xref: /openbmc/linux/kernel/rcu/srcutree.c (revision 047f2d94)
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  *		Documentation/RCU/ *.txt
26  *
27  */
28 
29 #define pr_fmt(fmt) "rcu: " fmt
30 
31 #include <linux/export.h>
32 #include <linux/mutex.h>
33 #include <linux/percpu.h>
34 #include <linux/preempt.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/sched.h>
37 #include <linux/smp.h>
38 #include <linux/delay.h>
39 #include <linux/module.h>
40 #include <linux/srcu.h>
41 
42 #include "rcu.h"
43 #include "rcu_segcblist.h"
44 
45 /* Holdoff in nanoseconds for auto-expediting. */
46 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
47 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
48 module_param(exp_holdoff, ulong, 0444);
49 
50 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
51 static ulong counter_wrap_check = (ULONG_MAX >> 2);
52 module_param(counter_wrap_check, ulong, 0444);
53 
54 /* Early-boot callback-management, so early that no lock is required! */
55 static LIST_HEAD(srcu_boot_list);
56 static bool __read_mostly srcu_init_done;
57 
58 static void srcu_invoke_callbacks(struct work_struct *work);
59 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
60 static void process_srcu(struct work_struct *work);
61 
62 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
63 #define spin_lock_rcu_node(p)					\
64 do {									\
65 	spin_lock(&ACCESS_PRIVATE(p, lock));			\
66 	smp_mb__after_unlock_lock();					\
67 } while (0)
68 
69 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
70 
71 #define spin_lock_irq_rcu_node(p)					\
72 do {									\
73 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
74 	smp_mb__after_unlock_lock();					\
75 } while (0)
76 
77 #define spin_unlock_irq_rcu_node(p)					\
78 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
79 
80 #define spin_lock_irqsave_rcu_node(p, flags)			\
81 do {									\
82 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
83 	smp_mb__after_unlock_lock();					\
84 } while (0)
85 
86 #define spin_unlock_irqrestore_rcu_node(p, flags)			\
87 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
88 
89 /*
90  * Initialize SRCU combining tree.  Note that statically allocated
91  * srcu_struct structures might already have srcu_read_lock() and
92  * srcu_read_unlock() running against them.  So if the is_static parameter
93  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
94  */
95 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
96 {
97 	int cpu;
98 	int i;
99 	int level = 0;
100 	int levelspread[RCU_NUM_LVLS];
101 	struct srcu_data *sdp;
102 	struct srcu_node *snp;
103 	struct srcu_node *snp_first;
104 
105 	/* Work out the overall tree geometry. */
106 	ssp->level[0] = &ssp->node[0];
107 	for (i = 1; i < rcu_num_lvls; i++)
108 		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
109 	rcu_init_levelspread(levelspread, num_rcu_lvl);
110 
111 	/* Each pass through this loop initializes one srcu_node structure. */
112 	srcu_for_each_node_breadth_first(ssp, snp) {
113 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
114 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
115 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
116 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
117 			snp->srcu_have_cbs[i] = 0;
118 			snp->srcu_data_have_cbs[i] = 0;
119 		}
120 		snp->srcu_gp_seq_needed_exp = 0;
121 		snp->grplo = -1;
122 		snp->grphi = -1;
123 		if (snp == &ssp->node[0]) {
124 			/* Root node, special case. */
125 			snp->srcu_parent = NULL;
126 			continue;
127 		}
128 
129 		/* Non-root node. */
130 		if (snp == ssp->level[level + 1])
131 			level++;
132 		snp->srcu_parent = ssp->level[level - 1] +
133 				   (snp - ssp->level[level]) /
134 				   levelspread[level - 1];
135 	}
136 
137 	/*
138 	 * Initialize the per-CPU srcu_data array, which feeds into the
139 	 * leaves of the srcu_node tree.
140 	 */
141 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
142 		     ARRAY_SIZE(sdp->srcu_unlock_count));
143 	level = rcu_num_lvls - 1;
144 	snp_first = ssp->level[level];
145 	for_each_possible_cpu(cpu) {
146 		sdp = per_cpu_ptr(ssp->sda, cpu);
147 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
148 		rcu_segcblist_init(&sdp->srcu_cblist);
149 		sdp->srcu_cblist_invoking = false;
150 		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
151 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
152 		sdp->mynode = &snp_first[cpu / levelspread[level]];
153 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
154 			if (snp->grplo < 0)
155 				snp->grplo = cpu;
156 			snp->grphi = cpu;
157 		}
158 		sdp->cpu = cpu;
159 		INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
160 		sdp->ssp = ssp;
161 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
162 		if (is_static)
163 			continue;
164 
165 		/* Dynamically allocated, better be no srcu_read_locks()! */
166 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
167 			sdp->srcu_lock_count[i] = 0;
168 			sdp->srcu_unlock_count[i] = 0;
169 		}
170 	}
171 }
172 
173 /*
174  * Initialize non-compile-time initialized fields, including the
175  * associated srcu_node and srcu_data structures.  The is_static
176  * parameter is passed through to init_srcu_struct_nodes(), and
177  * also tells us that ->sda has already been wired up to srcu_data.
178  */
179 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
180 {
181 	mutex_init(&ssp->srcu_cb_mutex);
182 	mutex_init(&ssp->srcu_gp_mutex);
183 	ssp->srcu_idx = 0;
184 	ssp->srcu_gp_seq = 0;
185 	ssp->srcu_barrier_seq = 0;
186 	mutex_init(&ssp->srcu_barrier_mutex);
187 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
188 	INIT_DELAYED_WORK(&ssp->work, process_srcu);
189 	if (!is_static)
190 		ssp->sda = alloc_percpu(struct srcu_data);
191 	init_srcu_struct_nodes(ssp, is_static);
192 	ssp->srcu_gp_seq_needed_exp = 0;
193 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
194 	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
195 	return ssp->sda ? 0 : -ENOMEM;
196 }
197 
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
199 
200 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
201 		       struct lock_class_key *key)
202 {
203 	/* Don't re-initialize a lock while it is held. */
204 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
205 	lockdep_init_map(&ssp->dep_map, name, key, 0);
206 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
207 	return init_srcu_struct_fields(ssp, false);
208 }
209 EXPORT_SYMBOL_GPL(__init_srcu_struct);
210 
211 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
212 
213 /**
214  * init_srcu_struct - initialize a sleep-RCU structure
215  * @ssp: structure to initialize.
216  *
217  * Must invoke this on a given srcu_struct before passing that srcu_struct
218  * to any other function.  Each srcu_struct represents a separate domain
219  * of SRCU protection.
220  */
221 int init_srcu_struct(struct srcu_struct *ssp)
222 {
223 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
224 	return init_srcu_struct_fields(ssp, false);
225 }
226 EXPORT_SYMBOL_GPL(init_srcu_struct);
227 
228 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
229 
230 /*
231  * First-use initialization of statically allocated srcu_struct
232  * structure.  Wiring up the combining tree is more than can be
233  * done with compile-time initialization, so this check is added
234  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
235  * compile-time initialized, to resolve races involving multiple
236  * CPUs trying to garner first-use privileges.
237  */
238 static void check_init_srcu_struct(struct srcu_struct *ssp)
239 {
240 	unsigned long flags;
241 
242 	/* The smp_load_acquire() pairs with the smp_store_release(). */
243 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
244 		return; /* Already initialized. */
245 	spin_lock_irqsave_rcu_node(ssp, flags);
246 	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
247 		spin_unlock_irqrestore_rcu_node(ssp, flags);
248 		return;
249 	}
250 	init_srcu_struct_fields(ssp, true);
251 	spin_unlock_irqrestore_rcu_node(ssp, flags);
252 }
253 
254 /*
255  * Returns approximate total of the readers' ->srcu_lock_count[] values
256  * for the rank of per-CPU counters specified by idx.
257  */
258 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
259 {
260 	int cpu;
261 	unsigned long sum = 0;
262 
263 	for_each_possible_cpu(cpu) {
264 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
265 
266 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
267 	}
268 	return sum;
269 }
270 
271 /*
272  * Returns approximate total of the readers' ->srcu_unlock_count[] values
273  * for the rank of per-CPU counters specified by idx.
274  */
275 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
276 {
277 	int cpu;
278 	unsigned long sum = 0;
279 
280 	for_each_possible_cpu(cpu) {
281 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
282 
283 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
284 	}
285 	return sum;
286 }
287 
288 /*
289  * Return true if the number of pre-existing readers is determined to
290  * be zero.
291  */
292 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
293 {
294 	unsigned long unlocks;
295 
296 	unlocks = srcu_readers_unlock_idx(ssp, idx);
297 
298 	/*
299 	 * Make sure that a lock is always counted if the corresponding
300 	 * unlock is counted. Needs to be a smp_mb() as the read side may
301 	 * contain a read from a variable that is written to before the
302 	 * synchronize_srcu() in the write side. In this case smp_mb()s
303 	 * A and B act like the store buffering pattern.
304 	 *
305 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
306 	 * after the synchronize_srcu() from being executed before the
307 	 * grace period ends.
308 	 */
309 	smp_mb(); /* A */
310 
311 	/*
312 	 * If the locks are the same as the unlocks, then there must have
313 	 * been no readers on this index at some time in between. This does
314 	 * not mean that there are no more readers, as one could have read
315 	 * the current index but not have incremented the lock counter yet.
316 	 *
317 	 * So suppose that the updater is preempted here for so long
318 	 * that more than ULONG_MAX non-nested readers come and go in
319 	 * the meantime.  It turns out that this cannot result in overflow
320 	 * because if a reader modifies its unlock count after we read it
321 	 * above, then that reader's next load of ->srcu_idx is guaranteed
322 	 * to get the new value, which will cause it to operate on the
323 	 * other bank of counters, where it cannot contribute to the
324 	 * overflow of these counters.  This means that there is a maximum
325 	 * of 2*NR_CPUS increments, which cannot overflow given current
326 	 * systems, especially not on 64-bit systems.
327 	 *
328 	 * OK, how about nesting?  This does impose a limit on nesting
329 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
330 	 * especially on 64-bit systems.
331 	 */
332 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
333 }
334 
335 /**
336  * srcu_readers_active - returns true if there are readers. and false
337  *                       otherwise
338  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
339  *
340  * Note that this is not an atomic primitive, and can therefore suffer
341  * severe errors when invoked on an active srcu_struct.  That said, it
342  * can be useful as an error check at cleanup time.
343  */
344 static bool srcu_readers_active(struct srcu_struct *ssp)
345 {
346 	int cpu;
347 	unsigned long sum = 0;
348 
349 	for_each_possible_cpu(cpu) {
350 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
351 
352 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
353 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
354 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
355 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
356 	}
357 	return sum;
358 }
359 
360 #define SRCU_INTERVAL		1
361 
362 /*
363  * Return grace-period delay, zero if there are expedited grace
364  * periods pending, SRCU_INTERVAL otherwise.
365  */
366 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
367 {
368 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
369 			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
370 		return 0;
371 	return SRCU_INTERVAL;
372 }
373 
374 /* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */
375 void _cleanup_srcu_struct(struct srcu_struct *ssp, bool quiesced)
376 {
377 	int cpu;
378 
379 	if (WARN_ON(!srcu_get_delay(ssp)))
380 		return; /* Just leak it! */
381 	if (WARN_ON(srcu_readers_active(ssp)))
382 		return; /* Just leak it! */
383 	if (quiesced) {
384 		if (WARN_ON(delayed_work_pending(&ssp->work)))
385 			return; /* Just leak it! */
386 	} else {
387 		flush_delayed_work(&ssp->work);
388 	}
389 	for_each_possible_cpu(cpu)
390 		if (quiesced) {
391 			if (WARN_ON(delayed_work_pending(&per_cpu_ptr(ssp->sda, cpu)->work)))
392 				return; /* Just leak it! */
393 		} else {
394 			flush_delayed_work(&per_cpu_ptr(ssp->sda, cpu)->work);
395 		}
396 	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
397 	    WARN_ON(srcu_readers_active(ssp))) {
398 		pr_info("%s: Active srcu_struct %p state: %d\n",
399 			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
400 		return; /* Caller forgot to stop doing call_srcu()? */
401 	}
402 	free_percpu(ssp->sda);
403 	ssp->sda = NULL;
404 }
405 EXPORT_SYMBOL_GPL(_cleanup_srcu_struct);
406 
407 /*
408  * Counts the new reader in the appropriate per-CPU element of the
409  * srcu_struct.
410  * Returns an index that must be passed to the matching srcu_read_unlock().
411  */
412 int __srcu_read_lock(struct srcu_struct *ssp)
413 {
414 	int idx;
415 
416 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
417 	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
418 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
419 	return idx;
420 }
421 EXPORT_SYMBOL_GPL(__srcu_read_lock);
422 
423 /*
424  * Removes the count for the old reader from the appropriate per-CPU
425  * element of the srcu_struct.  Note that this may well be a different
426  * CPU than that which was incremented by the corresponding srcu_read_lock().
427  */
428 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
429 {
430 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
431 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
432 }
433 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
434 
435 /*
436  * We use an adaptive strategy for synchronize_srcu() and especially for
437  * synchronize_srcu_expedited().  We spin for a fixed time period
438  * (defined below) to allow SRCU readers to exit their read-side critical
439  * sections.  If there are still some readers after a few microseconds,
440  * we repeatedly block for 1-millisecond time periods.
441  */
442 #define SRCU_RETRY_CHECK_DELAY		5
443 
444 /*
445  * Start an SRCU grace period.
446  */
447 static void srcu_gp_start(struct srcu_struct *ssp)
448 {
449 	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
450 	int state;
451 
452 	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
453 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
454 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
455 	rcu_segcblist_advance(&sdp->srcu_cblist,
456 			      rcu_seq_current(&ssp->srcu_gp_seq));
457 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
458 				       rcu_seq_snap(&ssp->srcu_gp_seq));
459 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
460 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
461 	rcu_seq_start(&ssp->srcu_gp_seq);
462 	state = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
463 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
464 }
465 
466 /*
467  * Track online CPUs to guide callback workqueue placement.
468  */
469 DEFINE_PER_CPU(bool, srcu_online);
470 
471 void srcu_online_cpu(unsigned int cpu)
472 {
473 	WRITE_ONCE(per_cpu(srcu_online, cpu), true);
474 }
475 
476 void srcu_offline_cpu(unsigned int cpu)
477 {
478 	WRITE_ONCE(per_cpu(srcu_online, cpu), false);
479 }
480 
481 /*
482  * Place the workqueue handler on the specified CPU if online, otherwise
483  * just run it whereever.  This is useful for placing workqueue handlers
484  * that are to invoke the specified CPU's callbacks.
485  */
486 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
487 				       struct delayed_work *dwork,
488 				       unsigned long delay)
489 {
490 	bool ret;
491 
492 	preempt_disable();
493 	if (READ_ONCE(per_cpu(srcu_online, cpu)))
494 		ret = queue_delayed_work_on(cpu, wq, dwork, delay);
495 	else
496 		ret = queue_delayed_work(wq, dwork, delay);
497 	preempt_enable();
498 	return ret;
499 }
500 
501 /*
502  * Schedule callback invocation for the specified srcu_data structure,
503  * if possible, on the corresponding CPU.
504  */
505 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
506 {
507 	srcu_queue_delayed_work_on(sdp->cpu, rcu_gp_wq, &sdp->work, delay);
508 }
509 
510 /*
511  * Schedule callback invocation for all srcu_data structures associated
512  * with the specified srcu_node structure that have callbacks for the
513  * just-completed grace period, the one corresponding to idx.  If possible,
514  * schedule this invocation on the corresponding CPUs.
515  */
516 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
517 				  unsigned long mask, unsigned long delay)
518 {
519 	int cpu;
520 
521 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
522 		if (!(mask & (1 << (cpu - snp->grplo))))
523 			continue;
524 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
525 	}
526 }
527 
528 /*
529  * Note the end of an SRCU grace period.  Initiates callback invocation
530  * and starts a new grace period if needed.
531  *
532  * The ->srcu_cb_mutex acquisition does not protect any data, but
533  * instead prevents more than one grace period from starting while we
534  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
535  * array to have a finite number of elements.
536  */
537 static void srcu_gp_end(struct srcu_struct *ssp)
538 {
539 	unsigned long cbdelay;
540 	bool cbs;
541 	bool last_lvl;
542 	int cpu;
543 	unsigned long flags;
544 	unsigned long gpseq;
545 	int idx;
546 	unsigned long mask;
547 	struct srcu_data *sdp;
548 	struct srcu_node *snp;
549 
550 	/* Prevent more than one additional grace period. */
551 	mutex_lock(&ssp->srcu_cb_mutex);
552 
553 	/* End the current grace period. */
554 	spin_lock_irq_rcu_node(ssp);
555 	idx = rcu_seq_state(ssp->srcu_gp_seq);
556 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
557 	cbdelay = srcu_get_delay(ssp);
558 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
559 	rcu_seq_end(&ssp->srcu_gp_seq);
560 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
561 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
562 		ssp->srcu_gp_seq_needed_exp = gpseq;
563 	spin_unlock_irq_rcu_node(ssp);
564 	mutex_unlock(&ssp->srcu_gp_mutex);
565 	/* A new grace period can start at this point.  But only one. */
566 
567 	/* Initiate callback invocation as needed. */
568 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
569 	srcu_for_each_node_breadth_first(ssp, snp) {
570 		spin_lock_irq_rcu_node(snp);
571 		cbs = false;
572 		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
573 		if (last_lvl)
574 			cbs = snp->srcu_have_cbs[idx] == gpseq;
575 		snp->srcu_have_cbs[idx] = gpseq;
576 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
577 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
578 			snp->srcu_gp_seq_needed_exp = gpseq;
579 		mask = snp->srcu_data_have_cbs[idx];
580 		snp->srcu_data_have_cbs[idx] = 0;
581 		spin_unlock_irq_rcu_node(snp);
582 		if (cbs)
583 			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
584 
585 		/* Occasionally prevent srcu_data counter wrap. */
586 		if (!(gpseq & counter_wrap_check) && last_lvl)
587 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
588 				sdp = per_cpu_ptr(ssp->sda, cpu);
589 				spin_lock_irqsave_rcu_node(sdp, flags);
590 				if (ULONG_CMP_GE(gpseq,
591 						 sdp->srcu_gp_seq_needed + 100))
592 					sdp->srcu_gp_seq_needed = gpseq;
593 				if (ULONG_CMP_GE(gpseq,
594 						 sdp->srcu_gp_seq_needed_exp + 100))
595 					sdp->srcu_gp_seq_needed_exp = gpseq;
596 				spin_unlock_irqrestore_rcu_node(sdp, flags);
597 			}
598 	}
599 
600 	/* Callback initiation done, allow grace periods after next. */
601 	mutex_unlock(&ssp->srcu_cb_mutex);
602 
603 	/* Start a new grace period if needed. */
604 	spin_lock_irq_rcu_node(ssp);
605 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
606 	if (!rcu_seq_state(gpseq) &&
607 	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
608 		srcu_gp_start(ssp);
609 		spin_unlock_irq_rcu_node(ssp);
610 		srcu_reschedule(ssp, 0);
611 	} else {
612 		spin_unlock_irq_rcu_node(ssp);
613 	}
614 }
615 
616 /*
617  * Funnel-locking scheme to scalably mediate many concurrent expedited
618  * grace-period requests.  This function is invoked for the first known
619  * expedited request for a grace period that has already been requested,
620  * but without expediting.  To start a completely new grace period,
621  * whether expedited or not, use srcu_funnel_gp_start() instead.
622  */
623 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
624 				  unsigned long s)
625 {
626 	unsigned long flags;
627 
628 	for (; snp != NULL; snp = snp->srcu_parent) {
629 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
630 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
631 			return;
632 		spin_lock_irqsave_rcu_node(snp, flags);
633 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
634 			spin_unlock_irqrestore_rcu_node(snp, flags);
635 			return;
636 		}
637 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
638 		spin_unlock_irqrestore_rcu_node(snp, flags);
639 	}
640 	spin_lock_irqsave_rcu_node(ssp, flags);
641 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
642 		ssp->srcu_gp_seq_needed_exp = s;
643 	spin_unlock_irqrestore_rcu_node(ssp, flags);
644 }
645 
646 /*
647  * Funnel-locking scheme to scalably mediate many concurrent grace-period
648  * requests.  The winner has to do the work of actually starting grace
649  * period s.  Losers must either ensure that their desired grace-period
650  * number is recorded on at least their leaf srcu_node structure, or they
651  * must take steps to invoke their own callbacks.
652  *
653  * Note that this function also does the work of srcu_funnel_exp_start(),
654  * in some cases by directly invoking it.
655  */
656 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
657 				 unsigned long s, bool do_norm)
658 {
659 	unsigned long flags;
660 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
661 	struct srcu_node *snp = sdp->mynode;
662 	unsigned long snp_seq;
663 
664 	/* Each pass through the loop does one level of the srcu_node tree. */
665 	for (; snp != NULL; snp = snp->srcu_parent) {
666 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
667 			return; /* GP already done and CBs recorded. */
668 		spin_lock_irqsave_rcu_node(snp, flags);
669 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
670 			snp_seq = snp->srcu_have_cbs[idx];
671 			if (snp == sdp->mynode && snp_seq == s)
672 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
673 			spin_unlock_irqrestore_rcu_node(snp, flags);
674 			if (snp == sdp->mynode && snp_seq != s) {
675 				srcu_schedule_cbs_sdp(sdp, do_norm
676 							   ? SRCU_INTERVAL
677 							   : 0);
678 				return;
679 			}
680 			if (!do_norm)
681 				srcu_funnel_exp_start(ssp, snp, s);
682 			return;
683 		}
684 		snp->srcu_have_cbs[idx] = s;
685 		if (snp == sdp->mynode)
686 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
687 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
688 			snp->srcu_gp_seq_needed_exp = s;
689 		spin_unlock_irqrestore_rcu_node(snp, flags);
690 	}
691 
692 	/* Top of tree, must ensure the grace period will be started. */
693 	spin_lock_irqsave_rcu_node(ssp, flags);
694 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
695 		/*
696 		 * Record need for grace period s.  Pair with load
697 		 * acquire setting up for initialization.
698 		 */
699 		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
700 	}
701 	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
702 		ssp->srcu_gp_seq_needed_exp = s;
703 
704 	/* If grace period not already done and none in progress, start it. */
705 	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
706 	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
707 		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
708 		srcu_gp_start(ssp);
709 		if (likely(srcu_init_done))
710 			queue_delayed_work(rcu_gp_wq, &ssp->work,
711 					   srcu_get_delay(ssp));
712 		else if (list_empty(&ssp->work.work.entry))
713 			list_add(&ssp->work.work.entry, &srcu_boot_list);
714 	}
715 	spin_unlock_irqrestore_rcu_node(ssp, flags);
716 }
717 
718 /*
719  * Wait until all readers counted by array index idx complete, but
720  * loop an additional time if there is an expedited grace period pending.
721  * The caller must ensure that ->srcu_idx is not changed while checking.
722  */
723 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
724 {
725 	for (;;) {
726 		if (srcu_readers_active_idx_check(ssp, idx))
727 			return true;
728 		if (--trycount + !srcu_get_delay(ssp) <= 0)
729 			return false;
730 		udelay(SRCU_RETRY_CHECK_DELAY);
731 	}
732 }
733 
734 /*
735  * Increment the ->srcu_idx counter so that future SRCU readers will
736  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
737  * us to wait for pre-existing readers in a starvation-free manner.
738  */
739 static void srcu_flip(struct srcu_struct *ssp)
740 {
741 	/*
742 	 * Ensure that if this updater saw a given reader's increment
743 	 * from __srcu_read_lock(), that reader was using an old value
744 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
745 	 * new value of ->srcu_idx, this updater's earlier scans cannot
746 	 * have seen that reader's increments (which is OK, because this
747 	 * grace period need not wait on that reader).
748 	 */
749 	smp_mb(); /* E */  /* Pairs with B and C. */
750 
751 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
752 
753 	/*
754 	 * Ensure that if the updater misses an __srcu_read_unlock()
755 	 * increment, that task's next __srcu_read_lock() will see the
756 	 * above counter update.  Note that both this memory barrier
757 	 * and the one in srcu_readers_active_idx_check() provide the
758 	 * guarantee for __srcu_read_lock().
759 	 */
760 	smp_mb(); /* D */  /* Pairs with C. */
761 }
762 
763 /*
764  * If SRCU is likely idle, return true, otherwise return false.
765  *
766  * Note that it is OK for several current from-idle requests for a new
767  * grace period from idle to specify expediting because they will all end
768  * up requesting the same grace period anyhow.  So no loss.
769  *
770  * Note also that if any CPU (including the current one) is still invoking
771  * callbacks, this function will nevertheless say "idle".  This is not
772  * ideal, but the overhead of checking all CPUs' callback lists is even
773  * less ideal, especially on large systems.  Furthermore, the wakeup
774  * can happen before the callback is fully removed, so we have no choice
775  * but to accept this type of error.
776  *
777  * This function is also subject to counter-wrap errors, but let's face
778  * it, if this function was preempted for enough time for the counters
779  * to wrap, it really doesn't matter whether or not we expedite the grace
780  * period.  The extra overhead of a needlessly expedited grace period is
781  * negligible when amoritized over that time period, and the extra latency
782  * of a needlessly non-expedited grace period is similarly negligible.
783  */
784 static bool srcu_might_be_idle(struct srcu_struct *ssp)
785 {
786 	unsigned long curseq;
787 	unsigned long flags;
788 	struct srcu_data *sdp;
789 	unsigned long t;
790 
791 	/* If the local srcu_data structure has callbacks, not idle.  */
792 	local_irq_save(flags);
793 	sdp = this_cpu_ptr(ssp->sda);
794 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
795 		local_irq_restore(flags);
796 		return false; /* Callbacks already present, so not idle. */
797 	}
798 	local_irq_restore(flags);
799 
800 	/*
801 	 * No local callbacks, so probabalistically probe global state.
802 	 * Exact information would require acquiring locks, which would
803 	 * kill scalability, hence the probabalistic nature of the probe.
804 	 */
805 
806 	/* First, see if enough time has passed since the last GP. */
807 	t = ktime_get_mono_fast_ns();
808 	if (exp_holdoff == 0 ||
809 	    time_in_range_open(t, ssp->srcu_last_gp_end,
810 			       ssp->srcu_last_gp_end + exp_holdoff))
811 		return false; /* Too soon after last GP. */
812 
813 	/* Next, check for probable idleness. */
814 	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
815 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
816 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
817 		return false; /* Grace period in progress, so not idle. */
818 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
819 	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
820 		return false; /* GP # changed, so not idle. */
821 	return true; /* With reasonable probability, idle! */
822 }
823 
824 /*
825  * SRCU callback function to leak a callback.
826  */
827 static void srcu_leak_callback(struct rcu_head *rhp)
828 {
829 }
830 
831 /*
832  * Enqueue an SRCU callback on the srcu_data structure associated with
833  * the current CPU and the specified srcu_struct structure, initiating
834  * grace-period processing if it is not already running.
835  *
836  * Note that all CPUs must agree that the grace period extended beyond
837  * all pre-existing SRCU read-side critical section.  On systems with
838  * more than one CPU, this means that when "func()" is invoked, each CPU
839  * is guaranteed to have executed a full memory barrier since the end of
840  * its last corresponding SRCU read-side critical section whose beginning
841  * preceded the call to call_srcu().  It also means that each CPU executing
842  * an SRCU read-side critical section that continues beyond the start of
843  * "func()" must have executed a memory barrier after the call_srcu()
844  * but before the beginning of that SRCU read-side critical section.
845  * Note that these guarantees include CPUs that are offline, idle, or
846  * executing in user mode, as well as CPUs that are executing in the kernel.
847  *
848  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
849  * resulting SRCU callback function "func()", then both CPU A and CPU
850  * B are guaranteed to execute a full memory barrier during the time
851  * interval between the call to call_srcu() and the invocation of "func()".
852  * This guarantee applies even if CPU A and CPU B are the same CPU (but
853  * again only if the system has more than one CPU).
854  *
855  * Of course, these guarantees apply only for invocations of call_srcu(),
856  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
857  * srcu_struct structure.
858  */
859 void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
860 		 rcu_callback_t func, bool do_norm)
861 {
862 	unsigned long flags;
863 	int idx;
864 	bool needexp = false;
865 	bool needgp = false;
866 	unsigned long s;
867 	struct srcu_data *sdp;
868 
869 	check_init_srcu_struct(ssp);
870 	if (debug_rcu_head_queue(rhp)) {
871 		/* Probable double call_srcu(), so leak the callback. */
872 		WRITE_ONCE(rhp->func, srcu_leak_callback);
873 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
874 		return;
875 	}
876 	rhp->func = func;
877 	idx = srcu_read_lock(ssp);
878 	local_irq_save(flags);
879 	sdp = this_cpu_ptr(ssp->sda);
880 	spin_lock_rcu_node(sdp);
881 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
882 	rcu_segcblist_advance(&sdp->srcu_cblist,
883 			      rcu_seq_current(&ssp->srcu_gp_seq));
884 	s = rcu_seq_snap(&ssp->srcu_gp_seq);
885 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
886 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
887 		sdp->srcu_gp_seq_needed = s;
888 		needgp = true;
889 	}
890 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
891 		sdp->srcu_gp_seq_needed_exp = s;
892 		needexp = true;
893 	}
894 	spin_unlock_irqrestore_rcu_node(sdp, flags);
895 	if (needgp)
896 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
897 	else if (needexp)
898 		srcu_funnel_exp_start(ssp, sdp->mynode, s);
899 	srcu_read_unlock(ssp, idx);
900 }
901 
902 /**
903  * call_srcu() - Queue a callback for invocation after an SRCU grace period
904  * @ssp: srcu_struct in queue the callback
905  * @rhp: structure to be used for queueing the SRCU callback.
906  * @func: function to be invoked after the SRCU grace period
907  *
908  * The callback function will be invoked some time after a full SRCU
909  * grace period elapses, in other words after all pre-existing SRCU
910  * read-side critical sections have completed.  However, the callback
911  * function might well execute concurrently with other SRCU read-side
912  * critical sections that started after call_srcu() was invoked.  SRCU
913  * read-side critical sections are delimited by srcu_read_lock() and
914  * srcu_read_unlock(), and may be nested.
915  *
916  * The callback will be invoked from process context, but must nevertheless
917  * be fast and must not block.
918  */
919 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
920 	       rcu_callback_t func)
921 {
922 	__call_srcu(ssp, rhp, func, true);
923 }
924 EXPORT_SYMBOL_GPL(call_srcu);
925 
926 /*
927  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
928  */
929 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
930 {
931 	struct rcu_synchronize rcu;
932 
933 	RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) ||
934 			 lock_is_held(&rcu_bh_lock_map) ||
935 			 lock_is_held(&rcu_lock_map) ||
936 			 lock_is_held(&rcu_sched_lock_map),
937 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
938 
939 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
940 		return;
941 	might_sleep();
942 	check_init_srcu_struct(ssp);
943 	init_completion(&rcu.completion);
944 	init_rcu_head_on_stack(&rcu.head);
945 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
946 	wait_for_completion(&rcu.completion);
947 	destroy_rcu_head_on_stack(&rcu.head);
948 
949 	/*
950 	 * Make sure that later code is ordered after the SRCU grace
951 	 * period.  This pairs with the spin_lock_irq_rcu_node()
952 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
953 	 * because the current CPU might have been totally uninvolved with
954 	 * (and thus unordered against) that grace period.
955 	 */
956 	smp_mb();
957 }
958 
959 /**
960  * synchronize_srcu_expedited - Brute-force SRCU grace period
961  * @ssp: srcu_struct with which to synchronize.
962  *
963  * Wait for an SRCU grace period to elapse, but be more aggressive about
964  * spinning rather than blocking when waiting.
965  *
966  * Note that synchronize_srcu_expedited() has the same deadlock and
967  * memory-ordering properties as does synchronize_srcu().
968  */
969 void synchronize_srcu_expedited(struct srcu_struct *ssp)
970 {
971 	__synchronize_srcu(ssp, rcu_gp_is_normal());
972 }
973 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
974 
975 /**
976  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
977  * @ssp: srcu_struct with which to synchronize.
978  *
979  * Wait for the count to drain to zero of both indexes. To avoid the
980  * possible starvation of synchronize_srcu(), it waits for the count of
981  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
982  * and then flip the srcu_idx and wait for the count of the other index.
983  *
984  * Can block; must be called from process context.
985  *
986  * Note that it is illegal to call synchronize_srcu() from the corresponding
987  * SRCU read-side critical section; doing so will result in deadlock.
988  * However, it is perfectly legal to call synchronize_srcu() on one
989  * srcu_struct from some other srcu_struct's read-side critical section,
990  * as long as the resulting graph of srcu_structs is acyclic.
991  *
992  * There are memory-ordering constraints implied by synchronize_srcu().
993  * On systems with more than one CPU, when synchronize_srcu() returns,
994  * each CPU is guaranteed to have executed a full memory barrier since
995  * the end of its last corresponding SRCU read-side critical section
996  * whose beginning preceded the call to synchronize_srcu().  In addition,
997  * each CPU having an SRCU read-side critical section that extends beyond
998  * the return from synchronize_srcu() is guaranteed to have executed a
999  * full memory barrier after the beginning of synchronize_srcu() and before
1000  * the beginning of that SRCU read-side critical section.  Note that these
1001  * guarantees include CPUs that are offline, idle, or executing in user mode,
1002  * as well as CPUs that are executing in the kernel.
1003  *
1004  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1005  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1006  * to have executed a full memory barrier during the execution of
1007  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1008  * are the same CPU, but again only if the system has more than one CPU.
1009  *
1010  * Of course, these memory-ordering guarantees apply only when
1011  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1012  * passed the same srcu_struct structure.
1013  *
1014  * If SRCU is likely idle, expedite the first request.  This semantic
1015  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1016  * SRCU must also provide it.  Note that detecting idleness is heuristic
1017  * and subject to both false positives and negatives.
1018  */
1019 void synchronize_srcu(struct srcu_struct *ssp)
1020 {
1021 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1022 		synchronize_srcu_expedited(ssp);
1023 	else
1024 		__synchronize_srcu(ssp, true);
1025 }
1026 EXPORT_SYMBOL_GPL(synchronize_srcu);
1027 
1028 /*
1029  * Callback function for srcu_barrier() use.
1030  */
1031 static void srcu_barrier_cb(struct rcu_head *rhp)
1032 {
1033 	struct srcu_data *sdp;
1034 	struct srcu_struct *ssp;
1035 
1036 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1037 	ssp = sdp->ssp;
1038 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1039 		complete(&ssp->srcu_barrier_completion);
1040 }
1041 
1042 /**
1043  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1044  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1045  */
1046 void srcu_barrier(struct srcu_struct *ssp)
1047 {
1048 	int cpu;
1049 	struct srcu_data *sdp;
1050 	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1051 
1052 	check_init_srcu_struct(ssp);
1053 	mutex_lock(&ssp->srcu_barrier_mutex);
1054 	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1055 		smp_mb(); /* Force ordering following return. */
1056 		mutex_unlock(&ssp->srcu_barrier_mutex);
1057 		return; /* Someone else did our work for us. */
1058 	}
1059 	rcu_seq_start(&ssp->srcu_barrier_seq);
1060 	init_completion(&ssp->srcu_barrier_completion);
1061 
1062 	/* Initial count prevents reaching zero until all CBs are posted. */
1063 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1064 
1065 	/*
1066 	 * Each pass through this loop enqueues a callback, but only
1067 	 * on CPUs already having callbacks enqueued.  Note that if
1068 	 * a CPU already has callbacks enqueue, it must have already
1069 	 * registered the need for a future grace period, so all we
1070 	 * need do is enqueue a callback that will use the same
1071 	 * grace period as the last callback already in the queue.
1072 	 */
1073 	for_each_possible_cpu(cpu) {
1074 		sdp = per_cpu_ptr(ssp->sda, cpu);
1075 		spin_lock_irq_rcu_node(sdp);
1076 		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1077 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1078 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1079 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1080 					   &sdp->srcu_barrier_head, 0)) {
1081 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1082 			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1083 		}
1084 		spin_unlock_irq_rcu_node(sdp);
1085 	}
1086 
1087 	/* Remove the initial count, at which point reaching zero can happen. */
1088 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1089 		complete(&ssp->srcu_barrier_completion);
1090 	wait_for_completion(&ssp->srcu_barrier_completion);
1091 
1092 	rcu_seq_end(&ssp->srcu_barrier_seq);
1093 	mutex_unlock(&ssp->srcu_barrier_mutex);
1094 }
1095 EXPORT_SYMBOL_GPL(srcu_barrier);
1096 
1097 /**
1098  * srcu_batches_completed - return batches completed.
1099  * @ssp: srcu_struct on which to report batch completion.
1100  *
1101  * Report the number of batches, correlated with, but not necessarily
1102  * precisely the same as, the number of grace periods that have elapsed.
1103  */
1104 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1105 {
1106 	return ssp->srcu_idx;
1107 }
1108 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1109 
1110 /*
1111  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1112  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1113  * completed in that state.
1114  */
1115 static void srcu_advance_state(struct srcu_struct *ssp)
1116 {
1117 	int idx;
1118 
1119 	mutex_lock(&ssp->srcu_gp_mutex);
1120 
1121 	/*
1122 	 * Because readers might be delayed for an extended period after
1123 	 * fetching ->srcu_idx for their index, at any point in time there
1124 	 * might well be readers using both idx=0 and idx=1.  We therefore
1125 	 * need to wait for readers to clear from both index values before
1126 	 * invoking a callback.
1127 	 *
1128 	 * The load-acquire ensures that we see the accesses performed
1129 	 * by the prior grace period.
1130 	 */
1131 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1132 	if (idx == SRCU_STATE_IDLE) {
1133 		spin_lock_irq_rcu_node(ssp);
1134 		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1135 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1136 			spin_unlock_irq_rcu_node(ssp);
1137 			mutex_unlock(&ssp->srcu_gp_mutex);
1138 			return;
1139 		}
1140 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1141 		if (idx == SRCU_STATE_IDLE)
1142 			srcu_gp_start(ssp);
1143 		spin_unlock_irq_rcu_node(ssp);
1144 		if (idx != SRCU_STATE_IDLE) {
1145 			mutex_unlock(&ssp->srcu_gp_mutex);
1146 			return; /* Someone else started the grace period. */
1147 		}
1148 	}
1149 
1150 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1151 		idx = 1 ^ (ssp->srcu_idx & 1);
1152 		if (!try_check_zero(ssp, idx, 1)) {
1153 			mutex_unlock(&ssp->srcu_gp_mutex);
1154 			return; /* readers present, retry later. */
1155 		}
1156 		srcu_flip(ssp);
1157 		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1158 	}
1159 
1160 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1161 
1162 		/*
1163 		 * SRCU read-side critical sections are normally short,
1164 		 * so check at least twice in quick succession after a flip.
1165 		 */
1166 		idx = 1 ^ (ssp->srcu_idx & 1);
1167 		if (!try_check_zero(ssp, idx, 2)) {
1168 			mutex_unlock(&ssp->srcu_gp_mutex);
1169 			return; /* readers present, retry later. */
1170 		}
1171 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1172 	}
1173 }
1174 
1175 /*
1176  * Invoke a limited number of SRCU callbacks that have passed through
1177  * their grace period.  If there are more to do, SRCU will reschedule
1178  * the workqueue.  Note that needed memory barriers have been executed
1179  * in this task's context by srcu_readers_active_idx_check().
1180  */
1181 static void srcu_invoke_callbacks(struct work_struct *work)
1182 {
1183 	bool more;
1184 	struct rcu_cblist ready_cbs;
1185 	struct rcu_head *rhp;
1186 	struct srcu_data *sdp;
1187 	struct srcu_struct *ssp;
1188 
1189 	sdp = container_of(work, struct srcu_data, work.work);
1190 	ssp = sdp->ssp;
1191 	rcu_cblist_init(&ready_cbs);
1192 	spin_lock_irq_rcu_node(sdp);
1193 	rcu_segcblist_advance(&sdp->srcu_cblist,
1194 			      rcu_seq_current(&ssp->srcu_gp_seq));
1195 	if (sdp->srcu_cblist_invoking ||
1196 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1197 		spin_unlock_irq_rcu_node(sdp);
1198 		return;  /* Someone else on the job or nothing to do. */
1199 	}
1200 
1201 	/* We are on the job!  Extract and invoke ready callbacks. */
1202 	sdp->srcu_cblist_invoking = true;
1203 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1204 	spin_unlock_irq_rcu_node(sdp);
1205 	rhp = rcu_cblist_dequeue(&ready_cbs);
1206 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1207 		debug_rcu_head_unqueue(rhp);
1208 		local_bh_disable();
1209 		rhp->func(rhp);
1210 		local_bh_enable();
1211 	}
1212 
1213 	/*
1214 	 * Update counts, accelerate new callbacks, and if needed,
1215 	 * schedule another round of callback invocation.
1216 	 */
1217 	spin_lock_irq_rcu_node(sdp);
1218 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1219 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1220 				       rcu_seq_snap(&ssp->srcu_gp_seq));
1221 	sdp->srcu_cblist_invoking = false;
1222 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1223 	spin_unlock_irq_rcu_node(sdp);
1224 	if (more)
1225 		srcu_schedule_cbs_sdp(sdp, 0);
1226 }
1227 
1228 /*
1229  * Finished one round of SRCU grace period.  Start another if there are
1230  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1231  */
1232 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1233 {
1234 	bool pushgp = true;
1235 
1236 	spin_lock_irq_rcu_node(ssp);
1237 	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1238 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1239 			/* All requests fulfilled, time to go idle. */
1240 			pushgp = false;
1241 		}
1242 	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1243 		/* Outstanding request and no GP.  Start one. */
1244 		srcu_gp_start(ssp);
1245 	}
1246 	spin_unlock_irq_rcu_node(ssp);
1247 
1248 	if (pushgp)
1249 		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1250 }
1251 
1252 /*
1253  * This is the work-queue function that handles SRCU grace periods.
1254  */
1255 static void process_srcu(struct work_struct *work)
1256 {
1257 	struct srcu_struct *ssp;
1258 
1259 	ssp = container_of(work, struct srcu_struct, work.work);
1260 
1261 	srcu_advance_state(ssp);
1262 	srcu_reschedule(ssp, srcu_get_delay(ssp));
1263 }
1264 
1265 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1266 			     struct srcu_struct *ssp, int *flags,
1267 			     unsigned long *gp_seq)
1268 {
1269 	if (test_type != SRCU_FLAVOR)
1270 		return;
1271 	*flags = 0;
1272 	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1273 }
1274 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1275 
1276 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1277 {
1278 	int cpu;
1279 	int idx;
1280 	unsigned long s0 = 0, s1 = 0;
1281 
1282 	idx = ssp->srcu_idx & 0x1;
1283 	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1284 		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1285 	for_each_possible_cpu(cpu) {
1286 		unsigned long l0, l1;
1287 		unsigned long u0, u1;
1288 		long c0, c1;
1289 		struct srcu_data *sdp;
1290 
1291 		sdp = per_cpu_ptr(ssp->sda, cpu);
1292 		u0 = sdp->srcu_unlock_count[!idx];
1293 		u1 = sdp->srcu_unlock_count[idx];
1294 
1295 		/*
1296 		 * Make sure that a lock is always counted if the corresponding
1297 		 * unlock is counted.
1298 		 */
1299 		smp_rmb();
1300 
1301 		l0 = sdp->srcu_lock_count[!idx];
1302 		l1 = sdp->srcu_lock_count[idx];
1303 
1304 		c0 = l0 - u0;
1305 		c1 = l1 - u1;
1306 		pr_cont(" %d(%ld,%ld %1p)",
1307 			cpu, c0, c1, rcu_segcblist_head(&sdp->srcu_cblist));
1308 		s0 += c0;
1309 		s1 += c1;
1310 	}
1311 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1312 }
1313 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1314 
1315 static int __init srcu_bootup_announce(void)
1316 {
1317 	pr_info("Hierarchical SRCU implementation.\n");
1318 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1319 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1320 	return 0;
1321 }
1322 early_initcall(srcu_bootup_announce);
1323 
1324 void __init srcu_init(void)
1325 {
1326 	struct srcu_struct *ssp;
1327 
1328 	srcu_init_done = true;
1329 	while (!list_empty(&srcu_boot_list)) {
1330 		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1331 				      work.work.entry);
1332 		check_init_srcu_struct(ssp);
1333 		list_del_init(&ssp->work.work.entry);
1334 		queue_work(rcu_gp_wq, &ssp->work.work);
1335 	}
1336 }
1337