1 /* 2 * Sleepable Read-Copy Update mechanism for mutual exclusion. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright (C) IBM Corporation, 2006 19 * Copyright (C) Fujitsu, 2012 20 * 21 * Author: Paul McKenney <paulmck@us.ibm.com> 22 * Lai Jiangshan <laijs@cn.fujitsu.com> 23 * 24 * For detailed explanation of Read-Copy Update mechanism see - 25 * Documentation/RCU/ *.txt 26 * 27 */ 28 29 #include <linux/export.h> 30 #include <linux/mutex.h> 31 #include <linux/percpu.h> 32 #include <linux/preempt.h> 33 #include <linux/rcupdate_wait.h> 34 #include <linux/sched.h> 35 #include <linux/smp.h> 36 #include <linux/delay.h> 37 #include <linux/module.h> 38 #include <linux/srcu.h> 39 40 #include "rcu.h" 41 #include "rcu_segcblist.h" 42 43 /* Holdoff in nanoseconds for auto-expediting. */ 44 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 45 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 46 module_param(exp_holdoff, ulong, 0444); 47 48 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 49 static ulong counter_wrap_check = (ULONG_MAX >> 2); 50 module_param(counter_wrap_check, ulong, 0444); 51 52 static void srcu_invoke_callbacks(struct work_struct *work); 53 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay); 54 static void process_srcu(struct work_struct *work); 55 56 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 57 #define spin_lock_rcu_node(p) \ 58 do { \ 59 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 60 smp_mb__after_unlock_lock(); \ 61 } while (0) 62 63 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 64 65 #define spin_lock_irq_rcu_node(p) \ 66 do { \ 67 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 68 smp_mb__after_unlock_lock(); \ 69 } while (0) 70 71 #define spin_unlock_irq_rcu_node(p) \ 72 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 73 74 #define spin_lock_irqsave_rcu_node(p, flags) \ 75 do { \ 76 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 77 smp_mb__after_unlock_lock(); \ 78 } while (0) 79 80 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 81 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 82 83 /* 84 * Initialize SRCU combining tree. Note that statically allocated 85 * srcu_struct structures might already have srcu_read_lock() and 86 * srcu_read_unlock() running against them. So if the is_static parameter 87 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 88 */ 89 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static) 90 { 91 int cpu; 92 int i; 93 int level = 0; 94 int levelspread[RCU_NUM_LVLS]; 95 struct srcu_data *sdp; 96 struct srcu_node *snp; 97 struct srcu_node *snp_first; 98 99 /* Work out the overall tree geometry. */ 100 sp->level[0] = &sp->node[0]; 101 for (i = 1; i < rcu_num_lvls; i++) 102 sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1]; 103 rcu_init_levelspread(levelspread, num_rcu_lvl); 104 105 /* Each pass through this loop initializes one srcu_node structure. */ 106 rcu_for_each_node_breadth_first(sp, snp) { 107 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 108 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 109 ARRAY_SIZE(snp->srcu_data_have_cbs)); 110 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 111 snp->srcu_have_cbs[i] = 0; 112 snp->srcu_data_have_cbs[i] = 0; 113 } 114 snp->srcu_gp_seq_needed_exp = 0; 115 snp->grplo = -1; 116 snp->grphi = -1; 117 if (snp == &sp->node[0]) { 118 /* Root node, special case. */ 119 snp->srcu_parent = NULL; 120 continue; 121 } 122 123 /* Non-root node. */ 124 if (snp == sp->level[level + 1]) 125 level++; 126 snp->srcu_parent = sp->level[level - 1] + 127 (snp - sp->level[level]) / 128 levelspread[level - 1]; 129 } 130 131 /* 132 * Initialize the per-CPU srcu_data array, which feeds into the 133 * leaves of the srcu_node tree. 134 */ 135 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 136 ARRAY_SIZE(sdp->srcu_unlock_count)); 137 level = rcu_num_lvls - 1; 138 snp_first = sp->level[level]; 139 for_each_possible_cpu(cpu) { 140 sdp = per_cpu_ptr(sp->sda, cpu); 141 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 142 rcu_segcblist_init(&sdp->srcu_cblist); 143 sdp->srcu_cblist_invoking = false; 144 sdp->srcu_gp_seq_needed = sp->srcu_gp_seq; 145 sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq; 146 sdp->mynode = &snp_first[cpu / levelspread[level]]; 147 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 148 if (snp->grplo < 0) 149 snp->grplo = cpu; 150 snp->grphi = cpu; 151 } 152 sdp->cpu = cpu; 153 INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks); 154 sdp->sp = sp; 155 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 156 if (is_static) 157 continue; 158 159 /* Dynamically allocated, better be no srcu_read_locks()! */ 160 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 161 sdp->srcu_lock_count[i] = 0; 162 sdp->srcu_unlock_count[i] = 0; 163 } 164 } 165 } 166 167 /* 168 * Initialize non-compile-time initialized fields, including the 169 * associated srcu_node and srcu_data structures. The is_static 170 * parameter is passed through to init_srcu_struct_nodes(), and 171 * also tells us that ->sda has already been wired up to srcu_data. 172 */ 173 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static) 174 { 175 mutex_init(&sp->srcu_cb_mutex); 176 mutex_init(&sp->srcu_gp_mutex); 177 sp->srcu_idx = 0; 178 sp->srcu_gp_seq = 0; 179 sp->srcu_barrier_seq = 0; 180 mutex_init(&sp->srcu_barrier_mutex); 181 atomic_set(&sp->srcu_barrier_cpu_cnt, 0); 182 INIT_DELAYED_WORK(&sp->work, process_srcu); 183 if (!is_static) 184 sp->sda = alloc_percpu(struct srcu_data); 185 init_srcu_struct_nodes(sp, is_static); 186 sp->srcu_gp_seq_needed_exp = 0; 187 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 188 smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */ 189 return sp->sda ? 0 : -ENOMEM; 190 } 191 192 #ifdef CONFIG_DEBUG_LOCK_ALLOC 193 194 int __init_srcu_struct(struct srcu_struct *sp, const char *name, 195 struct lock_class_key *key) 196 { 197 /* Don't re-initialize a lock while it is held. */ 198 debug_check_no_locks_freed((void *)sp, sizeof(*sp)); 199 lockdep_init_map(&sp->dep_map, name, key, 0); 200 spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 201 return init_srcu_struct_fields(sp, false); 202 } 203 EXPORT_SYMBOL_GPL(__init_srcu_struct); 204 205 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 206 207 /** 208 * init_srcu_struct - initialize a sleep-RCU structure 209 * @sp: structure to initialize. 210 * 211 * Must invoke this on a given srcu_struct before passing that srcu_struct 212 * to any other function. Each srcu_struct represents a separate domain 213 * of SRCU protection. 214 */ 215 int init_srcu_struct(struct srcu_struct *sp) 216 { 217 spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 218 return init_srcu_struct_fields(sp, false); 219 } 220 EXPORT_SYMBOL_GPL(init_srcu_struct); 221 222 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 223 224 /* 225 * First-use initialization of statically allocated srcu_struct 226 * structure. Wiring up the combining tree is more than can be 227 * done with compile-time initialization, so this check is added 228 * to each update-side SRCU primitive. Use sp->lock, which -is- 229 * compile-time initialized, to resolve races involving multiple 230 * CPUs trying to garner first-use privileges. 231 */ 232 static void check_init_srcu_struct(struct srcu_struct *sp) 233 { 234 unsigned long flags; 235 236 WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT); 237 /* The smp_load_acquire() pairs with the smp_store_release(). */ 238 if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/ 239 return; /* Already initialized. */ 240 spin_lock_irqsave_rcu_node(sp, flags); 241 if (!rcu_seq_state(sp->srcu_gp_seq_needed)) { 242 spin_unlock_irqrestore_rcu_node(sp, flags); 243 return; 244 } 245 init_srcu_struct_fields(sp, true); 246 spin_unlock_irqrestore_rcu_node(sp, flags); 247 } 248 249 /* 250 * Returns approximate total of the readers' ->srcu_lock_count[] values 251 * for the rank of per-CPU counters specified by idx. 252 */ 253 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx) 254 { 255 int cpu; 256 unsigned long sum = 0; 257 258 for_each_possible_cpu(cpu) { 259 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 260 261 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 262 } 263 return sum; 264 } 265 266 /* 267 * Returns approximate total of the readers' ->srcu_unlock_count[] values 268 * for the rank of per-CPU counters specified by idx. 269 */ 270 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx) 271 { 272 int cpu; 273 unsigned long sum = 0; 274 275 for_each_possible_cpu(cpu) { 276 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 277 278 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 279 } 280 return sum; 281 } 282 283 /* 284 * Return true if the number of pre-existing readers is determined to 285 * be zero. 286 */ 287 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx) 288 { 289 unsigned long unlocks; 290 291 unlocks = srcu_readers_unlock_idx(sp, idx); 292 293 /* 294 * Make sure that a lock is always counted if the corresponding 295 * unlock is counted. Needs to be a smp_mb() as the read side may 296 * contain a read from a variable that is written to before the 297 * synchronize_srcu() in the write side. In this case smp_mb()s 298 * A and B act like the store buffering pattern. 299 * 300 * This smp_mb() also pairs with smp_mb() C to prevent accesses 301 * after the synchronize_srcu() from being executed before the 302 * grace period ends. 303 */ 304 smp_mb(); /* A */ 305 306 /* 307 * If the locks are the same as the unlocks, then there must have 308 * been no readers on this index at some time in between. This does 309 * not mean that there are no more readers, as one could have read 310 * the current index but not have incremented the lock counter yet. 311 * 312 * So suppose that the updater is preempted here for so long 313 * that more than ULONG_MAX non-nested readers come and go in 314 * the meantime. It turns out that this cannot result in overflow 315 * because if a reader modifies its unlock count after we read it 316 * above, then that reader's next load of ->srcu_idx is guaranteed 317 * to get the new value, which will cause it to operate on the 318 * other bank of counters, where it cannot contribute to the 319 * overflow of these counters. This means that there is a maximum 320 * of 2*NR_CPUS increments, which cannot overflow given current 321 * systems, especially not on 64-bit systems. 322 * 323 * OK, how about nesting? This does impose a limit on nesting 324 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 325 * especially on 64-bit systems. 326 */ 327 return srcu_readers_lock_idx(sp, idx) == unlocks; 328 } 329 330 /** 331 * srcu_readers_active - returns true if there are readers. and false 332 * otherwise 333 * @sp: which srcu_struct to count active readers (holding srcu_read_lock). 334 * 335 * Note that this is not an atomic primitive, and can therefore suffer 336 * severe errors when invoked on an active srcu_struct. That said, it 337 * can be useful as an error check at cleanup time. 338 */ 339 static bool srcu_readers_active(struct srcu_struct *sp) 340 { 341 int cpu; 342 unsigned long sum = 0; 343 344 for_each_possible_cpu(cpu) { 345 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 346 347 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 348 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 349 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 350 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 351 } 352 return sum; 353 } 354 355 #define SRCU_INTERVAL 1 356 357 /* 358 * Return grace-period delay, zero if there are expedited grace 359 * periods pending, SRCU_INTERVAL otherwise. 360 */ 361 static unsigned long srcu_get_delay(struct srcu_struct *sp) 362 { 363 if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq), 364 READ_ONCE(sp->srcu_gp_seq_needed_exp))) 365 return 0; 366 return SRCU_INTERVAL; 367 } 368 369 /** 370 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 371 * @sp: structure to clean up. 372 * 373 * Must invoke this after you are finished using a given srcu_struct that 374 * was initialized via init_srcu_struct(), else you leak memory. 375 */ 376 void cleanup_srcu_struct(struct srcu_struct *sp) 377 { 378 int cpu; 379 380 if (WARN_ON(!srcu_get_delay(sp))) 381 return; /* Leakage unless caller handles error. */ 382 if (WARN_ON(srcu_readers_active(sp))) 383 return; /* Leakage unless caller handles error. */ 384 flush_delayed_work(&sp->work); 385 for_each_possible_cpu(cpu) 386 flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work); 387 if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 388 WARN_ON(srcu_readers_active(sp))) { 389 pr_info("cleanup_srcu_struct: Active srcu_struct %p state: %d\n", sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq))); 390 return; /* Caller forgot to stop doing call_srcu()? */ 391 } 392 free_percpu(sp->sda); 393 sp->sda = NULL; 394 } 395 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 396 397 /* 398 * Counts the new reader in the appropriate per-CPU element of the 399 * srcu_struct. 400 * Returns an index that must be passed to the matching srcu_read_unlock(). 401 */ 402 int __srcu_read_lock(struct srcu_struct *sp) 403 { 404 int idx; 405 406 idx = READ_ONCE(sp->srcu_idx) & 0x1; 407 this_cpu_inc(sp->sda->srcu_lock_count[idx]); 408 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 409 return idx; 410 } 411 EXPORT_SYMBOL_GPL(__srcu_read_lock); 412 413 /* 414 * Removes the count for the old reader from the appropriate per-CPU 415 * element of the srcu_struct. Note that this may well be a different 416 * CPU than that which was incremented by the corresponding srcu_read_lock(). 417 */ 418 void __srcu_read_unlock(struct srcu_struct *sp, int idx) 419 { 420 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 421 this_cpu_inc(sp->sda->srcu_unlock_count[idx]); 422 } 423 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 424 425 /* 426 * We use an adaptive strategy for synchronize_srcu() and especially for 427 * synchronize_srcu_expedited(). We spin for a fixed time period 428 * (defined below) to allow SRCU readers to exit their read-side critical 429 * sections. If there are still some readers after a few microseconds, 430 * we repeatedly block for 1-millisecond time periods. 431 */ 432 #define SRCU_RETRY_CHECK_DELAY 5 433 434 /* 435 * Start an SRCU grace period. 436 */ 437 static void srcu_gp_start(struct srcu_struct *sp) 438 { 439 struct srcu_data *sdp = this_cpu_ptr(sp->sda); 440 int state; 441 442 lockdep_assert_held(&sp->lock); 443 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 444 rcu_segcblist_advance(&sdp->srcu_cblist, 445 rcu_seq_current(&sp->srcu_gp_seq)); 446 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 447 rcu_seq_snap(&sp->srcu_gp_seq)); 448 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 449 rcu_seq_start(&sp->srcu_gp_seq); 450 state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 451 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 452 } 453 454 /* 455 * Track online CPUs to guide callback workqueue placement. 456 */ 457 DEFINE_PER_CPU(bool, srcu_online); 458 459 void srcu_online_cpu(unsigned int cpu) 460 { 461 WRITE_ONCE(per_cpu(srcu_online, cpu), true); 462 } 463 464 void srcu_offline_cpu(unsigned int cpu) 465 { 466 WRITE_ONCE(per_cpu(srcu_online, cpu), false); 467 } 468 469 /* 470 * Place the workqueue handler on the specified CPU if online, otherwise 471 * just run it whereever. This is useful for placing workqueue handlers 472 * that are to invoke the specified CPU's callbacks. 473 */ 474 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 475 struct delayed_work *dwork, 476 unsigned long delay) 477 { 478 bool ret; 479 480 preempt_disable(); 481 if (READ_ONCE(per_cpu(srcu_online, cpu))) 482 ret = queue_delayed_work_on(cpu, wq, dwork, delay); 483 else 484 ret = queue_delayed_work(wq, dwork, delay); 485 preempt_enable(); 486 return ret; 487 } 488 489 /* 490 * Schedule callback invocation for the specified srcu_data structure, 491 * if possible, on the corresponding CPU. 492 */ 493 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 494 { 495 srcu_queue_delayed_work_on(sdp->cpu, system_power_efficient_wq, 496 &sdp->work, delay); 497 } 498 499 /* 500 * Schedule callback invocation for all srcu_data structures associated 501 * with the specified srcu_node structure that have callbacks for the 502 * just-completed grace period, the one corresponding to idx. If possible, 503 * schedule this invocation on the corresponding CPUs. 504 */ 505 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp, 506 unsigned long mask, unsigned long delay) 507 { 508 int cpu; 509 510 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 511 if (!(mask & (1 << (cpu - snp->grplo)))) 512 continue; 513 srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay); 514 } 515 } 516 517 /* 518 * Note the end of an SRCU grace period. Initiates callback invocation 519 * and starts a new grace period if needed. 520 * 521 * The ->srcu_cb_mutex acquisition does not protect any data, but 522 * instead prevents more than one grace period from starting while we 523 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 524 * array to have a finite number of elements. 525 */ 526 static void srcu_gp_end(struct srcu_struct *sp) 527 { 528 unsigned long cbdelay; 529 bool cbs; 530 int cpu; 531 unsigned long flags; 532 unsigned long gpseq; 533 int idx; 534 int idxnext; 535 unsigned long mask; 536 struct srcu_data *sdp; 537 struct srcu_node *snp; 538 539 /* Prevent more than one additional grace period. */ 540 mutex_lock(&sp->srcu_cb_mutex); 541 542 /* End the current grace period. */ 543 spin_lock_irq_rcu_node(sp); 544 idx = rcu_seq_state(sp->srcu_gp_seq); 545 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 546 cbdelay = srcu_get_delay(sp); 547 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 548 rcu_seq_end(&sp->srcu_gp_seq); 549 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 550 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq)) 551 sp->srcu_gp_seq_needed_exp = gpseq; 552 spin_unlock_irq_rcu_node(sp); 553 mutex_unlock(&sp->srcu_gp_mutex); 554 /* A new grace period can start at this point. But only one. */ 555 556 /* Initiate callback invocation as needed. */ 557 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 558 idxnext = (idx + 1) % ARRAY_SIZE(snp->srcu_have_cbs); 559 rcu_for_each_node_breadth_first(sp, snp) { 560 spin_lock_irq_rcu_node(snp); 561 cbs = false; 562 if (snp >= sp->level[rcu_num_lvls - 1]) 563 cbs = snp->srcu_have_cbs[idx] == gpseq; 564 snp->srcu_have_cbs[idx] = gpseq; 565 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 566 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 567 snp->srcu_gp_seq_needed_exp = gpseq; 568 mask = snp->srcu_data_have_cbs[idx]; 569 snp->srcu_data_have_cbs[idx] = 0; 570 spin_unlock_irq_rcu_node(snp); 571 if (cbs) 572 srcu_schedule_cbs_snp(sp, snp, mask, cbdelay); 573 574 /* Occasionally prevent srcu_data counter wrap. */ 575 if (!(gpseq & counter_wrap_check)) 576 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 577 sdp = per_cpu_ptr(sp->sda, cpu); 578 spin_lock_irqsave_rcu_node(sdp, flags); 579 if (ULONG_CMP_GE(gpseq, 580 sdp->srcu_gp_seq_needed + 100)) 581 sdp->srcu_gp_seq_needed = gpseq; 582 spin_unlock_irqrestore_rcu_node(sdp, flags); 583 } 584 } 585 586 /* Callback initiation done, allow grace periods after next. */ 587 mutex_unlock(&sp->srcu_cb_mutex); 588 589 /* Start a new grace period if needed. */ 590 spin_lock_irq_rcu_node(sp); 591 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 592 if (!rcu_seq_state(gpseq) && 593 ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) { 594 srcu_gp_start(sp); 595 spin_unlock_irq_rcu_node(sp); 596 /* Throttle expedited grace periods: Should be rare! */ 597 srcu_reschedule(sp, rcu_seq_ctr(gpseq) & 0x3ff 598 ? 0 : SRCU_INTERVAL); 599 } else { 600 spin_unlock_irq_rcu_node(sp); 601 } 602 } 603 604 /* 605 * Funnel-locking scheme to scalably mediate many concurrent expedited 606 * grace-period requests. This function is invoked for the first known 607 * expedited request for a grace period that has already been requested, 608 * but without expediting. To start a completely new grace period, 609 * whether expedited or not, use srcu_funnel_gp_start() instead. 610 */ 611 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp, 612 unsigned long s) 613 { 614 unsigned long flags; 615 616 for (; snp != NULL; snp = snp->srcu_parent) { 617 if (rcu_seq_done(&sp->srcu_gp_seq, s) || 618 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 619 return; 620 spin_lock_irqsave_rcu_node(snp, flags); 621 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 622 spin_unlock_irqrestore_rcu_node(snp, flags); 623 return; 624 } 625 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 626 spin_unlock_irqrestore_rcu_node(snp, flags); 627 } 628 spin_lock_irqsave_rcu_node(sp, flags); 629 if (!ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 630 sp->srcu_gp_seq_needed_exp = s; 631 spin_unlock_irqrestore_rcu_node(sp, flags); 632 } 633 634 /* 635 * Funnel-locking scheme to scalably mediate many concurrent grace-period 636 * requests. The winner has to do the work of actually starting grace 637 * period s. Losers must either ensure that their desired grace-period 638 * number is recorded on at least their leaf srcu_node structure, or they 639 * must take steps to invoke their own callbacks. 640 */ 641 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp, 642 unsigned long s, bool do_norm) 643 { 644 unsigned long flags; 645 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 646 struct srcu_node *snp = sdp->mynode; 647 unsigned long snp_seq; 648 649 /* Each pass through the loop does one level of the srcu_node tree. */ 650 for (; snp != NULL; snp = snp->srcu_parent) { 651 if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode) 652 return; /* GP already done and CBs recorded. */ 653 spin_lock_irqsave_rcu_node(snp, flags); 654 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 655 snp_seq = snp->srcu_have_cbs[idx]; 656 if (snp == sdp->mynode && snp_seq == s) 657 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 658 spin_unlock_irqrestore_rcu_node(snp, flags); 659 if (snp == sdp->mynode && snp_seq != s) { 660 srcu_schedule_cbs_sdp(sdp, do_norm 661 ? SRCU_INTERVAL 662 : 0); 663 return; 664 } 665 if (!do_norm) 666 srcu_funnel_exp_start(sp, snp, s); 667 return; 668 } 669 snp->srcu_have_cbs[idx] = s; 670 if (snp == sdp->mynode) 671 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 672 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 673 snp->srcu_gp_seq_needed_exp = s; 674 spin_unlock_irqrestore_rcu_node(snp, flags); 675 } 676 677 /* Top of tree, must ensure the grace period will be started. */ 678 spin_lock_irqsave_rcu_node(sp, flags); 679 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) { 680 /* 681 * Record need for grace period s. Pair with load 682 * acquire setting up for initialization. 683 */ 684 smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/ 685 } 686 if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 687 sp->srcu_gp_seq_needed_exp = s; 688 689 /* If grace period not already done and none in progress, start it. */ 690 if (!rcu_seq_done(&sp->srcu_gp_seq, s) && 691 rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) { 692 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 693 srcu_gp_start(sp); 694 queue_delayed_work(system_power_efficient_wq, &sp->work, 695 srcu_get_delay(sp)); 696 } 697 spin_unlock_irqrestore_rcu_node(sp, flags); 698 } 699 700 /* 701 * Wait until all readers counted by array index idx complete, but 702 * loop an additional time if there is an expedited grace period pending. 703 * The caller must ensure that ->srcu_idx is not changed while checking. 704 */ 705 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount) 706 { 707 for (;;) { 708 if (srcu_readers_active_idx_check(sp, idx)) 709 return true; 710 if (--trycount + !srcu_get_delay(sp) <= 0) 711 return false; 712 udelay(SRCU_RETRY_CHECK_DELAY); 713 } 714 } 715 716 /* 717 * Increment the ->srcu_idx counter so that future SRCU readers will 718 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 719 * us to wait for pre-existing readers in a starvation-free manner. 720 */ 721 static void srcu_flip(struct srcu_struct *sp) 722 { 723 /* 724 * Ensure that if this updater saw a given reader's increment 725 * from __srcu_read_lock(), that reader was using an old value 726 * of ->srcu_idx. Also ensure that if a given reader sees the 727 * new value of ->srcu_idx, this updater's earlier scans cannot 728 * have seen that reader's increments (which is OK, because this 729 * grace period need not wait on that reader). 730 */ 731 smp_mb(); /* E */ /* Pairs with B and C. */ 732 733 WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1); 734 735 /* 736 * Ensure that if the updater misses an __srcu_read_unlock() 737 * increment, that task's next __srcu_read_lock() will see the 738 * above counter update. Note that both this memory barrier 739 * and the one in srcu_readers_active_idx_check() provide the 740 * guarantee for __srcu_read_lock(). 741 */ 742 smp_mb(); /* D */ /* Pairs with C. */ 743 } 744 745 /* 746 * If SRCU is likely idle, return true, otherwise return false. 747 * 748 * Note that it is OK for several current from-idle requests for a new 749 * grace period from idle to specify expediting because they will all end 750 * up requesting the same grace period anyhow. So no loss. 751 * 752 * Note also that if any CPU (including the current one) is still invoking 753 * callbacks, this function will nevertheless say "idle". This is not 754 * ideal, but the overhead of checking all CPUs' callback lists is even 755 * less ideal, especially on large systems. Furthermore, the wakeup 756 * can happen before the callback is fully removed, so we have no choice 757 * but to accept this type of error. 758 * 759 * This function is also subject to counter-wrap errors, but let's face 760 * it, if this function was preempted for enough time for the counters 761 * to wrap, it really doesn't matter whether or not we expedite the grace 762 * period. The extra overhead of a needlessly expedited grace period is 763 * negligible when amoritized over that time period, and the extra latency 764 * of a needlessly non-expedited grace period is similarly negligible. 765 */ 766 static bool srcu_might_be_idle(struct srcu_struct *sp) 767 { 768 unsigned long curseq; 769 unsigned long flags; 770 struct srcu_data *sdp; 771 unsigned long t; 772 773 /* If the local srcu_data structure has callbacks, not idle. */ 774 local_irq_save(flags); 775 sdp = this_cpu_ptr(sp->sda); 776 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 777 local_irq_restore(flags); 778 return false; /* Callbacks already present, so not idle. */ 779 } 780 local_irq_restore(flags); 781 782 /* 783 * No local callbacks, so probabalistically probe global state. 784 * Exact information would require acquiring locks, which would 785 * kill scalability, hence the probabalistic nature of the probe. 786 */ 787 788 /* First, see if enough time has passed since the last GP. */ 789 t = ktime_get_mono_fast_ns(); 790 if (exp_holdoff == 0 || 791 time_in_range_open(t, sp->srcu_last_gp_end, 792 sp->srcu_last_gp_end + exp_holdoff)) 793 return false; /* Too soon after last GP. */ 794 795 /* Next, check for probable idleness. */ 796 curseq = rcu_seq_current(&sp->srcu_gp_seq); 797 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 798 if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed))) 799 return false; /* Grace period in progress, so not idle. */ 800 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 801 if (curseq != rcu_seq_current(&sp->srcu_gp_seq)) 802 return false; /* GP # changed, so not idle. */ 803 return true; /* With reasonable probability, idle! */ 804 } 805 806 /* 807 * SRCU callback function to leak a callback. 808 */ 809 static void srcu_leak_callback(struct rcu_head *rhp) 810 { 811 } 812 813 /* 814 * Enqueue an SRCU callback on the srcu_data structure associated with 815 * the current CPU and the specified srcu_struct structure, initiating 816 * grace-period processing if it is not already running. 817 * 818 * Note that all CPUs must agree that the grace period extended beyond 819 * all pre-existing SRCU read-side critical section. On systems with 820 * more than one CPU, this means that when "func()" is invoked, each CPU 821 * is guaranteed to have executed a full memory barrier since the end of 822 * its last corresponding SRCU read-side critical section whose beginning 823 * preceded the call to call_rcu(). It also means that each CPU executing 824 * an SRCU read-side critical section that continues beyond the start of 825 * "func()" must have executed a memory barrier after the call_rcu() 826 * but before the beginning of that SRCU read-side critical section. 827 * Note that these guarantees include CPUs that are offline, idle, or 828 * executing in user mode, as well as CPUs that are executing in the kernel. 829 * 830 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 831 * resulting SRCU callback function "func()", then both CPU A and CPU 832 * B are guaranteed to execute a full memory barrier during the time 833 * interval between the call to call_rcu() and the invocation of "func()". 834 * This guarantee applies even if CPU A and CPU B are the same CPU (but 835 * again only if the system has more than one CPU). 836 * 837 * Of course, these guarantees apply only for invocations of call_srcu(), 838 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 839 * srcu_struct structure. 840 */ 841 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 842 rcu_callback_t func, bool do_norm) 843 { 844 unsigned long flags; 845 bool needexp = false; 846 bool needgp = false; 847 unsigned long s; 848 struct srcu_data *sdp; 849 850 check_init_srcu_struct(sp); 851 if (debug_rcu_head_queue(rhp)) { 852 /* Probable double call_srcu(), so leak the callback. */ 853 WRITE_ONCE(rhp->func, srcu_leak_callback); 854 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 855 return; 856 } 857 rhp->func = func; 858 local_irq_save(flags); 859 sdp = this_cpu_ptr(sp->sda); 860 spin_lock_rcu_node(sdp); 861 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false); 862 rcu_segcblist_advance(&sdp->srcu_cblist, 863 rcu_seq_current(&sp->srcu_gp_seq)); 864 s = rcu_seq_snap(&sp->srcu_gp_seq); 865 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 866 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 867 sdp->srcu_gp_seq_needed = s; 868 needgp = true; 869 } 870 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 871 sdp->srcu_gp_seq_needed_exp = s; 872 needexp = true; 873 } 874 spin_unlock_irqrestore_rcu_node(sdp, flags); 875 if (needgp) 876 srcu_funnel_gp_start(sp, sdp, s, do_norm); 877 else if (needexp) 878 srcu_funnel_exp_start(sp, sdp->mynode, s); 879 } 880 881 /** 882 * call_srcu() - Queue a callback for invocation after an SRCU grace period 883 * @sp: srcu_struct in queue the callback 884 * @rhp: structure to be used for queueing the SRCU callback. 885 * @func: function to be invoked after the SRCU grace period 886 * 887 * The callback function will be invoked some time after a full SRCU 888 * grace period elapses, in other words after all pre-existing SRCU 889 * read-side critical sections have completed. However, the callback 890 * function might well execute concurrently with other SRCU read-side 891 * critical sections that started after call_srcu() was invoked. SRCU 892 * read-side critical sections are delimited by srcu_read_lock() and 893 * srcu_read_unlock(), and may be nested. 894 * 895 * The callback will be invoked from process context, but must nevertheless 896 * be fast and must not block. 897 */ 898 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 899 rcu_callback_t func) 900 { 901 __call_srcu(sp, rhp, func, true); 902 } 903 EXPORT_SYMBOL_GPL(call_srcu); 904 905 /* 906 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 907 */ 908 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm) 909 { 910 struct rcu_synchronize rcu; 911 912 RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) || 913 lock_is_held(&rcu_bh_lock_map) || 914 lock_is_held(&rcu_lock_map) || 915 lock_is_held(&rcu_sched_lock_map), 916 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 917 918 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 919 return; 920 might_sleep(); 921 check_init_srcu_struct(sp); 922 init_completion(&rcu.completion); 923 init_rcu_head_on_stack(&rcu.head); 924 __call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm); 925 wait_for_completion(&rcu.completion); 926 destroy_rcu_head_on_stack(&rcu.head); 927 928 /* 929 * Make sure that later code is ordered after the SRCU grace 930 * period. This pairs with the spin_lock_irq_rcu_node() 931 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 932 * because the current CPU might have been totally uninvolved with 933 * (and thus unordered against) that grace period. 934 */ 935 smp_mb(); 936 } 937 938 /** 939 * synchronize_srcu_expedited - Brute-force SRCU grace period 940 * @sp: srcu_struct with which to synchronize. 941 * 942 * Wait for an SRCU grace period to elapse, but be more aggressive about 943 * spinning rather than blocking when waiting. 944 * 945 * Note that synchronize_srcu_expedited() has the same deadlock and 946 * memory-ordering properties as does synchronize_srcu(). 947 */ 948 void synchronize_srcu_expedited(struct srcu_struct *sp) 949 { 950 __synchronize_srcu(sp, rcu_gp_is_normal()); 951 } 952 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 953 954 /** 955 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 956 * @sp: srcu_struct with which to synchronize. 957 * 958 * Wait for the count to drain to zero of both indexes. To avoid the 959 * possible starvation of synchronize_srcu(), it waits for the count of 960 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 961 * and then flip the srcu_idx and wait for the count of the other index. 962 * 963 * Can block; must be called from process context. 964 * 965 * Note that it is illegal to call synchronize_srcu() from the corresponding 966 * SRCU read-side critical section; doing so will result in deadlock. 967 * However, it is perfectly legal to call synchronize_srcu() on one 968 * srcu_struct from some other srcu_struct's read-side critical section, 969 * as long as the resulting graph of srcu_structs is acyclic. 970 * 971 * There are memory-ordering constraints implied by synchronize_srcu(). 972 * On systems with more than one CPU, when synchronize_srcu() returns, 973 * each CPU is guaranteed to have executed a full memory barrier since 974 * the end of its last corresponding SRCU-sched read-side critical section 975 * whose beginning preceded the call to synchronize_srcu(). In addition, 976 * each CPU having an SRCU read-side critical section that extends beyond 977 * the return from synchronize_srcu() is guaranteed to have executed a 978 * full memory barrier after the beginning of synchronize_srcu() and before 979 * the beginning of that SRCU read-side critical section. Note that these 980 * guarantees include CPUs that are offline, idle, or executing in user mode, 981 * as well as CPUs that are executing in the kernel. 982 * 983 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 984 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 985 * to have executed a full memory barrier during the execution of 986 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 987 * are the same CPU, but again only if the system has more than one CPU. 988 * 989 * Of course, these memory-ordering guarantees apply only when 990 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 991 * passed the same srcu_struct structure. 992 * 993 * If SRCU is likely idle, expedite the first request. This semantic 994 * was provided by Classic SRCU, and is relied upon by its users, so TREE 995 * SRCU must also provide it. Note that detecting idleness is heuristic 996 * and subject to both false positives and negatives. 997 */ 998 void synchronize_srcu(struct srcu_struct *sp) 999 { 1000 if (srcu_might_be_idle(sp) || rcu_gp_is_expedited()) 1001 synchronize_srcu_expedited(sp); 1002 else 1003 __synchronize_srcu(sp, true); 1004 } 1005 EXPORT_SYMBOL_GPL(synchronize_srcu); 1006 1007 /* 1008 * Callback function for srcu_barrier() use. 1009 */ 1010 static void srcu_barrier_cb(struct rcu_head *rhp) 1011 { 1012 struct srcu_data *sdp; 1013 struct srcu_struct *sp; 1014 1015 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1016 sp = sdp->sp; 1017 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 1018 complete(&sp->srcu_barrier_completion); 1019 } 1020 1021 /** 1022 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1023 * @sp: srcu_struct on which to wait for in-flight callbacks. 1024 */ 1025 void srcu_barrier(struct srcu_struct *sp) 1026 { 1027 int cpu; 1028 struct srcu_data *sdp; 1029 unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq); 1030 1031 check_init_srcu_struct(sp); 1032 mutex_lock(&sp->srcu_barrier_mutex); 1033 if (rcu_seq_done(&sp->srcu_barrier_seq, s)) { 1034 smp_mb(); /* Force ordering following return. */ 1035 mutex_unlock(&sp->srcu_barrier_mutex); 1036 return; /* Someone else did our work for us. */ 1037 } 1038 rcu_seq_start(&sp->srcu_barrier_seq); 1039 init_completion(&sp->srcu_barrier_completion); 1040 1041 /* Initial count prevents reaching zero until all CBs are posted. */ 1042 atomic_set(&sp->srcu_barrier_cpu_cnt, 1); 1043 1044 /* 1045 * Each pass through this loop enqueues a callback, but only 1046 * on CPUs already having callbacks enqueued. Note that if 1047 * a CPU already has callbacks enqueue, it must have already 1048 * registered the need for a future grace period, so all we 1049 * need do is enqueue a callback that will use the same 1050 * grace period as the last callback already in the queue. 1051 */ 1052 for_each_possible_cpu(cpu) { 1053 sdp = per_cpu_ptr(sp->sda, cpu); 1054 spin_lock_irq_rcu_node(sdp); 1055 atomic_inc(&sp->srcu_barrier_cpu_cnt); 1056 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1057 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1058 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1059 &sdp->srcu_barrier_head, 0)) { 1060 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1061 atomic_dec(&sp->srcu_barrier_cpu_cnt); 1062 } 1063 spin_unlock_irq_rcu_node(sdp); 1064 } 1065 1066 /* Remove the initial count, at which point reaching zero can happen. */ 1067 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 1068 complete(&sp->srcu_barrier_completion); 1069 wait_for_completion(&sp->srcu_barrier_completion); 1070 1071 rcu_seq_end(&sp->srcu_barrier_seq); 1072 mutex_unlock(&sp->srcu_barrier_mutex); 1073 } 1074 EXPORT_SYMBOL_GPL(srcu_barrier); 1075 1076 /** 1077 * srcu_batches_completed - return batches completed. 1078 * @sp: srcu_struct on which to report batch completion. 1079 * 1080 * Report the number of batches, correlated with, but not necessarily 1081 * precisely the same as, the number of grace periods that have elapsed. 1082 */ 1083 unsigned long srcu_batches_completed(struct srcu_struct *sp) 1084 { 1085 return sp->srcu_idx; 1086 } 1087 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1088 1089 /* 1090 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1091 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1092 * completed in that state. 1093 */ 1094 static void srcu_advance_state(struct srcu_struct *sp) 1095 { 1096 int idx; 1097 1098 mutex_lock(&sp->srcu_gp_mutex); 1099 1100 /* 1101 * Because readers might be delayed for an extended period after 1102 * fetching ->srcu_idx for their index, at any point in time there 1103 * might well be readers using both idx=0 and idx=1. We therefore 1104 * need to wait for readers to clear from both index values before 1105 * invoking a callback. 1106 * 1107 * The load-acquire ensures that we see the accesses performed 1108 * by the prior grace period. 1109 */ 1110 idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */ 1111 if (idx == SRCU_STATE_IDLE) { 1112 spin_lock_irq_rcu_node(sp); 1113 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1114 WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq)); 1115 spin_unlock_irq_rcu_node(sp); 1116 mutex_unlock(&sp->srcu_gp_mutex); 1117 return; 1118 } 1119 idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 1120 if (idx == SRCU_STATE_IDLE) 1121 srcu_gp_start(sp); 1122 spin_unlock_irq_rcu_node(sp); 1123 if (idx != SRCU_STATE_IDLE) { 1124 mutex_unlock(&sp->srcu_gp_mutex); 1125 return; /* Someone else started the grace period. */ 1126 } 1127 } 1128 1129 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1130 idx = 1 ^ (sp->srcu_idx & 1); 1131 if (!try_check_zero(sp, idx, 1)) { 1132 mutex_unlock(&sp->srcu_gp_mutex); 1133 return; /* readers present, retry later. */ 1134 } 1135 srcu_flip(sp); 1136 rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2); 1137 } 1138 1139 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1140 1141 /* 1142 * SRCU read-side critical sections are normally short, 1143 * so check at least twice in quick succession after a flip. 1144 */ 1145 idx = 1 ^ (sp->srcu_idx & 1); 1146 if (!try_check_zero(sp, idx, 2)) { 1147 mutex_unlock(&sp->srcu_gp_mutex); 1148 return; /* readers present, retry later. */ 1149 } 1150 srcu_gp_end(sp); /* Releases ->srcu_gp_mutex. */ 1151 } 1152 } 1153 1154 /* 1155 * Invoke a limited number of SRCU callbacks that have passed through 1156 * their grace period. If there are more to do, SRCU will reschedule 1157 * the workqueue. Note that needed memory barriers have been executed 1158 * in this task's context by srcu_readers_active_idx_check(). 1159 */ 1160 static void srcu_invoke_callbacks(struct work_struct *work) 1161 { 1162 bool more; 1163 struct rcu_cblist ready_cbs; 1164 struct rcu_head *rhp; 1165 struct srcu_data *sdp; 1166 struct srcu_struct *sp; 1167 1168 sdp = container_of(work, struct srcu_data, work.work); 1169 sp = sdp->sp; 1170 rcu_cblist_init(&ready_cbs); 1171 spin_lock_irq_rcu_node(sdp); 1172 rcu_segcblist_advance(&sdp->srcu_cblist, 1173 rcu_seq_current(&sp->srcu_gp_seq)); 1174 if (sdp->srcu_cblist_invoking || 1175 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1176 spin_unlock_irq_rcu_node(sdp); 1177 return; /* Someone else on the job or nothing to do. */ 1178 } 1179 1180 /* We are on the job! Extract and invoke ready callbacks. */ 1181 sdp->srcu_cblist_invoking = true; 1182 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1183 spin_unlock_irq_rcu_node(sdp); 1184 rhp = rcu_cblist_dequeue(&ready_cbs); 1185 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1186 debug_rcu_head_unqueue(rhp); 1187 local_bh_disable(); 1188 rhp->func(rhp); 1189 local_bh_enable(); 1190 } 1191 1192 /* 1193 * Update counts, accelerate new callbacks, and if needed, 1194 * schedule another round of callback invocation. 1195 */ 1196 spin_lock_irq_rcu_node(sdp); 1197 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); 1198 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1199 rcu_seq_snap(&sp->srcu_gp_seq)); 1200 sdp->srcu_cblist_invoking = false; 1201 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1202 spin_unlock_irq_rcu_node(sdp); 1203 if (more) 1204 srcu_schedule_cbs_sdp(sdp, 0); 1205 } 1206 1207 /* 1208 * Finished one round of SRCU grace period. Start another if there are 1209 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1210 */ 1211 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay) 1212 { 1213 bool pushgp = true; 1214 1215 spin_lock_irq_rcu_node(sp); 1216 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1217 if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) { 1218 /* All requests fulfilled, time to go idle. */ 1219 pushgp = false; 1220 } 1221 } else if (!rcu_seq_state(sp->srcu_gp_seq)) { 1222 /* Outstanding request and no GP. Start one. */ 1223 srcu_gp_start(sp); 1224 } 1225 spin_unlock_irq_rcu_node(sp); 1226 1227 if (pushgp) 1228 queue_delayed_work(system_power_efficient_wq, &sp->work, delay); 1229 } 1230 1231 /* 1232 * This is the work-queue function that handles SRCU grace periods. 1233 */ 1234 static void process_srcu(struct work_struct *work) 1235 { 1236 struct srcu_struct *sp; 1237 1238 sp = container_of(work, struct srcu_struct, work.work); 1239 1240 srcu_advance_state(sp); 1241 srcu_reschedule(sp, srcu_get_delay(sp)); 1242 } 1243 1244 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1245 struct srcu_struct *sp, int *flags, 1246 unsigned long *gpnum, unsigned long *completed) 1247 { 1248 if (test_type != SRCU_FLAVOR) 1249 return; 1250 *flags = 0; 1251 *completed = rcu_seq_ctr(sp->srcu_gp_seq); 1252 *gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed); 1253 } 1254 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1255 1256 void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf) 1257 { 1258 int cpu; 1259 int idx; 1260 unsigned long s0 = 0, s1 = 0; 1261 1262 idx = sp->srcu_idx & 0x1; 1263 pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", tt, tf, idx); 1264 for_each_possible_cpu(cpu) { 1265 unsigned long l0, l1; 1266 unsigned long u0, u1; 1267 long c0, c1; 1268 struct srcu_data *counts; 1269 1270 counts = per_cpu_ptr(sp->sda, cpu); 1271 u0 = counts->srcu_unlock_count[!idx]; 1272 u1 = counts->srcu_unlock_count[idx]; 1273 1274 /* 1275 * Make sure that a lock is always counted if the corresponding 1276 * unlock is counted. 1277 */ 1278 smp_rmb(); 1279 1280 l0 = counts->srcu_lock_count[!idx]; 1281 l1 = counts->srcu_lock_count[idx]; 1282 1283 c0 = l0 - u0; 1284 c1 = l1 - u1; 1285 pr_cont(" %d(%ld,%ld)", cpu, c0, c1); 1286 s0 += c0; 1287 s1 += c1; 1288 } 1289 pr_cont(" T(%ld,%ld)\n", s0, s1); 1290 } 1291 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1292 1293 static int __init srcu_bootup_announce(void) 1294 { 1295 pr_info("Hierarchical SRCU implementation.\n"); 1296 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1297 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1298 return 0; 1299 } 1300 early_initcall(srcu_bootup_announce); 1301