xref: /openbmc/linux/kernel/rcu/srcutree.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Author: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/srcu.h>
28 
29 #include "rcu.h"
30 #include "rcu_segcblist.h"
31 
32 /* Holdoff in nanoseconds for auto-expediting. */
33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
35 module_param(exp_holdoff, ulong, 0444);
36 
37 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
38 static ulong counter_wrap_check = (ULONG_MAX >> 2);
39 module_param(counter_wrap_check, ulong, 0444);
40 
41 /* Early-boot callback-management, so early that no lock is required! */
42 static LIST_HEAD(srcu_boot_list);
43 static bool __read_mostly srcu_init_done;
44 
45 static void srcu_invoke_callbacks(struct work_struct *work);
46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
47 static void process_srcu(struct work_struct *work);
48 static void srcu_delay_timer(struct timer_list *t);
49 
50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
51 #define spin_lock_rcu_node(p)					\
52 do {									\
53 	spin_lock(&ACCESS_PRIVATE(p, lock));			\
54 	smp_mb__after_unlock_lock();					\
55 } while (0)
56 
57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
58 
59 #define spin_lock_irq_rcu_node(p)					\
60 do {									\
61 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
62 	smp_mb__after_unlock_lock();					\
63 } while (0)
64 
65 #define spin_unlock_irq_rcu_node(p)					\
66 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
67 
68 #define spin_lock_irqsave_rcu_node(p, flags)			\
69 do {									\
70 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
71 	smp_mb__after_unlock_lock();					\
72 } while (0)
73 
74 #define spin_unlock_irqrestore_rcu_node(p, flags)			\
75 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
76 
77 /*
78  * Initialize SRCU combining tree.  Note that statically allocated
79  * srcu_struct structures might already have srcu_read_lock() and
80  * srcu_read_unlock() running against them.  So if the is_static parameter
81  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
82  */
83 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
84 {
85 	int cpu;
86 	int i;
87 	int level = 0;
88 	int levelspread[RCU_NUM_LVLS];
89 	struct srcu_data *sdp;
90 	struct srcu_node *snp;
91 	struct srcu_node *snp_first;
92 
93 	/* Work out the overall tree geometry. */
94 	ssp->level[0] = &ssp->node[0];
95 	for (i = 1; i < rcu_num_lvls; i++)
96 		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
97 	rcu_init_levelspread(levelspread, num_rcu_lvl);
98 
99 	/* Each pass through this loop initializes one srcu_node structure. */
100 	srcu_for_each_node_breadth_first(ssp, snp) {
101 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
102 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
103 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
104 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
105 			snp->srcu_have_cbs[i] = 0;
106 			snp->srcu_data_have_cbs[i] = 0;
107 		}
108 		snp->srcu_gp_seq_needed_exp = 0;
109 		snp->grplo = -1;
110 		snp->grphi = -1;
111 		if (snp == &ssp->node[0]) {
112 			/* Root node, special case. */
113 			snp->srcu_parent = NULL;
114 			continue;
115 		}
116 
117 		/* Non-root node. */
118 		if (snp == ssp->level[level + 1])
119 			level++;
120 		snp->srcu_parent = ssp->level[level - 1] +
121 				   (snp - ssp->level[level]) /
122 				   levelspread[level - 1];
123 	}
124 
125 	/*
126 	 * Initialize the per-CPU srcu_data array, which feeds into the
127 	 * leaves of the srcu_node tree.
128 	 */
129 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
130 		     ARRAY_SIZE(sdp->srcu_unlock_count));
131 	level = rcu_num_lvls - 1;
132 	snp_first = ssp->level[level];
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
140 		sdp->mynode = &snp_first[cpu / levelspread[level]];
141 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
142 			if (snp->grplo < 0)
143 				snp->grplo = cpu;
144 			snp->grphi = cpu;
145 		}
146 		sdp->cpu = cpu;
147 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
148 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
149 		sdp->ssp = ssp;
150 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
151 		if (is_static)
152 			continue;
153 
154 		/* Dynamically allocated, better be no srcu_read_locks()! */
155 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
156 			sdp->srcu_lock_count[i] = 0;
157 			sdp->srcu_unlock_count[i] = 0;
158 		}
159 	}
160 }
161 
162 /*
163  * Initialize non-compile-time initialized fields, including the
164  * associated srcu_node and srcu_data structures.  The is_static
165  * parameter is passed through to init_srcu_struct_nodes(), and
166  * also tells us that ->sda has already been wired up to srcu_data.
167  */
168 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
169 {
170 	mutex_init(&ssp->srcu_cb_mutex);
171 	mutex_init(&ssp->srcu_gp_mutex);
172 	ssp->srcu_idx = 0;
173 	ssp->srcu_gp_seq = 0;
174 	ssp->srcu_barrier_seq = 0;
175 	mutex_init(&ssp->srcu_barrier_mutex);
176 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
177 	INIT_DELAYED_WORK(&ssp->work, process_srcu);
178 	if (!is_static)
179 		ssp->sda = alloc_percpu(struct srcu_data);
180 	init_srcu_struct_nodes(ssp, is_static);
181 	ssp->srcu_gp_seq_needed_exp = 0;
182 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
183 	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
184 	return ssp->sda ? 0 : -ENOMEM;
185 }
186 
187 #ifdef CONFIG_DEBUG_LOCK_ALLOC
188 
189 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
190 		       struct lock_class_key *key)
191 {
192 	/* Don't re-initialize a lock while it is held. */
193 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
194 	lockdep_init_map(&ssp->dep_map, name, key, 0);
195 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
196 	return init_srcu_struct_fields(ssp, false);
197 }
198 EXPORT_SYMBOL_GPL(__init_srcu_struct);
199 
200 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
201 
202 /**
203  * init_srcu_struct - initialize a sleep-RCU structure
204  * @ssp: structure to initialize.
205  *
206  * Must invoke this on a given srcu_struct before passing that srcu_struct
207  * to any other function.  Each srcu_struct represents a separate domain
208  * of SRCU protection.
209  */
210 int init_srcu_struct(struct srcu_struct *ssp)
211 {
212 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
213 	return init_srcu_struct_fields(ssp, false);
214 }
215 EXPORT_SYMBOL_GPL(init_srcu_struct);
216 
217 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
218 
219 /*
220  * First-use initialization of statically allocated srcu_struct
221  * structure.  Wiring up the combining tree is more than can be
222  * done with compile-time initialization, so this check is added
223  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
224  * compile-time initialized, to resolve races involving multiple
225  * CPUs trying to garner first-use privileges.
226  */
227 static void check_init_srcu_struct(struct srcu_struct *ssp)
228 {
229 	unsigned long flags;
230 
231 	/* The smp_load_acquire() pairs with the smp_store_release(). */
232 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
233 		return; /* Already initialized. */
234 	spin_lock_irqsave_rcu_node(ssp, flags);
235 	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
236 		spin_unlock_irqrestore_rcu_node(ssp, flags);
237 		return;
238 	}
239 	init_srcu_struct_fields(ssp, true);
240 	spin_unlock_irqrestore_rcu_node(ssp, flags);
241 }
242 
243 /*
244  * Returns approximate total of the readers' ->srcu_lock_count[] values
245  * for the rank of per-CPU counters specified by idx.
246  */
247 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
248 {
249 	int cpu;
250 	unsigned long sum = 0;
251 
252 	for_each_possible_cpu(cpu) {
253 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
254 
255 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
256 	}
257 	return sum;
258 }
259 
260 /*
261  * Returns approximate total of the readers' ->srcu_unlock_count[] values
262  * for the rank of per-CPU counters specified by idx.
263  */
264 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
265 {
266 	int cpu;
267 	unsigned long sum = 0;
268 
269 	for_each_possible_cpu(cpu) {
270 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
271 
272 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
273 	}
274 	return sum;
275 }
276 
277 /*
278  * Return true if the number of pre-existing readers is determined to
279  * be zero.
280  */
281 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
282 {
283 	unsigned long unlocks;
284 
285 	unlocks = srcu_readers_unlock_idx(ssp, idx);
286 
287 	/*
288 	 * Make sure that a lock is always counted if the corresponding
289 	 * unlock is counted. Needs to be a smp_mb() as the read side may
290 	 * contain a read from a variable that is written to before the
291 	 * synchronize_srcu() in the write side. In this case smp_mb()s
292 	 * A and B act like the store buffering pattern.
293 	 *
294 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
295 	 * after the synchronize_srcu() from being executed before the
296 	 * grace period ends.
297 	 */
298 	smp_mb(); /* A */
299 
300 	/*
301 	 * If the locks are the same as the unlocks, then there must have
302 	 * been no readers on this index at some time in between. This does
303 	 * not mean that there are no more readers, as one could have read
304 	 * the current index but not have incremented the lock counter yet.
305 	 *
306 	 * So suppose that the updater is preempted here for so long
307 	 * that more than ULONG_MAX non-nested readers come and go in
308 	 * the meantime.  It turns out that this cannot result in overflow
309 	 * because if a reader modifies its unlock count after we read it
310 	 * above, then that reader's next load of ->srcu_idx is guaranteed
311 	 * to get the new value, which will cause it to operate on the
312 	 * other bank of counters, where it cannot contribute to the
313 	 * overflow of these counters.  This means that there is a maximum
314 	 * of 2*NR_CPUS increments, which cannot overflow given current
315 	 * systems, especially not on 64-bit systems.
316 	 *
317 	 * OK, how about nesting?  This does impose a limit on nesting
318 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
319 	 * especially on 64-bit systems.
320 	 */
321 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
322 }
323 
324 /**
325  * srcu_readers_active - returns true if there are readers. and false
326  *                       otherwise
327  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
328  *
329  * Note that this is not an atomic primitive, and can therefore suffer
330  * severe errors when invoked on an active srcu_struct.  That said, it
331  * can be useful as an error check at cleanup time.
332  */
333 static bool srcu_readers_active(struct srcu_struct *ssp)
334 {
335 	int cpu;
336 	unsigned long sum = 0;
337 
338 	for_each_possible_cpu(cpu) {
339 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
340 
341 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
342 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
343 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
344 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
345 	}
346 	return sum;
347 }
348 
349 #define SRCU_INTERVAL		1
350 
351 /*
352  * Return grace-period delay, zero if there are expedited grace
353  * periods pending, SRCU_INTERVAL otherwise.
354  */
355 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
356 {
357 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
358 			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
359 		return 0;
360 	return SRCU_INTERVAL;
361 }
362 
363 /* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */
364 void _cleanup_srcu_struct(struct srcu_struct *ssp, bool quiesced)
365 {
366 	int cpu;
367 
368 	if (WARN_ON(!srcu_get_delay(ssp)))
369 		return; /* Just leak it! */
370 	if (WARN_ON(srcu_readers_active(ssp)))
371 		return; /* Just leak it! */
372 	if (quiesced) {
373 		if (WARN_ON(delayed_work_pending(&ssp->work)))
374 			return; /* Just leak it! */
375 	} else {
376 		flush_delayed_work(&ssp->work);
377 	}
378 	for_each_possible_cpu(cpu) {
379 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
380 
381 		if (quiesced) {
382 			if (WARN_ON(timer_pending(&sdp->delay_work)))
383 				return; /* Just leak it! */
384 			if (WARN_ON(work_pending(&sdp->work)))
385 				return; /* Just leak it! */
386 		} else {
387 			del_timer_sync(&sdp->delay_work);
388 			flush_work(&sdp->work);
389 		}
390 	}
391 	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
392 	    WARN_ON(srcu_readers_active(ssp))) {
393 		pr_info("%s: Active srcu_struct %p state: %d\n",
394 			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
395 		return; /* Caller forgot to stop doing call_srcu()? */
396 	}
397 	free_percpu(ssp->sda);
398 	ssp->sda = NULL;
399 }
400 EXPORT_SYMBOL_GPL(_cleanup_srcu_struct);
401 
402 /*
403  * Counts the new reader in the appropriate per-CPU element of the
404  * srcu_struct.
405  * Returns an index that must be passed to the matching srcu_read_unlock().
406  */
407 int __srcu_read_lock(struct srcu_struct *ssp)
408 {
409 	int idx;
410 
411 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
412 	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
413 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
414 	return idx;
415 }
416 EXPORT_SYMBOL_GPL(__srcu_read_lock);
417 
418 /*
419  * Removes the count for the old reader from the appropriate per-CPU
420  * element of the srcu_struct.  Note that this may well be a different
421  * CPU than that which was incremented by the corresponding srcu_read_lock().
422  */
423 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
424 {
425 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
426 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
427 }
428 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
429 
430 /*
431  * We use an adaptive strategy for synchronize_srcu() and especially for
432  * synchronize_srcu_expedited().  We spin for a fixed time period
433  * (defined below) to allow SRCU readers to exit their read-side critical
434  * sections.  If there are still some readers after a few microseconds,
435  * we repeatedly block for 1-millisecond time periods.
436  */
437 #define SRCU_RETRY_CHECK_DELAY		5
438 
439 /*
440  * Start an SRCU grace period.
441  */
442 static void srcu_gp_start(struct srcu_struct *ssp)
443 {
444 	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
445 	int state;
446 
447 	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
448 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
449 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
450 	rcu_segcblist_advance(&sdp->srcu_cblist,
451 			      rcu_seq_current(&ssp->srcu_gp_seq));
452 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
453 				       rcu_seq_snap(&ssp->srcu_gp_seq));
454 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
455 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
456 	rcu_seq_start(&ssp->srcu_gp_seq);
457 	state = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
458 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
459 }
460 
461 
462 static void srcu_delay_timer(struct timer_list *t)
463 {
464 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
465 
466 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
467 }
468 
469 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
470 				       unsigned long delay)
471 {
472 	if (!delay) {
473 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
474 		return;
475 	}
476 
477 	timer_reduce(&sdp->delay_work, jiffies + delay);
478 }
479 
480 /*
481  * Schedule callback invocation for the specified srcu_data structure,
482  * if possible, on the corresponding CPU.
483  */
484 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
485 {
486 	srcu_queue_delayed_work_on(sdp, delay);
487 }
488 
489 /*
490  * Schedule callback invocation for all srcu_data structures associated
491  * with the specified srcu_node structure that have callbacks for the
492  * just-completed grace period, the one corresponding to idx.  If possible,
493  * schedule this invocation on the corresponding CPUs.
494  */
495 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
496 				  unsigned long mask, unsigned long delay)
497 {
498 	int cpu;
499 
500 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
501 		if (!(mask & (1 << (cpu - snp->grplo))))
502 			continue;
503 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
504 	}
505 }
506 
507 /*
508  * Note the end of an SRCU grace period.  Initiates callback invocation
509  * and starts a new grace period if needed.
510  *
511  * The ->srcu_cb_mutex acquisition does not protect any data, but
512  * instead prevents more than one grace period from starting while we
513  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
514  * array to have a finite number of elements.
515  */
516 static void srcu_gp_end(struct srcu_struct *ssp)
517 {
518 	unsigned long cbdelay;
519 	bool cbs;
520 	bool last_lvl;
521 	int cpu;
522 	unsigned long flags;
523 	unsigned long gpseq;
524 	int idx;
525 	unsigned long mask;
526 	struct srcu_data *sdp;
527 	struct srcu_node *snp;
528 
529 	/* Prevent more than one additional grace period. */
530 	mutex_lock(&ssp->srcu_cb_mutex);
531 
532 	/* End the current grace period. */
533 	spin_lock_irq_rcu_node(ssp);
534 	idx = rcu_seq_state(ssp->srcu_gp_seq);
535 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
536 	cbdelay = srcu_get_delay(ssp);
537 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
538 	rcu_seq_end(&ssp->srcu_gp_seq);
539 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
540 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
541 		ssp->srcu_gp_seq_needed_exp = gpseq;
542 	spin_unlock_irq_rcu_node(ssp);
543 	mutex_unlock(&ssp->srcu_gp_mutex);
544 	/* A new grace period can start at this point.  But only one. */
545 
546 	/* Initiate callback invocation as needed. */
547 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
548 	srcu_for_each_node_breadth_first(ssp, snp) {
549 		spin_lock_irq_rcu_node(snp);
550 		cbs = false;
551 		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
552 		if (last_lvl)
553 			cbs = snp->srcu_have_cbs[idx] == gpseq;
554 		snp->srcu_have_cbs[idx] = gpseq;
555 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
556 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
557 			snp->srcu_gp_seq_needed_exp = gpseq;
558 		mask = snp->srcu_data_have_cbs[idx];
559 		snp->srcu_data_have_cbs[idx] = 0;
560 		spin_unlock_irq_rcu_node(snp);
561 		if (cbs)
562 			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
563 
564 		/* Occasionally prevent srcu_data counter wrap. */
565 		if (!(gpseq & counter_wrap_check) && last_lvl)
566 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
567 				sdp = per_cpu_ptr(ssp->sda, cpu);
568 				spin_lock_irqsave_rcu_node(sdp, flags);
569 				if (ULONG_CMP_GE(gpseq,
570 						 sdp->srcu_gp_seq_needed + 100))
571 					sdp->srcu_gp_seq_needed = gpseq;
572 				if (ULONG_CMP_GE(gpseq,
573 						 sdp->srcu_gp_seq_needed_exp + 100))
574 					sdp->srcu_gp_seq_needed_exp = gpseq;
575 				spin_unlock_irqrestore_rcu_node(sdp, flags);
576 			}
577 	}
578 
579 	/* Callback initiation done, allow grace periods after next. */
580 	mutex_unlock(&ssp->srcu_cb_mutex);
581 
582 	/* Start a new grace period if needed. */
583 	spin_lock_irq_rcu_node(ssp);
584 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
585 	if (!rcu_seq_state(gpseq) &&
586 	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
587 		srcu_gp_start(ssp);
588 		spin_unlock_irq_rcu_node(ssp);
589 		srcu_reschedule(ssp, 0);
590 	} else {
591 		spin_unlock_irq_rcu_node(ssp);
592 	}
593 }
594 
595 /*
596  * Funnel-locking scheme to scalably mediate many concurrent expedited
597  * grace-period requests.  This function is invoked for the first known
598  * expedited request for a grace period that has already been requested,
599  * but without expediting.  To start a completely new grace period,
600  * whether expedited or not, use srcu_funnel_gp_start() instead.
601  */
602 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
603 				  unsigned long s)
604 {
605 	unsigned long flags;
606 
607 	for (; snp != NULL; snp = snp->srcu_parent) {
608 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
609 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
610 			return;
611 		spin_lock_irqsave_rcu_node(snp, flags);
612 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
613 			spin_unlock_irqrestore_rcu_node(snp, flags);
614 			return;
615 		}
616 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
617 		spin_unlock_irqrestore_rcu_node(snp, flags);
618 	}
619 	spin_lock_irqsave_rcu_node(ssp, flags);
620 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
621 		ssp->srcu_gp_seq_needed_exp = s;
622 	spin_unlock_irqrestore_rcu_node(ssp, flags);
623 }
624 
625 /*
626  * Funnel-locking scheme to scalably mediate many concurrent grace-period
627  * requests.  The winner has to do the work of actually starting grace
628  * period s.  Losers must either ensure that their desired grace-period
629  * number is recorded on at least their leaf srcu_node structure, or they
630  * must take steps to invoke their own callbacks.
631  *
632  * Note that this function also does the work of srcu_funnel_exp_start(),
633  * in some cases by directly invoking it.
634  */
635 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
636 				 unsigned long s, bool do_norm)
637 {
638 	unsigned long flags;
639 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
640 	struct srcu_node *snp = sdp->mynode;
641 	unsigned long snp_seq;
642 
643 	/* Each pass through the loop does one level of the srcu_node tree. */
644 	for (; snp != NULL; snp = snp->srcu_parent) {
645 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
646 			return; /* GP already done and CBs recorded. */
647 		spin_lock_irqsave_rcu_node(snp, flags);
648 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
649 			snp_seq = snp->srcu_have_cbs[idx];
650 			if (snp == sdp->mynode && snp_seq == s)
651 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
652 			spin_unlock_irqrestore_rcu_node(snp, flags);
653 			if (snp == sdp->mynode && snp_seq != s) {
654 				srcu_schedule_cbs_sdp(sdp, do_norm
655 							   ? SRCU_INTERVAL
656 							   : 0);
657 				return;
658 			}
659 			if (!do_norm)
660 				srcu_funnel_exp_start(ssp, snp, s);
661 			return;
662 		}
663 		snp->srcu_have_cbs[idx] = s;
664 		if (snp == sdp->mynode)
665 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
666 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
667 			snp->srcu_gp_seq_needed_exp = s;
668 		spin_unlock_irqrestore_rcu_node(snp, flags);
669 	}
670 
671 	/* Top of tree, must ensure the grace period will be started. */
672 	spin_lock_irqsave_rcu_node(ssp, flags);
673 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
674 		/*
675 		 * Record need for grace period s.  Pair with load
676 		 * acquire setting up for initialization.
677 		 */
678 		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
679 	}
680 	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
681 		ssp->srcu_gp_seq_needed_exp = s;
682 
683 	/* If grace period not already done and none in progress, start it. */
684 	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
685 	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
686 		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
687 		srcu_gp_start(ssp);
688 		if (likely(srcu_init_done))
689 			queue_delayed_work(rcu_gp_wq, &ssp->work,
690 					   srcu_get_delay(ssp));
691 		else if (list_empty(&ssp->work.work.entry))
692 			list_add(&ssp->work.work.entry, &srcu_boot_list);
693 	}
694 	spin_unlock_irqrestore_rcu_node(ssp, flags);
695 }
696 
697 /*
698  * Wait until all readers counted by array index idx complete, but
699  * loop an additional time if there is an expedited grace period pending.
700  * The caller must ensure that ->srcu_idx is not changed while checking.
701  */
702 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
703 {
704 	for (;;) {
705 		if (srcu_readers_active_idx_check(ssp, idx))
706 			return true;
707 		if (--trycount + !srcu_get_delay(ssp) <= 0)
708 			return false;
709 		udelay(SRCU_RETRY_CHECK_DELAY);
710 	}
711 }
712 
713 /*
714  * Increment the ->srcu_idx counter so that future SRCU readers will
715  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
716  * us to wait for pre-existing readers in a starvation-free manner.
717  */
718 static void srcu_flip(struct srcu_struct *ssp)
719 {
720 	/*
721 	 * Ensure that if this updater saw a given reader's increment
722 	 * from __srcu_read_lock(), that reader was using an old value
723 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
724 	 * new value of ->srcu_idx, this updater's earlier scans cannot
725 	 * have seen that reader's increments (which is OK, because this
726 	 * grace period need not wait on that reader).
727 	 */
728 	smp_mb(); /* E */  /* Pairs with B and C. */
729 
730 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
731 
732 	/*
733 	 * Ensure that if the updater misses an __srcu_read_unlock()
734 	 * increment, that task's next __srcu_read_lock() will see the
735 	 * above counter update.  Note that both this memory barrier
736 	 * and the one in srcu_readers_active_idx_check() provide the
737 	 * guarantee for __srcu_read_lock().
738 	 */
739 	smp_mb(); /* D */  /* Pairs with C. */
740 }
741 
742 /*
743  * If SRCU is likely idle, return true, otherwise return false.
744  *
745  * Note that it is OK for several current from-idle requests for a new
746  * grace period from idle to specify expediting because they will all end
747  * up requesting the same grace period anyhow.  So no loss.
748  *
749  * Note also that if any CPU (including the current one) is still invoking
750  * callbacks, this function will nevertheless say "idle".  This is not
751  * ideal, but the overhead of checking all CPUs' callback lists is even
752  * less ideal, especially on large systems.  Furthermore, the wakeup
753  * can happen before the callback is fully removed, so we have no choice
754  * but to accept this type of error.
755  *
756  * This function is also subject to counter-wrap errors, but let's face
757  * it, if this function was preempted for enough time for the counters
758  * to wrap, it really doesn't matter whether or not we expedite the grace
759  * period.  The extra overhead of a needlessly expedited grace period is
760  * negligible when amoritized over that time period, and the extra latency
761  * of a needlessly non-expedited grace period is similarly negligible.
762  */
763 static bool srcu_might_be_idle(struct srcu_struct *ssp)
764 {
765 	unsigned long curseq;
766 	unsigned long flags;
767 	struct srcu_data *sdp;
768 	unsigned long t;
769 
770 	/* If the local srcu_data structure has callbacks, not idle.  */
771 	local_irq_save(flags);
772 	sdp = this_cpu_ptr(ssp->sda);
773 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
774 		local_irq_restore(flags);
775 		return false; /* Callbacks already present, so not idle. */
776 	}
777 	local_irq_restore(flags);
778 
779 	/*
780 	 * No local callbacks, so probabalistically probe global state.
781 	 * Exact information would require acquiring locks, which would
782 	 * kill scalability, hence the probabalistic nature of the probe.
783 	 */
784 
785 	/* First, see if enough time has passed since the last GP. */
786 	t = ktime_get_mono_fast_ns();
787 	if (exp_holdoff == 0 ||
788 	    time_in_range_open(t, ssp->srcu_last_gp_end,
789 			       ssp->srcu_last_gp_end + exp_holdoff))
790 		return false; /* Too soon after last GP. */
791 
792 	/* Next, check for probable idleness. */
793 	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
794 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
795 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
796 		return false; /* Grace period in progress, so not idle. */
797 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
798 	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
799 		return false; /* GP # changed, so not idle. */
800 	return true; /* With reasonable probability, idle! */
801 }
802 
803 /*
804  * SRCU callback function to leak a callback.
805  */
806 static void srcu_leak_callback(struct rcu_head *rhp)
807 {
808 }
809 
810 /*
811  * Enqueue an SRCU callback on the srcu_data structure associated with
812  * the current CPU and the specified srcu_struct structure, initiating
813  * grace-period processing if it is not already running.
814  *
815  * Note that all CPUs must agree that the grace period extended beyond
816  * all pre-existing SRCU read-side critical section.  On systems with
817  * more than one CPU, this means that when "func()" is invoked, each CPU
818  * is guaranteed to have executed a full memory barrier since the end of
819  * its last corresponding SRCU read-side critical section whose beginning
820  * preceded the call to call_srcu().  It also means that each CPU executing
821  * an SRCU read-side critical section that continues beyond the start of
822  * "func()" must have executed a memory barrier after the call_srcu()
823  * but before the beginning of that SRCU read-side critical section.
824  * Note that these guarantees include CPUs that are offline, idle, or
825  * executing in user mode, as well as CPUs that are executing in the kernel.
826  *
827  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
828  * resulting SRCU callback function "func()", then both CPU A and CPU
829  * B are guaranteed to execute a full memory barrier during the time
830  * interval between the call to call_srcu() and the invocation of "func()".
831  * This guarantee applies even if CPU A and CPU B are the same CPU (but
832  * again only if the system has more than one CPU).
833  *
834  * Of course, these guarantees apply only for invocations of call_srcu(),
835  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
836  * srcu_struct structure.
837  */
838 void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
839 		 rcu_callback_t func, bool do_norm)
840 {
841 	unsigned long flags;
842 	int idx;
843 	bool needexp = false;
844 	bool needgp = false;
845 	unsigned long s;
846 	struct srcu_data *sdp;
847 
848 	check_init_srcu_struct(ssp);
849 	if (debug_rcu_head_queue(rhp)) {
850 		/* Probable double call_srcu(), so leak the callback. */
851 		WRITE_ONCE(rhp->func, srcu_leak_callback);
852 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
853 		return;
854 	}
855 	rhp->func = func;
856 	idx = srcu_read_lock(ssp);
857 	local_irq_save(flags);
858 	sdp = this_cpu_ptr(ssp->sda);
859 	spin_lock_rcu_node(sdp);
860 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
861 	rcu_segcblist_advance(&sdp->srcu_cblist,
862 			      rcu_seq_current(&ssp->srcu_gp_seq));
863 	s = rcu_seq_snap(&ssp->srcu_gp_seq);
864 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
865 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
866 		sdp->srcu_gp_seq_needed = s;
867 		needgp = true;
868 	}
869 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
870 		sdp->srcu_gp_seq_needed_exp = s;
871 		needexp = true;
872 	}
873 	spin_unlock_irqrestore_rcu_node(sdp, flags);
874 	if (needgp)
875 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
876 	else if (needexp)
877 		srcu_funnel_exp_start(ssp, sdp->mynode, s);
878 	srcu_read_unlock(ssp, idx);
879 }
880 
881 /**
882  * call_srcu() - Queue a callback for invocation after an SRCU grace period
883  * @ssp: srcu_struct in queue the callback
884  * @rhp: structure to be used for queueing the SRCU callback.
885  * @func: function to be invoked after the SRCU grace period
886  *
887  * The callback function will be invoked some time after a full SRCU
888  * grace period elapses, in other words after all pre-existing SRCU
889  * read-side critical sections have completed.  However, the callback
890  * function might well execute concurrently with other SRCU read-side
891  * critical sections that started after call_srcu() was invoked.  SRCU
892  * read-side critical sections are delimited by srcu_read_lock() and
893  * srcu_read_unlock(), and may be nested.
894  *
895  * The callback will be invoked from process context, but must nevertheless
896  * be fast and must not block.
897  */
898 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
899 	       rcu_callback_t func)
900 {
901 	__call_srcu(ssp, rhp, func, true);
902 }
903 EXPORT_SYMBOL_GPL(call_srcu);
904 
905 /*
906  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
907  */
908 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
909 {
910 	struct rcu_synchronize rcu;
911 
912 	RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) ||
913 			 lock_is_held(&rcu_bh_lock_map) ||
914 			 lock_is_held(&rcu_lock_map) ||
915 			 lock_is_held(&rcu_sched_lock_map),
916 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
917 
918 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
919 		return;
920 	might_sleep();
921 	check_init_srcu_struct(ssp);
922 	init_completion(&rcu.completion);
923 	init_rcu_head_on_stack(&rcu.head);
924 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
925 	wait_for_completion(&rcu.completion);
926 	destroy_rcu_head_on_stack(&rcu.head);
927 
928 	/*
929 	 * Make sure that later code is ordered after the SRCU grace
930 	 * period.  This pairs with the spin_lock_irq_rcu_node()
931 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
932 	 * because the current CPU might have been totally uninvolved with
933 	 * (and thus unordered against) that grace period.
934 	 */
935 	smp_mb();
936 }
937 
938 /**
939  * synchronize_srcu_expedited - Brute-force SRCU grace period
940  * @ssp: srcu_struct with which to synchronize.
941  *
942  * Wait for an SRCU grace period to elapse, but be more aggressive about
943  * spinning rather than blocking when waiting.
944  *
945  * Note that synchronize_srcu_expedited() has the same deadlock and
946  * memory-ordering properties as does synchronize_srcu().
947  */
948 void synchronize_srcu_expedited(struct srcu_struct *ssp)
949 {
950 	__synchronize_srcu(ssp, rcu_gp_is_normal());
951 }
952 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
953 
954 /**
955  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
956  * @ssp: srcu_struct with which to synchronize.
957  *
958  * Wait for the count to drain to zero of both indexes. To avoid the
959  * possible starvation of synchronize_srcu(), it waits for the count of
960  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
961  * and then flip the srcu_idx and wait for the count of the other index.
962  *
963  * Can block; must be called from process context.
964  *
965  * Note that it is illegal to call synchronize_srcu() from the corresponding
966  * SRCU read-side critical section; doing so will result in deadlock.
967  * However, it is perfectly legal to call synchronize_srcu() on one
968  * srcu_struct from some other srcu_struct's read-side critical section,
969  * as long as the resulting graph of srcu_structs is acyclic.
970  *
971  * There are memory-ordering constraints implied by synchronize_srcu().
972  * On systems with more than one CPU, when synchronize_srcu() returns,
973  * each CPU is guaranteed to have executed a full memory barrier since
974  * the end of its last corresponding SRCU read-side critical section
975  * whose beginning preceded the call to synchronize_srcu().  In addition,
976  * each CPU having an SRCU read-side critical section that extends beyond
977  * the return from synchronize_srcu() is guaranteed to have executed a
978  * full memory barrier after the beginning of synchronize_srcu() and before
979  * the beginning of that SRCU read-side critical section.  Note that these
980  * guarantees include CPUs that are offline, idle, or executing in user mode,
981  * as well as CPUs that are executing in the kernel.
982  *
983  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
984  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
985  * to have executed a full memory barrier during the execution of
986  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
987  * are the same CPU, but again only if the system has more than one CPU.
988  *
989  * Of course, these memory-ordering guarantees apply only when
990  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
991  * passed the same srcu_struct structure.
992  *
993  * If SRCU is likely idle, expedite the first request.  This semantic
994  * was provided by Classic SRCU, and is relied upon by its users, so TREE
995  * SRCU must also provide it.  Note that detecting idleness is heuristic
996  * and subject to both false positives and negatives.
997  */
998 void synchronize_srcu(struct srcu_struct *ssp)
999 {
1000 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1001 		synchronize_srcu_expedited(ssp);
1002 	else
1003 		__synchronize_srcu(ssp, true);
1004 }
1005 EXPORT_SYMBOL_GPL(synchronize_srcu);
1006 
1007 /*
1008  * Callback function for srcu_barrier() use.
1009  */
1010 static void srcu_barrier_cb(struct rcu_head *rhp)
1011 {
1012 	struct srcu_data *sdp;
1013 	struct srcu_struct *ssp;
1014 
1015 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1016 	ssp = sdp->ssp;
1017 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1018 		complete(&ssp->srcu_barrier_completion);
1019 }
1020 
1021 /**
1022  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1023  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1024  */
1025 void srcu_barrier(struct srcu_struct *ssp)
1026 {
1027 	int cpu;
1028 	struct srcu_data *sdp;
1029 	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1030 
1031 	check_init_srcu_struct(ssp);
1032 	mutex_lock(&ssp->srcu_barrier_mutex);
1033 	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1034 		smp_mb(); /* Force ordering following return. */
1035 		mutex_unlock(&ssp->srcu_barrier_mutex);
1036 		return; /* Someone else did our work for us. */
1037 	}
1038 	rcu_seq_start(&ssp->srcu_barrier_seq);
1039 	init_completion(&ssp->srcu_barrier_completion);
1040 
1041 	/* Initial count prevents reaching zero until all CBs are posted. */
1042 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1043 
1044 	/*
1045 	 * Each pass through this loop enqueues a callback, but only
1046 	 * on CPUs already having callbacks enqueued.  Note that if
1047 	 * a CPU already has callbacks enqueue, it must have already
1048 	 * registered the need for a future grace period, so all we
1049 	 * need do is enqueue a callback that will use the same
1050 	 * grace period as the last callback already in the queue.
1051 	 */
1052 	for_each_possible_cpu(cpu) {
1053 		sdp = per_cpu_ptr(ssp->sda, cpu);
1054 		spin_lock_irq_rcu_node(sdp);
1055 		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1056 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1057 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1058 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1059 					   &sdp->srcu_barrier_head, 0)) {
1060 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1061 			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1062 		}
1063 		spin_unlock_irq_rcu_node(sdp);
1064 	}
1065 
1066 	/* Remove the initial count, at which point reaching zero can happen. */
1067 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1068 		complete(&ssp->srcu_barrier_completion);
1069 	wait_for_completion(&ssp->srcu_barrier_completion);
1070 
1071 	rcu_seq_end(&ssp->srcu_barrier_seq);
1072 	mutex_unlock(&ssp->srcu_barrier_mutex);
1073 }
1074 EXPORT_SYMBOL_GPL(srcu_barrier);
1075 
1076 /**
1077  * srcu_batches_completed - return batches completed.
1078  * @ssp: srcu_struct on which to report batch completion.
1079  *
1080  * Report the number of batches, correlated with, but not necessarily
1081  * precisely the same as, the number of grace periods that have elapsed.
1082  */
1083 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1084 {
1085 	return ssp->srcu_idx;
1086 }
1087 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1088 
1089 /*
1090  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1091  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1092  * completed in that state.
1093  */
1094 static void srcu_advance_state(struct srcu_struct *ssp)
1095 {
1096 	int idx;
1097 
1098 	mutex_lock(&ssp->srcu_gp_mutex);
1099 
1100 	/*
1101 	 * Because readers might be delayed for an extended period after
1102 	 * fetching ->srcu_idx for their index, at any point in time there
1103 	 * might well be readers using both idx=0 and idx=1.  We therefore
1104 	 * need to wait for readers to clear from both index values before
1105 	 * invoking a callback.
1106 	 *
1107 	 * The load-acquire ensures that we see the accesses performed
1108 	 * by the prior grace period.
1109 	 */
1110 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1111 	if (idx == SRCU_STATE_IDLE) {
1112 		spin_lock_irq_rcu_node(ssp);
1113 		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1114 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1115 			spin_unlock_irq_rcu_node(ssp);
1116 			mutex_unlock(&ssp->srcu_gp_mutex);
1117 			return;
1118 		}
1119 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1120 		if (idx == SRCU_STATE_IDLE)
1121 			srcu_gp_start(ssp);
1122 		spin_unlock_irq_rcu_node(ssp);
1123 		if (idx != SRCU_STATE_IDLE) {
1124 			mutex_unlock(&ssp->srcu_gp_mutex);
1125 			return; /* Someone else started the grace period. */
1126 		}
1127 	}
1128 
1129 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1130 		idx = 1 ^ (ssp->srcu_idx & 1);
1131 		if (!try_check_zero(ssp, idx, 1)) {
1132 			mutex_unlock(&ssp->srcu_gp_mutex);
1133 			return; /* readers present, retry later. */
1134 		}
1135 		srcu_flip(ssp);
1136 		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1137 	}
1138 
1139 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1140 
1141 		/*
1142 		 * SRCU read-side critical sections are normally short,
1143 		 * so check at least twice in quick succession after a flip.
1144 		 */
1145 		idx = 1 ^ (ssp->srcu_idx & 1);
1146 		if (!try_check_zero(ssp, idx, 2)) {
1147 			mutex_unlock(&ssp->srcu_gp_mutex);
1148 			return; /* readers present, retry later. */
1149 		}
1150 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1151 	}
1152 }
1153 
1154 /*
1155  * Invoke a limited number of SRCU callbacks that have passed through
1156  * their grace period.  If there are more to do, SRCU will reschedule
1157  * the workqueue.  Note that needed memory barriers have been executed
1158  * in this task's context by srcu_readers_active_idx_check().
1159  */
1160 static void srcu_invoke_callbacks(struct work_struct *work)
1161 {
1162 	bool more;
1163 	struct rcu_cblist ready_cbs;
1164 	struct rcu_head *rhp;
1165 	struct srcu_data *sdp;
1166 	struct srcu_struct *ssp;
1167 
1168 	sdp = container_of(work, struct srcu_data, work);
1169 
1170 	ssp = sdp->ssp;
1171 	rcu_cblist_init(&ready_cbs);
1172 	spin_lock_irq_rcu_node(sdp);
1173 	rcu_segcblist_advance(&sdp->srcu_cblist,
1174 			      rcu_seq_current(&ssp->srcu_gp_seq));
1175 	if (sdp->srcu_cblist_invoking ||
1176 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1177 		spin_unlock_irq_rcu_node(sdp);
1178 		return;  /* Someone else on the job or nothing to do. */
1179 	}
1180 
1181 	/* We are on the job!  Extract and invoke ready callbacks. */
1182 	sdp->srcu_cblist_invoking = true;
1183 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1184 	spin_unlock_irq_rcu_node(sdp);
1185 	rhp = rcu_cblist_dequeue(&ready_cbs);
1186 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1187 		debug_rcu_head_unqueue(rhp);
1188 		local_bh_disable();
1189 		rhp->func(rhp);
1190 		local_bh_enable();
1191 	}
1192 
1193 	/*
1194 	 * Update counts, accelerate new callbacks, and if needed,
1195 	 * schedule another round of callback invocation.
1196 	 */
1197 	spin_lock_irq_rcu_node(sdp);
1198 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1199 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1200 				       rcu_seq_snap(&ssp->srcu_gp_seq));
1201 	sdp->srcu_cblist_invoking = false;
1202 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1203 	spin_unlock_irq_rcu_node(sdp);
1204 	if (more)
1205 		srcu_schedule_cbs_sdp(sdp, 0);
1206 }
1207 
1208 /*
1209  * Finished one round of SRCU grace period.  Start another if there are
1210  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1211  */
1212 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1213 {
1214 	bool pushgp = true;
1215 
1216 	spin_lock_irq_rcu_node(ssp);
1217 	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1218 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1219 			/* All requests fulfilled, time to go idle. */
1220 			pushgp = false;
1221 		}
1222 	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1223 		/* Outstanding request and no GP.  Start one. */
1224 		srcu_gp_start(ssp);
1225 	}
1226 	spin_unlock_irq_rcu_node(ssp);
1227 
1228 	if (pushgp)
1229 		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1230 }
1231 
1232 /*
1233  * This is the work-queue function that handles SRCU grace periods.
1234  */
1235 static void process_srcu(struct work_struct *work)
1236 {
1237 	struct srcu_struct *ssp;
1238 
1239 	ssp = container_of(work, struct srcu_struct, work.work);
1240 
1241 	srcu_advance_state(ssp);
1242 	srcu_reschedule(ssp, srcu_get_delay(ssp));
1243 }
1244 
1245 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1246 			     struct srcu_struct *ssp, int *flags,
1247 			     unsigned long *gp_seq)
1248 {
1249 	if (test_type != SRCU_FLAVOR)
1250 		return;
1251 	*flags = 0;
1252 	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1253 }
1254 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1255 
1256 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1257 {
1258 	int cpu;
1259 	int idx;
1260 	unsigned long s0 = 0, s1 = 0;
1261 
1262 	idx = ssp->srcu_idx & 0x1;
1263 	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1264 		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1265 	for_each_possible_cpu(cpu) {
1266 		unsigned long l0, l1;
1267 		unsigned long u0, u1;
1268 		long c0, c1;
1269 		struct srcu_data *sdp;
1270 
1271 		sdp = per_cpu_ptr(ssp->sda, cpu);
1272 		u0 = sdp->srcu_unlock_count[!idx];
1273 		u1 = sdp->srcu_unlock_count[idx];
1274 
1275 		/*
1276 		 * Make sure that a lock is always counted if the corresponding
1277 		 * unlock is counted.
1278 		 */
1279 		smp_rmb();
1280 
1281 		l0 = sdp->srcu_lock_count[!idx];
1282 		l1 = sdp->srcu_lock_count[idx];
1283 
1284 		c0 = l0 - u0;
1285 		c1 = l1 - u1;
1286 		pr_cont(" %d(%ld,%ld %1p)",
1287 			cpu, c0, c1, rcu_segcblist_head(&sdp->srcu_cblist));
1288 		s0 += c0;
1289 		s1 += c1;
1290 	}
1291 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1292 }
1293 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1294 
1295 static int __init srcu_bootup_announce(void)
1296 {
1297 	pr_info("Hierarchical SRCU implementation.\n");
1298 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1299 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1300 	return 0;
1301 }
1302 early_initcall(srcu_bootup_announce);
1303 
1304 void __init srcu_init(void)
1305 {
1306 	struct srcu_struct *ssp;
1307 
1308 	srcu_init_done = true;
1309 	while (!list_empty(&srcu_boot_list)) {
1310 		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1311 				      work.work.entry);
1312 		check_init_srcu_struct(ssp);
1313 		list_del_init(&ssp->work.work.entry);
1314 		queue_work(rcu_gp_wq, &ssp->work.work);
1315 	}
1316 }
1317