedited(struct srcu_struct *sp) 958 { 959 __synchronize_srcu(sp, rcu_gp_is_normal()); 960 } 961 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 962 963 /** 964 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 965 * @sp: srcu_struct with which to synchronize. 966 * 967 * Wait for the count to drain to zero of both indexes. To avoid the 968 * possible starvation of synchronize_srcu(), it waits for the count of 969 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 970 * and then flip the srcu_idx and wait for the count of the other index. 971 * 972 * Can block; must be called from process context. 973 * 974 * Note that it is illegal to call synchronize_srcu() from the corresponding 975 * SRCU read-side critical section; doing so will result in deadlock. 976 * However, it is perfectly legal to call synchronize_srcu() on one 977 * srcu_struct from some other srcu_struct's read-side critical section, 978 * as long as the resulting graph of srcu_structs is acyclic. 979 * 980 * There are memory-ordering constraints implied by synchronize_srcu(). 981 * On systems with more than one CPU, when synchronize_srcu() returns, 982 * each CPU is guaranteed to have executed a full memory barrier since 983 * the end of its last corresponding SRCU-sched read-side critical section 984 * whose beginning preceded the call to synchronize_srcu(). In addition, 985 * each CPU having an SRCU read-side critical section that extends beyond 986 * the return from synchronize_srcu() is guaranteed to have executed a 987 * full memory barrier after the beginning of synchronize_srcu() and before 988 * the beginning of that SRCU read-side critical section. Note that these 989 * guarantees include CPUs that are offline, idle, or executing in user mode, 990 * as well as CPUs that are executing in the kernel. 991 * 992 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 993 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 994 * to have executed a full memory barrier during the execution of 995 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 996 * are the same CPU, but again only if the system has more than one CPU. 997 * 998 * Of course, these memory-ordering guarantees apply only when 999 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1000 * passed the same srcu_struct structure. 1001 * 1002 * If SRCU is likely idle, expedite the first request. This semantic 1003 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1004 * SRCU must also provide it. Note that detecting idleness is heuristic 1005 * and subject to both false positives and negatives. 1006 */ 1007 void synchronize_srcu(struct srcu_struct *sp) 1008 { 1009 if (srcu_might_be_idle(sp) || rcu_gp_is_expedited()) 1010 synchronize_srcu_expedited(sp); 1011 else 1012 __synchronize_srcu(sp, true); 1013 } 1014 EXPORT_SYMBOL_GPL(synchronize_srcu); 1015 1016 /* 1017 * Callback function for srcu_barrier() use. 1018 */ 1019 static void srcu_barrier_cb(struct rcu_head *rhp) 1020 { 1021 struct srcu_data *sdp; 1022 struct srcu_struct *sp; 1023 1024 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1025 sp = sdp->sp; 1026 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 1027 complete(&sp->srcu_barrier_completion); 1028 } 1029 1030 /** 1031 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1032 * @sp: srcu_struct on which to wait for in-flight callbacks. 1033 */ 1034 void srcu_barrier(struct srcu_struct *sp) 1035 { 1036 int cpu; 1037 struct srcu_data *sdp; 1038 unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq); 1039 1040 check_init_srcu_struct(sp); 1041 mutex_lock(&sp->srcu_barrier_mutex); 1042 if (rcu_seq_done(&sp->srcu_barrier_seq, s)) { 1043 smp_mb(); /* Force ordering following return. */ 1044 mutex_unlock(&sp->srcu_barrier_mutex); 1045 return; /* Someone else did our work for us. */ 1046 } 1047 rcu_seq_start(&sp->srcu_barrier_seq); 1048 init_completion(&sp->srcu_barrier_completion); 1049 1050 /* Initial count prevents reaching zero until all CBs are posted. */ 1051 atomic_set(&sp->srcu_barrier_cpu_cnt, 1); 1052 1053 /* 1054 * Each pass through this loop enqueues a callback, but only 1055 * on CPUs already having callbacks enqueued. Note that if 1056 * a CPU already has callbacks enqueue, it must have already 1057 * registered the need for a future grace period, so all we 1058 * need do is enqueue a callback that will use the same 1059 * grace period as the last callback already in the queue. 1060 */ 1061 for_each_possible_cpu(cpu) { 1062 sdp = per_cpu_ptr(sp->sda, cpu); 1063 spin_lock_irq_rcu_node(sdp); 1064 atomic_inc(&sp->srcu_barrier_cpu_cnt); 1065 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1066 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1067 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1068 &sdp->srcu_barrier_head, 0)) { 1069 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1070 atomic_dec(&sp->srcu_barrier_cpu_cnt); 1071 } 1072 spin_unlock_irq_rcu_node(sdp); 1073 } 1074 1075 /* Remove the initial count, at which point reaching zero can happen. */ 1076 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 1077 complete(&sp->srcu_barrier_completion); 1078 wait_for_completion(&sp->srcu_barrier_completion); 1079 1080 rcu_seq_end(&sp->srcu_barrier_seq); 1081 mutex_unlock(&sp->srcu_barrier_mutex); 1082 } 1083 EXPORT_SYMBOL_GPL(srcu_barrier); 1084 1085 /** 1086 * srcu_batches_completed - return batches completed. 1087 * @sp: srcu_struct on which to report batch completion. 1088 * 1089 * Report the number of batches, correlated with, but not necessarily 1090 * precisely the same as, the number of grace periods that have elapsed. 1091 */ 1092 unsigned long srcu_batches_completed(struct srcu_struct *sp) 1093 { 1094 return sp->srcu_idx; 1095 } 1096 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1097 1098 /* 1099 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1100 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1101 * completed in that state. 1102 */ 1103 static void srcu_advance_state(struct srcu_struct *sp) 1104 { 1105 int idx; 1106 1107 mutex_lock(&sp->srcu_gp_mutex); 1108 1109 /* 1110 * Because readers might be delayed for an extended period after 1111 * fetching ->srcu_idx for their index, at any point in time there 1112 * might well be readers using both idx=0 and idx=1. We therefore 1113 * need to wait for readers to clear from both index values before 1114 * invoking a callback. 1115 * 1116 * The load-acquire ensures that we see the accesses performed 1117 * by the prior grace period. 1118 */ 1119 idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */ 1120 if (idx == SRCU_STATE_IDLE) { 1121 spin_lock_irq_rcu_node(sp); 1122 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1123 WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq)); 1124 spin_unlock_irq_rcu_node(sp); 1125 mutex_unlock(&sp->srcu_gp_mutex); 1126 return; 1127 } 1128 idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 1129 if (idx == SRCU_STATE_IDLE) 1130 srcu_gp_start(sp); 1131 spin_unlock_irq_rcu_node(sp); 1132 if (idx != SRCU_STATE_IDLE) { 1133 mutex_unlock(&sp->srcu_gp_mutex); 1134 return; /* Someone else started the grace period. */ 1135 } 1136 } 1137 1138 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1139 idx = 1 ^ (sp->srcu_idx & 1); 1140 if (!try_check_zero(sp, idx, 1)) { 1141 mutex_unlock(&sp->srcu_gp_mutex); 1142 return; /* readers present, retry later. */ 1143 } 1144 srcu_flip(sp); 1145 rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2); 1146 } 1147 1148 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1149 1150 /* 1151 * SRCU read-side critical sections are normally short, 1152 * so check at least twice in quick succession after a flip. 1153 */ 1154 idx = 1 ^ (sp->srcu_idx & 1); 1155 if (!try_check_zero(sp, idx, 2)) { 1156 mutex_unlock(&sp->srcu_gp_mutex); 1157 return; /* readers present, retry later. */ 1158 } 1159 srcu_gp_end(sp); /* Releases ->srcu_gp_mutex. */ 1160 } 1161 } 1162 1163 /* 1164 * Invoke a limited number of SRCU callbacks that have passed through 1165 * their grace period. If there are more to do, SRCU will reschedule 1166 * the workqueue. Note that needed memory barriers have been executed 1167 * in this task's context by srcu_readers_active_idx_check(). 1168 */ 1169 static void srcu_invoke_callbacks(struct work_struct *work) 1170 { 1171 bool more; 1172 struct rcu_cblist ready_cbs; 1173 struct rcu_head *rhp; 1174 struct srcu_data *sdp; 1175 struct srcu_struct *sp; 1176 1177 sdp = container_of(work, struct srcu_data, work.work); 1178 sp = sdp->sp; 1179 rcu_cblist_init(&ready_cbs); 1180 spin_lock_irq_rcu_node(sdp); 1181 rcu_segcblist_advance(&sdp->srcu_cblist, 1182 rcu_seq_current(&sp->srcu_gp_seq)); 1183 if (sdp->srcu_cblist_invoking || 1184 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1185 spin_unlock_irq_rcu_node(sdp); 1186 return; /* Someone else on the job or nothing to do. */ 1187 } 1188 1189 /* We are on the job! Extract and invoke ready callbacks. */ 1190 sdp->srcu_cblist_invoking = true; 1191 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1192 spin_unlock_irq_rcu_node(sdp); 1193 rhp = rcu_cblist_dequeue(&ready_cbs); 1194 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1195 debug_rcu_head_unqueue(rhp); 1196 local_bh_disable(); 1197 rhp->func(rhp); 1198 local_bh_enable(); 1199 } 1200 1201 /* 1202 * Update counts, accelerate new callbacks, and if needed, 1203 * schedule another round of callback invocation. 1204 */ 1205 spin_lock_irq_rcu_node(sdp); 1206 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); 1207 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1208 rcu_seq_snap(&sp->srcu_gp_seq)); 1209 sdp->srcu_cblist_invoking = false; 1210 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1211 spin_unlock_irq_rcu_node(sdp); 1212 if (more) 1213 srcu_schedule_cbs_sdp(sdp, 0); 1214 } 1215 1216 /* 1217 * Finished one round of SRCU grace period. Start another if there are 1218 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1219 */ 1220 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay) 1221 { 1222 bool pushgp = true; 1223 1224 spin_lock_irq_rcu_node(sp); 1225 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1226 if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) { 1227 /* All requests fulfilled, time to go idle. */ 1228 pushgp = false; 1229 } 1230 } else if (!rcu_seq_state(sp->srcu_gp_seq)) { 1231 /* Outstanding request and no GP. Start one. */ 1232 srcu_gp_start(sp); 1233 } 1234 spin_unlock_irq_rcu_node(sp); 1235 1236 if (pushgp) 1237 queue_delayed_work(rcu_gp_wq, &sp->work, delay); 1238 } 1239 1240 /* 1241 * This is the work-queue function that handles SRCU grace periods. 1242 */ 1243 static void process_srcu(struct work_struct *work) 1244 { 1245 struct srcu_struct *sp; 1246 1247 sp = container_of(work, struct srcu_struct, work.work); 1248 1249 srcu_advance_state(sp); 1250 srcu_reschedule(sp, srcu_get_delay(sp)); 1251 } 1252 1253 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1254 struct srcu_struct *sp, int *flags, 1255 unsigned long *gp_seq) 1256 { 1257 if (test_type != SRCU_FLAVOR) 1258 return; 1259 *flags = 0; 1260 *gp_seq = rcu_seq_current(&sp->srcu_gp_seq); 1261 } 1262 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1263 1264 void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf) 1265 { 1266 int cpu; 1267 int idx; 1268 unsigned long s0 = 0, s1 = 0; 1269 1270 idx = sp->srcu_idx & 0x1; 1271 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):", 1272 tt, tf, rcu_seq_current(&sp->srcu_gp_seq), idx); 1273 for_each_possible_cpu(cpu) { 1274 unsigned long l0, l1; 1275 unsigned long u0, u1; 1276 long c0, c1; 1277 struct srcu_data *sdp; 1278 1279 sdp = per_cpu_ptr(sp->sda, cpu); 1280 u0 = sdp->srcu_unlock_count[!idx]; 1281 u1 = sdp->srcu_unlock_count[idx]; 1282 1283 /* 1284 * Make sure that a lock is always counted if the corresponding 1285 * unlock is counted. 1286 */ 1287 smp_rmb(); 1288 1289 l0 = sdp->srcu_lock_count[!idx]; 1290 l1 = sdp->srcu_lock_count[idx]; 1291 1292 c0 = l0 - u0; 1293 c1 = l1 - u1; 1294 pr_cont(" %d(%ld,%ld %1p)", 1295 cpu, c0, c1, rcu_segcblist_head(&sdp->srcu_cblist)); 1296 s0 += c0; 1297 s1 += c1; 1298 } 1299 pr_cont(" T(%ld,%ld)\n", s0, s1); 1300 } 1301 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1302 1303 static int __init srcu_bootup_announce(void) 1304 { 1305 pr_info("Hierarchical SRCU implementation.\n"); 1306 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1307 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1308 return 0; 1309 } 1310 early_initcall(srcu_bootup_announce); 1311