xref: /openbmc/linux/kernel/rcu/srcutree.c (revision 06b6f1c6)
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  *		Documentation/RCU/ *.txt
26  *
27  */
28 
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate_wait.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/srcu.h>
39 
40 #include "rcu.h"
41 #include "rcu_segcblist.h"
42 
43 /* Holdoff in nanoseconds for auto-expediting. */
44 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
45 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
46 module_param(exp_holdoff, ulong, 0444);
47 
48 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
49 static ulong counter_wrap_check = (ULONG_MAX >> 2);
50 module_param(counter_wrap_check, ulong, 0444);
51 
52 static void srcu_invoke_callbacks(struct work_struct *work);
53 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
54 static void process_srcu(struct work_struct *work);
55 
56 /*
57  * Initialize SRCU combining tree.  Note that statically allocated
58  * srcu_struct structures might already have srcu_read_lock() and
59  * srcu_read_unlock() running against them.  So if the is_static parameter
60  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
61  */
62 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static)
63 {
64 	int cpu;
65 	int i;
66 	int level = 0;
67 	int levelspread[RCU_NUM_LVLS];
68 	struct srcu_data *sdp;
69 	struct srcu_node *snp;
70 	struct srcu_node *snp_first;
71 
72 	/* Work out the overall tree geometry. */
73 	sp->level[0] = &sp->node[0];
74 	for (i = 1; i < rcu_num_lvls; i++)
75 		sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1];
76 	rcu_init_levelspread(levelspread, num_rcu_lvl);
77 
78 	/* Each pass through this loop initializes one srcu_node structure. */
79 	rcu_for_each_node_breadth_first(sp, snp) {
80 		raw_spin_lock_init(&ACCESS_PRIVATE(snp, lock));
81 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
82 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
83 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
84 			snp->srcu_have_cbs[i] = 0;
85 			snp->srcu_data_have_cbs[i] = 0;
86 		}
87 		snp->srcu_gp_seq_needed_exp = 0;
88 		snp->grplo = -1;
89 		snp->grphi = -1;
90 		if (snp == &sp->node[0]) {
91 			/* Root node, special case. */
92 			snp->srcu_parent = NULL;
93 			continue;
94 		}
95 
96 		/* Non-root node. */
97 		if (snp == sp->level[level + 1])
98 			level++;
99 		snp->srcu_parent = sp->level[level - 1] +
100 				   (snp - sp->level[level]) /
101 				   levelspread[level - 1];
102 	}
103 
104 	/*
105 	 * Initialize the per-CPU srcu_data array, which feeds into the
106 	 * leaves of the srcu_node tree.
107 	 */
108 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
109 		     ARRAY_SIZE(sdp->srcu_unlock_count));
110 	level = rcu_num_lvls - 1;
111 	snp_first = sp->level[level];
112 	for_each_possible_cpu(cpu) {
113 		sdp = per_cpu_ptr(sp->sda, cpu);
114 		raw_spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
115 		rcu_segcblist_init(&sdp->srcu_cblist);
116 		sdp->srcu_cblist_invoking = false;
117 		sdp->srcu_gp_seq_needed = sp->srcu_gp_seq;
118 		sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq;
119 		sdp->mynode = &snp_first[cpu / levelspread[level]];
120 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
121 			if (snp->grplo < 0)
122 				snp->grplo = cpu;
123 			snp->grphi = cpu;
124 		}
125 		sdp->cpu = cpu;
126 		INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
127 		sdp->sp = sp;
128 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
129 		if (is_static)
130 			continue;
131 
132 		/* Dynamically allocated, better be no srcu_read_locks()! */
133 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
134 			sdp->srcu_lock_count[i] = 0;
135 			sdp->srcu_unlock_count[i] = 0;
136 		}
137 	}
138 }
139 
140 /*
141  * Initialize non-compile-time initialized fields, including the
142  * associated srcu_node and srcu_data structures.  The is_static
143  * parameter is passed through to init_srcu_struct_nodes(), and
144  * also tells us that ->sda has already been wired up to srcu_data.
145  */
146 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static)
147 {
148 	mutex_init(&sp->srcu_cb_mutex);
149 	mutex_init(&sp->srcu_gp_mutex);
150 	sp->srcu_idx = 0;
151 	sp->srcu_gp_seq = 0;
152 	sp->srcu_barrier_seq = 0;
153 	mutex_init(&sp->srcu_barrier_mutex);
154 	atomic_set(&sp->srcu_barrier_cpu_cnt, 0);
155 	INIT_DELAYED_WORK(&sp->work, process_srcu);
156 	if (!is_static)
157 		sp->sda = alloc_percpu(struct srcu_data);
158 	init_srcu_struct_nodes(sp, is_static);
159 	sp->srcu_gp_seq_needed_exp = 0;
160 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
161 	smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */
162 	return sp->sda ? 0 : -ENOMEM;
163 }
164 
165 #ifdef CONFIG_DEBUG_LOCK_ALLOC
166 
167 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
168 		       struct lock_class_key *key)
169 {
170 	/* Don't re-initialize a lock while it is held. */
171 	debug_check_no_locks_freed((void *)sp, sizeof(*sp));
172 	lockdep_init_map(&sp->dep_map, name, key, 0);
173 	raw_spin_lock_init(&ACCESS_PRIVATE(sp, lock));
174 	return init_srcu_struct_fields(sp, false);
175 }
176 EXPORT_SYMBOL_GPL(__init_srcu_struct);
177 
178 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
179 
180 /**
181  * init_srcu_struct - initialize a sleep-RCU structure
182  * @sp: structure to initialize.
183  *
184  * Must invoke this on a given srcu_struct before passing that srcu_struct
185  * to any other function.  Each srcu_struct represents a separate domain
186  * of SRCU protection.
187  */
188 int init_srcu_struct(struct srcu_struct *sp)
189 {
190 	raw_spin_lock_init(&ACCESS_PRIVATE(sp, lock));
191 	return init_srcu_struct_fields(sp, false);
192 }
193 EXPORT_SYMBOL_GPL(init_srcu_struct);
194 
195 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
196 
197 /*
198  * First-use initialization of statically allocated srcu_struct
199  * structure.  Wiring up the combining tree is more than can be
200  * done with compile-time initialization, so this check is added
201  * to each update-side SRCU primitive.  Use sp->lock, which -is-
202  * compile-time initialized, to resolve races involving multiple
203  * CPUs trying to garner first-use privileges.
204  */
205 static void check_init_srcu_struct(struct srcu_struct *sp)
206 {
207 	unsigned long flags;
208 
209 	WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT);
210 	/* The smp_load_acquire() pairs with the smp_store_release(). */
211 	if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/
212 		return; /* Already initialized. */
213 	raw_spin_lock_irqsave_rcu_node(sp, flags);
214 	if (!rcu_seq_state(sp->srcu_gp_seq_needed)) {
215 		raw_spin_unlock_irqrestore_rcu_node(sp, flags);
216 		return;
217 	}
218 	init_srcu_struct_fields(sp, true);
219 	raw_spin_unlock_irqrestore_rcu_node(sp, flags);
220 }
221 
222 /*
223  * Returns approximate total of the readers' ->srcu_lock_count[] values
224  * for the rank of per-CPU counters specified by idx.
225  */
226 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
227 {
228 	int cpu;
229 	unsigned long sum = 0;
230 
231 	for_each_possible_cpu(cpu) {
232 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
233 
234 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
235 	}
236 	return sum;
237 }
238 
239 /*
240  * Returns approximate total of the readers' ->srcu_unlock_count[] values
241  * for the rank of per-CPU counters specified by idx.
242  */
243 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
244 {
245 	int cpu;
246 	unsigned long sum = 0;
247 
248 	for_each_possible_cpu(cpu) {
249 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
250 
251 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
252 	}
253 	return sum;
254 }
255 
256 /*
257  * Return true if the number of pre-existing readers is determined to
258  * be zero.
259  */
260 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
261 {
262 	unsigned long unlocks;
263 
264 	unlocks = srcu_readers_unlock_idx(sp, idx);
265 
266 	/*
267 	 * Make sure that a lock is always counted if the corresponding
268 	 * unlock is counted. Needs to be a smp_mb() as the read side may
269 	 * contain a read from a variable that is written to before the
270 	 * synchronize_srcu() in the write side. In this case smp_mb()s
271 	 * A and B act like the store buffering pattern.
272 	 *
273 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
274 	 * after the synchronize_srcu() from being executed before the
275 	 * grace period ends.
276 	 */
277 	smp_mb(); /* A */
278 
279 	/*
280 	 * If the locks are the same as the unlocks, then there must have
281 	 * been no readers on this index at some time in between. This does
282 	 * not mean that there are no more readers, as one could have read
283 	 * the current index but not have incremented the lock counter yet.
284 	 *
285 	 * So suppose that the updater is preempted here for so long
286 	 * that more than ULONG_MAX non-nested readers come and go in
287 	 * the meantime.  It turns out that this cannot result in overflow
288 	 * because if a reader modifies its unlock count after we read it
289 	 * above, then that reader's next load of ->srcu_idx is guaranteed
290 	 * to get the new value, which will cause it to operate on the
291 	 * other bank of counters, where it cannot contribute to the
292 	 * overflow of these counters.  This means that there is a maximum
293 	 * of 2*NR_CPUS increments, which cannot overflow given current
294 	 * systems, especially not on 64-bit systems.
295 	 *
296 	 * OK, how about nesting?  This does impose a limit on nesting
297 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
298 	 * especially on 64-bit systems.
299 	 */
300 	return srcu_readers_lock_idx(sp, idx) == unlocks;
301 }
302 
303 /**
304  * srcu_readers_active - returns true if there are readers. and false
305  *                       otherwise
306  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
307  *
308  * Note that this is not an atomic primitive, and can therefore suffer
309  * severe errors when invoked on an active srcu_struct.  That said, it
310  * can be useful as an error check at cleanup time.
311  */
312 static bool srcu_readers_active(struct srcu_struct *sp)
313 {
314 	int cpu;
315 	unsigned long sum = 0;
316 
317 	for_each_possible_cpu(cpu) {
318 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
319 
320 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
321 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
322 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
323 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
324 	}
325 	return sum;
326 }
327 
328 #define SRCU_INTERVAL		1
329 
330 /*
331  * Return grace-period delay, zero if there are expedited grace
332  * periods pending, SRCU_INTERVAL otherwise.
333  */
334 static unsigned long srcu_get_delay(struct srcu_struct *sp)
335 {
336 	if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq),
337 			 READ_ONCE(sp->srcu_gp_seq_needed_exp)))
338 		return 0;
339 	return SRCU_INTERVAL;
340 }
341 
342 /**
343  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
344  * @sp: structure to clean up.
345  *
346  * Must invoke this after you are finished using a given srcu_struct that
347  * was initialized via init_srcu_struct(), else you leak memory.
348  */
349 void cleanup_srcu_struct(struct srcu_struct *sp)
350 {
351 	int cpu;
352 
353 	if (WARN_ON(!srcu_get_delay(sp)))
354 		return; /* Leakage unless caller handles error. */
355 	if (WARN_ON(srcu_readers_active(sp)))
356 		return; /* Leakage unless caller handles error. */
357 	flush_delayed_work(&sp->work);
358 	for_each_possible_cpu(cpu)
359 		flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work);
360 	if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
361 	    WARN_ON(srcu_readers_active(sp))) {
362 		pr_info("cleanup_srcu_struct: Active srcu_struct %p state: %d\n", sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
363 		return; /* Caller forgot to stop doing call_srcu()? */
364 	}
365 	free_percpu(sp->sda);
366 	sp->sda = NULL;
367 }
368 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
369 
370 /*
371  * Counts the new reader in the appropriate per-CPU element of the
372  * srcu_struct.
373  * Returns an index that must be passed to the matching srcu_read_unlock().
374  */
375 int __srcu_read_lock(struct srcu_struct *sp)
376 {
377 	int idx;
378 
379 	idx = READ_ONCE(sp->srcu_idx) & 0x1;
380 	this_cpu_inc(sp->sda->srcu_lock_count[idx]);
381 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
382 	return idx;
383 }
384 EXPORT_SYMBOL_GPL(__srcu_read_lock);
385 
386 /*
387  * Removes the count for the old reader from the appropriate per-CPU
388  * element of the srcu_struct.  Note that this may well be a different
389  * CPU than that which was incremented by the corresponding srcu_read_lock().
390  */
391 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
392 {
393 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
394 	this_cpu_inc(sp->sda->srcu_unlock_count[idx]);
395 }
396 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
397 
398 /*
399  * We use an adaptive strategy for synchronize_srcu() and especially for
400  * synchronize_srcu_expedited().  We spin for a fixed time period
401  * (defined below) to allow SRCU readers to exit their read-side critical
402  * sections.  If there are still some readers after a few microseconds,
403  * we repeatedly block for 1-millisecond time periods.
404  */
405 #define SRCU_RETRY_CHECK_DELAY		5
406 
407 /*
408  * Start an SRCU grace period.
409  */
410 static void srcu_gp_start(struct srcu_struct *sp)
411 {
412 	struct srcu_data *sdp = this_cpu_ptr(sp->sda);
413 	int state;
414 
415 	lockdep_assert_held(&sp->lock);
416 	WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
417 	rcu_segcblist_advance(&sdp->srcu_cblist,
418 			      rcu_seq_current(&sp->srcu_gp_seq));
419 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
420 				       rcu_seq_snap(&sp->srcu_gp_seq));
421 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
422 	rcu_seq_start(&sp->srcu_gp_seq);
423 	state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
424 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
425 }
426 
427 /*
428  * Track online CPUs to guide callback workqueue placement.
429  */
430 DEFINE_PER_CPU(bool, srcu_online);
431 
432 void srcu_online_cpu(unsigned int cpu)
433 {
434 	WRITE_ONCE(per_cpu(srcu_online, cpu), true);
435 }
436 
437 void srcu_offline_cpu(unsigned int cpu)
438 {
439 	WRITE_ONCE(per_cpu(srcu_online, cpu), false);
440 }
441 
442 /*
443  * Place the workqueue handler on the specified CPU if online, otherwise
444  * just run it whereever.  This is useful for placing workqueue handlers
445  * that are to invoke the specified CPU's callbacks.
446  */
447 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
448 				       struct delayed_work *dwork,
449 				       unsigned long delay)
450 {
451 	bool ret;
452 
453 	preempt_disable();
454 	if (READ_ONCE(per_cpu(srcu_online, cpu)))
455 		ret = queue_delayed_work_on(cpu, wq, dwork, delay);
456 	else
457 		ret = queue_delayed_work(wq, dwork, delay);
458 	preempt_enable();
459 	return ret;
460 }
461 
462 /*
463  * Schedule callback invocation for the specified srcu_data structure,
464  * if possible, on the corresponding CPU.
465  */
466 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
467 {
468 	srcu_queue_delayed_work_on(sdp->cpu, system_power_efficient_wq,
469 				   &sdp->work, delay);
470 }
471 
472 /*
473  * Schedule callback invocation for all srcu_data structures associated
474  * with the specified srcu_node structure that have callbacks for the
475  * just-completed grace period, the one corresponding to idx.  If possible,
476  * schedule this invocation on the corresponding CPUs.
477  */
478 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp,
479 				  unsigned long mask, unsigned long delay)
480 {
481 	int cpu;
482 
483 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
484 		if (!(mask & (1 << (cpu - snp->grplo))))
485 			continue;
486 		srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay);
487 	}
488 }
489 
490 /*
491  * Note the end of an SRCU grace period.  Initiates callback invocation
492  * and starts a new grace period if needed.
493  *
494  * The ->srcu_cb_mutex acquisition does not protect any data, but
495  * instead prevents more than one grace period from starting while we
496  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
497  * array to have a finite number of elements.
498  */
499 static void srcu_gp_end(struct srcu_struct *sp)
500 {
501 	unsigned long cbdelay;
502 	bool cbs;
503 	int cpu;
504 	unsigned long flags;
505 	unsigned long gpseq;
506 	int idx;
507 	int idxnext;
508 	unsigned long mask;
509 	struct srcu_data *sdp;
510 	struct srcu_node *snp;
511 
512 	/* Prevent more than one additional grace period. */
513 	mutex_lock(&sp->srcu_cb_mutex);
514 
515 	/* End the current grace period. */
516 	raw_spin_lock_irq_rcu_node(sp);
517 	idx = rcu_seq_state(sp->srcu_gp_seq);
518 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
519 	cbdelay = srcu_get_delay(sp);
520 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
521 	rcu_seq_end(&sp->srcu_gp_seq);
522 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
523 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq))
524 		sp->srcu_gp_seq_needed_exp = gpseq;
525 	raw_spin_unlock_irq_rcu_node(sp);
526 	mutex_unlock(&sp->srcu_gp_mutex);
527 	/* A new grace period can start at this point.  But only one. */
528 
529 	/* Initiate callback invocation as needed. */
530 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
531 	idxnext = (idx + 1) % ARRAY_SIZE(snp->srcu_have_cbs);
532 	rcu_for_each_node_breadth_first(sp, snp) {
533 		raw_spin_lock_irq_rcu_node(snp);
534 		cbs = false;
535 		if (snp >= sp->level[rcu_num_lvls - 1])
536 			cbs = snp->srcu_have_cbs[idx] == gpseq;
537 		snp->srcu_have_cbs[idx] = gpseq;
538 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
539 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
540 			snp->srcu_gp_seq_needed_exp = gpseq;
541 		mask = snp->srcu_data_have_cbs[idx];
542 		snp->srcu_data_have_cbs[idx] = 0;
543 		raw_spin_unlock_irq_rcu_node(snp);
544 		if (cbs)
545 			srcu_schedule_cbs_snp(sp, snp, mask, cbdelay);
546 
547 		/* Occasionally prevent srcu_data counter wrap. */
548 		if (!(gpseq & counter_wrap_check))
549 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
550 				sdp = per_cpu_ptr(sp->sda, cpu);
551 				raw_spin_lock_irqsave_rcu_node(sdp, flags);
552 				if (ULONG_CMP_GE(gpseq,
553 						 sdp->srcu_gp_seq_needed + 100))
554 					sdp->srcu_gp_seq_needed = gpseq;
555 				raw_spin_unlock_irqrestore_rcu_node(sdp, flags);
556 			}
557 	}
558 
559 	/* Callback initiation done, allow grace periods after next. */
560 	mutex_unlock(&sp->srcu_cb_mutex);
561 
562 	/* Start a new grace period if needed. */
563 	raw_spin_lock_irq_rcu_node(sp);
564 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
565 	if (!rcu_seq_state(gpseq) &&
566 	    ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) {
567 		srcu_gp_start(sp);
568 		raw_spin_unlock_irq_rcu_node(sp);
569 		/* Throttle expedited grace periods: Should be rare! */
570 		srcu_reschedule(sp, rcu_seq_ctr(gpseq) & 0x3ff
571 				    ? 0 : SRCU_INTERVAL);
572 	} else {
573 		raw_spin_unlock_irq_rcu_node(sp);
574 	}
575 }
576 
577 /*
578  * Funnel-locking scheme to scalably mediate many concurrent expedited
579  * grace-period requests.  This function is invoked for the first known
580  * expedited request for a grace period that has already been requested,
581  * but without expediting.  To start a completely new grace period,
582  * whether expedited or not, use srcu_funnel_gp_start() instead.
583  */
584 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp,
585 				  unsigned long s)
586 {
587 	unsigned long flags;
588 
589 	for (; snp != NULL; snp = snp->srcu_parent) {
590 		if (rcu_seq_done(&sp->srcu_gp_seq, s) ||
591 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
592 			return;
593 		raw_spin_lock_irqsave_rcu_node(snp, flags);
594 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
595 			raw_spin_unlock_irqrestore_rcu_node(snp, flags);
596 			return;
597 		}
598 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
599 		raw_spin_unlock_irqrestore_rcu_node(snp, flags);
600 	}
601 	raw_spin_lock_irqsave_rcu_node(sp, flags);
602 	if (!ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
603 		sp->srcu_gp_seq_needed_exp = s;
604 	raw_spin_unlock_irqrestore_rcu_node(sp, flags);
605 }
606 
607 /*
608  * Funnel-locking scheme to scalably mediate many concurrent grace-period
609  * requests.  The winner has to do the work of actually starting grace
610  * period s.  Losers must either ensure that their desired grace-period
611  * number is recorded on at least their leaf srcu_node structure, or they
612  * must take steps to invoke their own callbacks.
613  */
614 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp,
615 				 unsigned long s, bool do_norm)
616 {
617 	unsigned long flags;
618 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
619 	struct srcu_node *snp = sdp->mynode;
620 	unsigned long snp_seq;
621 
622 	/* Each pass through the loop does one level of the srcu_node tree. */
623 	for (; snp != NULL; snp = snp->srcu_parent) {
624 		if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode)
625 			return; /* GP already done and CBs recorded. */
626 		raw_spin_lock_irqsave_rcu_node(snp, flags);
627 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
628 			snp_seq = snp->srcu_have_cbs[idx];
629 			if (snp == sdp->mynode && snp_seq == s)
630 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
631 			raw_spin_unlock_irqrestore_rcu_node(snp, flags);
632 			if (snp == sdp->mynode && snp_seq != s) {
633 				srcu_schedule_cbs_sdp(sdp, do_norm
634 							   ? SRCU_INTERVAL
635 							   : 0);
636 				return;
637 			}
638 			if (!do_norm)
639 				srcu_funnel_exp_start(sp, snp, s);
640 			return;
641 		}
642 		snp->srcu_have_cbs[idx] = s;
643 		if (snp == sdp->mynode)
644 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
645 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
646 			snp->srcu_gp_seq_needed_exp = s;
647 		raw_spin_unlock_irqrestore_rcu_node(snp, flags);
648 	}
649 
650 	/* Top of tree, must ensure the grace period will be started. */
651 	raw_spin_lock_irqsave_rcu_node(sp, flags);
652 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) {
653 		/*
654 		 * Record need for grace period s.  Pair with load
655 		 * acquire setting up for initialization.
656 		 */
657 		smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/
658 	}
659 	if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
660 		sp->srcu_gp_seq_needed_exp = s;
661 
662 	/* If grace period not already done and none in progress, start it. */
663 	if (!rcu_seq_done(&sp->srcu_gp_seq, s) &&
664 	    rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) {
665 		WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
666 		srcu_gp_start(sp);
667 		queue_delayed_work(system_power_efficient_wq, &sp->work,
668 				   srcu_get_delay(sp));
669 	}
670 	raw_spin_unlock_irqrestore_rcu_node(sp, flags);
671 }
672 
673 /*
674  * Wait until all readers counted by array index idx complete, but
675  * loop an additional time if there is an expedited grace period pending.
676  * The caller must ensure that ->srcu_idx is not changed while checking.
677  */
678 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
679 {
680 	for (;;) {
681 		if (srcu_readers_active_idx_check(sp, idx))
682 			return true;
683 		if (--trycount + !srcu_get_delay(sp) <= 0)
684 			return false;
685 		udelay(SRCU_RETRY_CHECK_DELAY);
686 	}
687 }
688 
689 /*
690  * Increment the ->srcu_idx counter so that future SRCU readers will
691  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
692  * us to wait for pre-existing readers in a starvation-free manner.
693  */
694 static void srcu_flip(struct srcu_struct *sp)
695 {
696 	/*
697 	 * Ensure that if this updater saw a given reader's increment
698 	 * from __srcu_read_lock(), that reader was using an old value
699 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
700 	 * new value of ->srcu_idx, this updater's earlier scans cannot
701 	 * have seen that reader's increments (which is OK, because this
702 	 * grace period need not wait on that reader).
703 	 */
704 	smp_mb(); /* E */  /* Pairs with B and C. */
705 
706 	WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1);
707 
708 	/*
709 	 * Ensure that if the updater misses an __srcu_read_unlock()
710 	 * increment, that task's next __srcu_read_lock() will see the
711 	 * above counter update.  Note that both this memory barrier
712 	 * and the one in srcu_readers_active_idx_check() provide the
713 	 * guarantee for __srcu_read_lock().
714 	 */
715 	smp_mb(); /* D */  /* Pairs with C. */
716 }
717 
718 /*
719  * If SRCU is likely idle, return true, otherwise return false.
720  *
721  * Note that it is OK for several current from-idle requests for a new
722  * grace period from idle to specify expediting because they will all end
723  * up requesting the same grace period anyhow.  So no loss.
724  *
725  * Note also that if any CPU (including the current one) is still invoking
726  * callbacks, this function will nevertheless say "idle".  This is not
727  * ideal, but the overhead of checking all CPUs' callback lists is even
728  * less ideal, especially on large systems.  Furthermore, the wakeup
729  * can happen before the callback is fully removed, so we have no choice
730  * but to accept this type of error.
731  *
732  * This function is also subject to counter-wrap errors, but let's face
733  * it, if this function was preempted for enough time for the counters
734  * to wrap, it really doesn't matter whether or not we expedite the grace
735  * period.  The extra overhead of a needlessly expedited grace period is
736  * negligible when amoritized over that time period, and the extra latency
737  * of a needlessly non-expedited grace period is similarly negligible.
738  */
739 static bool srcu_might_be_idle(struct srcu_struct *sp)
740 {
741 	unsigned long curseq;
742 	unsigned long flags;
743 	struct srcu_data *sdp;
744 	unsigned long t;
745 
746 	/* If the local srcu_data structure has callbacks, not idle.  */
747 	local_irq_save(flags);
748 	sdp = this_cpu_ptr(sp->sda);
749 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
750 		local_irq_restore(flags);
751 		return false; /* Callbacks already present, so not idle. */
752 	}
753 	local_irq_restore(flags);
754 
755 	/*
756 	 * No local callbacks, so probabalistically probe global state.
757 	 * Exact information would require acquiring locks, which would
758 	 * kill scalability, hence the probabalistic nature of the probe.
759 	 */
760 
761 	/* First, see if enough time has passed since the last GP. */
762 	t = ktime_get_mono_fast_ns();
763 	if (exp_holdoff == 0 ||
764 	    time_in_range_open(t, sp->srcu_last_gp_end,
765 			       sp->srcu_last_gp_end + exp_holdoff))
766 		return false; /* Too soon after last GP. */
767 
768 	/* Next, check for probable idleness. */
769 	curseq = rcu_seq_current(&sp->srcu_gp_seq);
770 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
771 	if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed)))
772 		return false; /* Grace period in progress, so not idle. */
773 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
774 	if (curseq != rcu_seq_current(&sp->srcu_gp_seq))
775 		return false; /* GP # changed, so not idle. */
776 	return true; /* With reasonable probability, idle! */
777 }
778 
779 /*
780  * SRCU callback function to leak a callback.
781  */
782 static void srcu_leak_callback(struct rcu_head *rhp)
783 {
784 }
785 
786 /*
787  * Enqueue an SRCU callback on the srcu_data structure associated with
788  * the current CPU and the specified srcu_struct structure, initiating
789  * grace-period processing if it is not already running.
790  *
791  * Note that all CPUs must agree that the grace period extended beyond
792  * all pre-existing SRCU read-side critical section.  On systems with
793  * more than one CPU, this means that when "func()" is invoked, each CPU
794  * is guaranteed to have executed a full memory barrier since the end of
795  * its last corresponding SRCU read-side critical section whose beginning
796  * preceded the call to call_rcu().  It also means that each CPU executing
797  * an SRCU read-side critical section that continues beyond the start of
798  * "func()" must have executed a memory barrier after the call_rcu()
799  * but before the beginning of that SRCU read-side critical section.
800  * Note that these guarantees include CPUs that are offline, idle, or
801  * executing in user mode, as well as CPUs that are executing in the kernel.
802  *
803  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
804  * resulting SRCU callback function "func()", then both CPU A and CPU
805  * B are guaranteed to execute a full memory barrier during the time
806  * interval between the call to call_rcu() and the invocation of "func()".
807  * This guarantee applies even if CPU A and CPU B are the same CPU (but
808  * again only if the system has more than one CPU).
809  *
810  * Of course, these guarantees apply only for invocations of call_srcu(),
811  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
812  * srcu_struct structure.
813  */
814 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
815 		 rcu_callback_t func, bool do_norm)
816 {
817 	unsigned long flags;
818 	bool needexp = false;
819 	bool needgp = false;
820 	unsigned long s;
821 	struct srcu_data *sdp;
822 
823 	check_init_srcu_struct(sp);
824 	if (debug_rcu_head_queue(rhp)) {
825 		/* Probable double call_srcu(), so leak the callback. */
826 		WRITE_ONCE(rhp->func, srcu_leak_callback);
827 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
828 		return;
829 	}
830 	rhp->func = func;
831 	local_irq_save(flags);
832 	sdp = this_cpu_ptr(sp->sda);
833 	raw_spin_lock_rcu_node(sdp);
834 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
835 	rcu_segcblist_advance(&sdp->srcu_cblist,
836 			      rcu_seq_current(&sp->srcu_gp_seq));
837 	s = rcu_seq_snap(&sp->srcu_gp_seq);
838 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
839 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
840 		sdp->srcu_gp_seq_needed = s;
841 		needgp = true;
842 	}
843 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
844 		sdp->srcu_gp_seq_needed_exp = s;
845 		needexp = true;
846 	}
847 	raw_spin_unlock_irqrestore_rcu_node(sdp, flags);
848 	if (needgp)
849 		srcu_funnel_gp_start(sp, sdp, s, do_norm);
850 	else if (needexp)
851 		srcu_funnel_exp_start(sp, sdp->mynode, s);
852 }
853 
854 /**
855  * call_srcu() - Queue a callback for invocation after an SRCU grace period
856  * @sp: srcu_struct in queue the callback
857  * @head: structure to be used for queueing the SRCU callback.
858  * @func: function to be invoked after the SRCU grace period
859  *
860  * The callback function will be invoked some time after a full SRCU
861  * grace period elapses, in other words after all pre-existing SRCU
862  * read-side critical sections have completed.  However, the callback
863  * function might well execute concurrently with other SRCU read-side
864  * critical sections that started after call_srcu() was invoked.  SRCU
865  * read-side critical sections are delimited by srcu_read_lock() and
866  * srcu_read_unlock(), and may be nested.
867  *
868  * The callback will be invoked from process context, but must nevertheless
869  * be fast and must not block.
870  */
871 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
872 	       rcu_callback_t func)
873 {
874 	__call_srcu(sp, rhp, func, true);
875 }
876 EXPORT_SYMBOL_GPL(call_srcu);
877 
878 /*
879  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
880  */
881 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm)
882 {
883 	struct rcu_synchronize rcu;
884 
885 	RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
886 			 lock_is_held(&rcu_bh_lock_map) ||
887 			 lock_is_held(&rcu_lock_map) ||
888 			 lock_is_held(&rcu_sched_lock_map),
889 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
890 
891 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
892 		return;
893 	might_sleep();
894 	check_init_srcu_struct(sp);
895 	init_completion(&rcu.completion);
896 	init_rcu_head_on_stack(&rcu.head);
897 	__call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm);
898 	wait_for_completion(&rcu.completion);
899 	destroy_rcu_head_on_stack(&rcu.head);
900 
901 	/*
902 	 * Make sure that later code is ordered after the SRCU grace
903 	 * period.  This pairs with the raw_spin_lock_irq_rcu_node()
904 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
905 	 * because the current CPU might have been totally uninvolved with
906 	 * (and thus unordered against) that grace period.
907 	 */
908 	smp_mb();
909 }
910 
911 /**
912  * synchronize_srcu_expedited - Brute-force SRCU grace period
913  * @sp: srcu_struct with which to synchronize.
914  *
915  * Wait for an SRCU grace period to elapse, but be more aggressive about
916  * spinning rather than blocking when waiting.
917  *
918  * Note that synchronize_srcu_expedited() has the same deadlock and
919  * memory-ordering properties as does synchronize_srcu().
920  */
921 void synchronize_srcu_expedited(struct srcu_struct *sp)
922 {
923 	__synchronize_srcu(sp, rcu_gp_is_normal());
924 }
925 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
926 
927 /**
928  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
929  * @sp: srcu_struct with which to synchronize.
930  *
931  * Wait for the count to drain to zero of both indexes. To avoid the
932  * possible starvation of synchronize_srcu(), it waits for the count of
933  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
934  * and then flip the srcu_idx and wait for the count of the other index.
935  *
936  * Can block; must be called from process context.
937  *
938  * Note that it is illegal to call synchronize_srcu() from the corresponding
939  * SRCU read-side critical section; doing so will result in deadlock.
940  * However, it is perfectly legal to call synchronize_srcu() on one
941  * srcu_struct from some other srcu_struct's read-side critical section,
942  * as long as the resulting graph of srcu_structs is acyclic.
943  *
944  * There are memory-ordering constraints implied by synchronize_srcu().
945  * On systems with more than one CPU, when synchronize_srcu() returns,
946  * each CPU is guaranteed to have executed a full memory barrier since
947  * the end of its last corresponding SRCU-sched read-side critical section
948  * whose beginning preceded the call to synchronize_srcu().  In addition,
949  * each CPU having an SRCU read-side critical section that extends beyond
950  * the return from synchronize_srcu() is guaranteed to have executed a
951  * full memory barrier after the beginning of synchronize_srcu() and before
952  * the beginning of that SRCU read-side critical section.  Note that these
953  * guarantees include CPUs that are offline, idle, or executing in user mode,
954  * as well as CPUs that are executing in the kernel.
955  *
956  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
957  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
958  * to have executed a full memory barrier during the execution of
959  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
960  * are the same CPU, but again only if the system has more than one CPU.
961  *
962  * Of course, these memory-ordering guarantees apply only when
963  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
964  * passed the same srcu_struct structure.
965  *
966  * If SRCU is likely idle, expedite the first request.  This semantic
967  * was provided by Classic SRCU, and is relied upon by its users, so TREE
968  * SRCU must also provide it.  Note that detecting idleness is heuristic
969  * and subject to both false positives and negatives.
970  */
971 void synchronize_srcu(struct srcu_struct *sp)
972 {
973 	if (srcu_might_be_idle(sp) || rcu_gp_is_expedited())
974 		synchronize_srcu_expedited(sp);
975 	else
976 		__synchronize_srcu(sp, true);
977 }
978 EXPORT_SYMBOL_GPL(synchronize_srcu);
979 
980 /*
981  * Callback function for srcu_barrier() use.
982  */
983 static void srcu_barrier_cb(struct rcu_head *rhp)
984 {
985 	struct srcu_data *sdp;
986 	struct srcu_struct *sp;
987 
988 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
989 	sp = sdp->sp;
990 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
991 		complete(&sp->srcu_barrier_completion);
992 }
993 
994 /**
995  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
996  * @sp: srcu_struct on which to wait for in-flight callbacks.
997  */
998 void srcu_barrier(struct srcu_struct *sp)
999 {
1000 	int cpu;
1001 	struct srcu_data *sdp;
1002 	unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq);
1003 
1004 	check_init_srcu_struct(sp);
1005 	mutex_lock(&sp->srcu_barrier_mutex);
1006 	if (rcu_seq_done(&sp->srcu_barrier_seq, s)) {
1007 		smp_mb(); /* Force ordering following return. */
1008 		mutex_unlock(&sp->srcu_barrier_mutex);
1009 		return; /* Someone else did our work for us. */
1010 	}
1011 	rcu_seq_start(&sp->srcu_barrier_seq);
1012 	init_completion(&sp->srcu_barrier_completion);
1013 
1014 	/* Initial count prevents reaching zero until all CBs are posted. */
1015 	atomic_set(&sp->srcu_barrier_cpu_cnt, 1);
1016 
1017 	/*
1018 	 * Each pass through this loop enqueues a callback, but only
1019 	 * on CPUs already having callbacks enqueued.  Note that if
1020 	 * a CPU already has callbacks enqueue, it must have already
1021 	 * registered the need for a future grace period, so all we
1022 	 * need do is enqueue a callback that will use the same
1023 	 * grace period as the last callback already in the queue.
1024 	 */
1025 	for_each_possible_cpu(cpu) {
1026 		sdp = per_cpu_ptr(sp->sda, cpu);
1027 		raw_spin_lock_irq_rcu_node(sdp);
1028 		atomic_inc(&sp->srcu_barrier_cpu_cnt);
1029 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1030 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1031 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1032 					   &sdp->srcu_barrier_head, 0)) {
1033 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1034 			atomic_dec(&sp->srcu_barrier_cpu_cnt);
1035 		}
1036 		raw_spin_unlock_irq_rcu_node(sdp);
1037 	}
1038 
1039 	/* Remove the initial count, at which point reaching zero can happen. */
1040 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1041 		complete(&sp->srcu_barrier_completion);
1042 	wait_for_completion(&sp->srcu_barrier_completion);
1043 
1044 	rcu_seq_end(&sp->srcu_barrier_seq);
1045 	mutex_unlock(&sp->srcu_barrier_mutex);
1046 }
1047 EXPORT_SYMBOL_GPL(srcu_barrier);
1048 
1049 /**
1050  * srcu_batches_completed - return batches completed.
1051  * @sp: srcu_struct on which to report batch completion.
1052  *
1053  * Report the number of batches, correlated with, but not necessarily
1054  * precisely the same as, the number of grace periods that have elapsed.
1055  */
1056 unsigned long srcu_batches_completed(struct srcu_struct *sp)
1057 {
1058 	return sp->srcu_idx;
1059 }
1060 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1061 
1062 /*
1063  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1064  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1065  * completed in that state.
1066  */
1067 static void srcu_advance_state(struct srcu_struct *sp)
1068 {
1069 	int idx;
1070 
1071 	mutex_lock(&sp->srcu_gp_mutex);
1072 
1073 	/*
1074 	 * Because readers might be delayed for an extended period after
1075 	 * fetching ->srcu_idx for their index, at any point in time there
1076 	 * might well be readers using both idx=0 and idx=1.  We therefore
1077 	 * need to wait for readers to clear from both index values before
1078 	 * invoking a callback.
1079 	 *
1080 	 * The load-acquire ensures that we see the accesses performed
1081 	 * by the prior grace period.
1082 	 */
1083 	idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
1084 	if (idx == SRCU_STATE_IDLE) {
1085 		raw_spin_lock_irq_rcu_node(sp);
1086 		if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1087 			WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq));
1088 			raw_spin_unlock_irq_rcu_node(sp);
1089 			mutex_unlock(&sp->srcu_gp_mutex);
1090 			return;
1091 		}
1092 		idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
1093 		if (idx == SRCU_STATE_IDLE)
1094 			srcu_gp_start(sp);
1095 		raw_spin_unlock_irq_rcu_node(sp);
1096 		if (idx != SRCU_STATE_IDLE) {
1097 			mutex_unlock(&sp->srcu_gp_mutex);
1098 			return; /* Someone else started the grace period. */
1099 		}
1100 	}
1101 
1102 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1103 		idx = 1 ^ (sp->srcu_idx & 1);
1104 		if (!try_check_zero(sp, idx, 1)) {
1105 			mutex_unlock(&sp->srcu_gp_mutex);
1106 			return; /* readers present, retry later. */
1107 		}
1108 		srcu_flip(sp);
1109 		rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
1110 	}
1111 
1112 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1113 
1114 		/*
1115 		 * SRCU read-side critical sections are normally short,
1116 		 * so check at least twice in quick succession after a flip.
1117 		 */
1118 		idx = 1 ^ (sp->srcu_idx & 1);
1119 		if (!try_check_zero(sp, idx, 2)) {
1120 			mutex_unlock(&sp->srcu_gp_mutex);
1121 			return; /* readers present, retry later. */
1122 		}
1123 		srcu_gp_end(sp);  /* Releases ->srcu_gp_mutex. */
1124 	}
1125 }
1126 
1127 /*
1128  * Invoke a limited number of SRCU callbacks that have passed through
1129  * their grace period.  If there are more to do, SRCU will reschedule
1130  * the workqueue.  Note that needed memory barriers have been executed
1131  * in this task's context by srcu_readers_active_idx_check().
1132  */
1133 static void srcu_invoke_callbacks(struct work_struct *work)
1134 {
1135 	bool more;
1136 	struct rcu_cblist ready_cbs;
1137 	struct rcu_head *rhp;
1138 	struct srcu_data *sdp;
1139 	struct srcu_struct *sp;
1140 
1141 	sdp = container_of(work, struct srcu_data, work.work);
1142 	sp = sdp->sp;
1143 	rcu_cblist_init(&ready_cbs);
1144 	raw_spin_lock_irq_rcu_node(sdp);
1145 	rcu_segcblist_advance(&sdp->srcu_cblist,
1146 			      rcu_seq_current(&sp->srcu_gp_seq));
1147 	if (sdp->srcu_cblist_invoking ||
1148 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1149 		raw_spin_unlock_irq_rcu_node(sdp);
1150 		return;  /* Someone else on the job or nothing to do. */
1151 	}
1152 
1153 	/* We are on the job!  Extract and invoke ready callbacks. */
1154 	sdp->srcu_cblist_invoking = true;
1155 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1156 	raw_spin_unlock_irq_rcu_node(sdp);
1157 	rhp = rcu_cblist_dequeue(&ready_cbs);
1158 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1159 		debug_rcu_head_unqueue(rhp);
1160 		local_bh_disable();
1161 		rhp->func(rhp);
1162 		local_bh_enable();
1163 	}
1164 
1165 	/*
1166 	 * Update counts, accelerate new callbacks, and if needed,
1167 	 * schedule another round of callback invocation.
1168 	 */
1169 	raw_spin_lock_irq_rcu_node(sdp);
1170 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1171 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1172 				       rcu_seq_snap(&sp->srcu_gp_seq));
1173 	sdp->srcu_cblist_invoking = false;
1174 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1175 	raw_spin_unlock_irq_rcu_node(sdp);
1176 	if (more)
1177 		srcu_schedule_cbs_sdp(sdp, 0);
1178 }
1179 
1180 /*
1181  * Finished one round of SRCU grace period.  Start another if there are
1182  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1183  */
1184 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
1185 {
1186 	bool pushgp = true;
1187 
1188 	raw_spin_lock_irq_rcu_node(sp);
1189 	if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1190 		if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) {
1191 			/* All requests fulfilled, time to go idle. */
1192 			pushgp = false;
1193 		}
1194 	} else if (!rcu_seq_state(sp->srcu_gp_seq)) {
1195 		/* Outstanding request and no GP.  Start one. */
1196 		srcu_gp_start(sp);
1197 	}
1198 	raw_spin_unlock_irq_rcu_node(sp);
1199 
1200 	if (pushgp)
1201 		queue_delayed_work(system_power_efficient_wq, &sp->work, delay);
1202 }
1203 
1204 /*
1205  * This is the work-queue function that handles SRCU grace periods.
1206  */
1207 static void process_srcu(struct work_struct *work)
1208 {
1209 	struct srcu_struct *sp;
1210 
1211 	sp = container_of(work, struct srcu_struct, work.work);
1212 
1213 	srcu_advance_state(sp);
1214 	srcu_reschedule(sp, srcu_get_delay(sp));
1215 }
1216 
1217 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1218 			     struct srcu_struct *sp, int *flags,
1219 			     unsigned long *gpnum, unsigned long *completed)
1220 {
1221 	if (test_type != SRCU_FLAVOR)
1222 		return;
1223 	*flags = 0;
1224 	*completed = rcu_seq_ctr(sp->srcu_gp_seq);
1225 	*gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed);
1226 }
1227 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1228 
1229 void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf)
1230 {
1231 	int cpu;
1232 	int idx;
1233 	unsigned long s0 = 0, s1 = 0;
1234 
1235 	idx = sp->srcu_idx & 0x1;
1236 	pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", tt, tf, idx);
1237 	for_each_possible_cpu(cpu) {
1238 		unsigned long l0, l1;
1239 		unsigned long u0, u1;
1240 		long c0, c1;
1241 		struct srcu_data *counts;
1242 
1243 		counts = per_cpu_ptr(sp->sda, cpu);
1244 		u0 = counts->srcu_unlock_count[!idx];
1245 		u1 = counts->srcu_unlock_count[idx];
1246 
1247 		/*
1248 		 * Make sure that a lock is always counted if the corresponding
1249 		 * unlock is counted.
1250 		 */
1251 		smp_rmb();
1252 
1253 		l0 = counts->srcu_lock_count[!idx];
1254 		l1 = counts->srcu_lock_count[idx];
1255 
1256 		c0 = l0 - u0;
1257 		c1 = l1 - u1;
1258 		pr_cont(" %d(%ld,%ld)", cpu, c0, c1);
1259 		s0 += c0;
1260 		s1 += c1;
1261 	}
1262 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1263 }
1264 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1265 
1266 static int __init srcu_bootup_announce(void)
1267 {
1268 	pr_info("Hierarchical SRCU implementation.\n");
1269 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1270 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1271 	return 0;
1272 }
1273 early_initcall(srcu_bootup_announce);
1274