1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // Scalability test comparing RCU vs other mechanisms 4 // for acquiring references on objects. 5 // 6 // Copyright (C) Google, 2020. 7 // 8 // Author: Joel Fernandes <joel@joelfernandes.org> 9 10 #define pr_fmt(fmt) fmt 11 12 #include <linux/atomic.h> 13 #include <linux/bitops.h> 14 #include <linux/completion.h> 15 #include <linux/cpu.h> 16 #include <linux/delay.h> 17 #include <linux/err.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/kthread.h> 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/moduleparam.h> 25 #include <linux/notifier.h> 26 #include <linux/percpu.h> 27 #include <linux/rcupdate.h> 28 #include <linux/rcupdate_trace.h> 29 #include <linux/reboot.h> 30 #include <linux/sched.h> 31 #include <linux/spinlock.h> 32 #include <linux/smp.h> 33 #include <linux/stat.h> 34 #include <linux/srcu.h> 35 #include <linux/slab.h> 36 #include <linux/torture.h> 37 #include <linux/types.h> 38 39 #include "rcu.h" 40 41 #define SCALE_FLAG "-ref-scale: " 42 43 #define SCALEOUT(s, x...) \ 44 pr_alert("%s" SCALE_FLAG s, scale_type, ## x) 45 46 #define VERBOSE_SCALEOUT(s, x...) \ 47 do { \ 48 if (verbose) \ 49 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \ 50 } while (0) 51 52 static atomic_t verbose_batch_ctr; 53 54 #define VERBOSE_SCALEOUT_BATCH(s, x...) \ 55 do { \ 56 if (verbose && \ 57 (verbose_batched <= 0 || \ 58 !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) { \ 59 schedule_timeout_uninterruptible(1); \ 60 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \ 61 } \ 62 } while (0) 63 64 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x) 65 66 MODULE_LICENSE("GPL"); 67 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>"); 68 69 static char *scale_type = "rcu"; 70 module_param(scale_type, charp, 0444); 71 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock."); 72 73 torture_param(int, verbose, 0, "Enable verbose debugging printk()s"); 74 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s"); 75 76 // Wait until there are multiple CPUs before starting test. 77 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0, 78 "Holdoff time before test start (s)"); 79 // Number of typesafe_lookup structures, that is, the degree of concurrency. 80 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures."); 81 // Number of loops per experiment, all readers execute operations concurrently. 82 torture_param(long, loops, 10000, "Number of loops per experiment."); 83 // Number of readers, with -1 defaulting to about 75% of the CPUs. 84 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs."); 85 // Number of runs. 86 torture_param(int, nruns, 30, "Number of experiments to run."); 87 // Reader delay in nanoseconds, 0 for no delay. 88 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds."); 89 90 #ifdef MODULE 91 # define REFSCALE_SHUTDOWN 0 92 #else 93 # define REFSCALE_SHUTDOWN 1 94 #endif 95 96 torture_param(bool, shutdown, REFSCALE_SHUTDOWN, 97 "Shutdown at end of scalability tests."); 98 99 struct reader_task { 100 struct task_struct *task; 101 int start_reader; 102 wait_queue_head_t wq; 103 u64 last_duration_ns; 104 }; 105 106 static struct task_struct *shutdown_task; 107 static wait_queue_head_t shutdown_wq; 108 109 static struct task_struct *main_task; 110 static wait_queue_head_t main_wq; 111 static int shutdown_start; 112 113 static struct reader_task *reader_tasks; 114 115 // Number of readers that are part of the current experiment. 116 static atomic_t nreaders_exp; 117 118 // Use to wait for all threads to start. 119 static atomic_t n_init; 120 static atomic_t n_started; 121 static atomic_t n_warmedup; 122 static atomic_t n_cooleddown; 123 124 // Track which experiment is currently running. 125 static int exp_idx; 126 127 // Operations vector for selecting different types of tests. 128 struct ref_scale_ops { 129 bool (*init)(void); 130 void (*cleanup)(void); 131 void (*readsection)(const int nloops); 132 void (*delaysection)(const int nloops, const int udl, const int ndl); 133 const char *name; 134 }; 135 136 static struct ref_scale_ops *cur_ops; 137 138 static void un_delay(const int udl, const int ndl) 139 { 140 if (udl) 141 udelay(udl); 142 if (ndl) 143 ndelay(ndl); 144 } 145 146 static void ref_rcu_read_section(const int nloops) 147 { 148 int i; 149 150 for (i = nloops; i >= 0; i--) { 151 rcu_read_lock(); 152 rcu_read_unlock(); 153 } 154 } 155 156 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl) 157 { 158 int i; 159 160 for (i = nloops; i >= 0; i--) { 161 rcu_read_lock(); 162 un_delay(udl, ndl); 163 rcu_read_unlock(); 164 } 165 } 166 167 static bool rcu_sync_scale_init(void) 168 { 169 return true; 170 } 171 172 static struct ref_scale_ops rcu_ops = { 173 .init = rcu_sync_scale_init, 174 .readsection = ref_rcu_read_section, 175 .delaysection = ref_rcu_delay_section, 176 .name = "rcu" 177 }; 178 179 // Definitions for SRCU ref scale testing. 180 DEFINE_STATIC_SRCU(srcu_refctl_scale); 181 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale; 182 183 static void srcu_ref_scale_read_section(const int nloops) 184 { 185 int i; 186 int idx; 187 188 for (i = nloops; i >= 0; i--) { 189 idx = srcu_read_lock(srcu_ctlp); 190 srcu_read_unlock(srcu_ctlp, idx); 191 } 192 } 193 194 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl) 195 { 196 int i; 197 int idx; 198 199 for (i = nloops; i >= 0; i--) { 200 idx = srcu_read_lock(srcu_ctlp); 201 un_delay(udl, ndl); 202 srcu_read_unlock(srcu_ctlp, idx); 203 } 204 } 205 206 static struct ref_scale_ops srcu_ops = { 207 .init = rcu_sync_scale_init, 208 .readsection = srcu_ref_scale_read_section, 209 .delaysection = srcu_ref_scale_delay_section, 210 .name = "srcu" 211 }; 212 213 #ifdef CONFIG_TASKS_RCU 214 215 // Definitions for RCU Tasks ref scale testing: Empty read markers. 216 // These definitions also work for RCU Rude readers. 217 static void rcu_tasks_ref_scale_read_section(const int nloops) 218 { 219 int i; 220 221 for (i = nloops; i >= 0; i--) 222 continue; 223 } 224 225 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl) 226 { 227 int i; 228 229 for (i = nloops; i >= 0; i--) 230 un_delay(udl, ndl); 231 } 232 233 static struct ref_scale_ops rcu_tasks_ops = { 234 .init = rcu_sync_scale_init, 235 .readsection = rcu_tasks_ref_scale_read_section, 236 .delaysection = rcu_tasks_ref_scale_delay_section, 237 .name = "rcu-tasks" 238 }; 239 240 #define RCU_TASKS_OPS &rcu_tasks_ops, 241 242 #else // #ifdef CONFIG_TASKS_RCU 243 244 #define RCU_TASKS_OPS 245 246 #endif // #else // #ifdef CONFIG_TASKS_RCU 247 248 #ifdef CONFIG_TASKS_TRACE_RCU 249 250 // Definitions for RCU Tasks Trace ref scale testing. 251 static void rcu_trace_ref_scale_read_section(const int nloops) 252 { 253 int i; 254 255 for (i = nloops; i >= 0; i--) { 256 rcu_read_lock_trace(); 257 rcu_read_unlock_trace(); 258 } 259 } 260 261 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl) 262 { 263 int i; 264 265 for (i = nloops; i >= 0; i--) { 266 rcu_read_lock_trace(); 267 un_delay(udl, ndl); 268 rcu_read_unlock_trace(); 269 } 270 } 271 272 static struct ref_scale_ops rcu_trace_ops = { 273 .init = rcu_sync_scale_init, 274 .readsection = rcu_trace_ref_scale_read_section, 275 .delaysection = rcu_trace_ref_scale_delay_section, 276 .name = "rcu-trace" 277 }; 278 279 #define RCU_TRACE_OPS &rcu_trace_ops, 280 281 #else // #ifdef CONFIG_TASKS_TRACE_RCU 282 283 #define RCU_TRACE_OPS 284 285 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU 286 287 // Definitions for reference count 288 static atomic_t refcnt; 289 290 static void ref_refcnt_section(const int nloops) 291 { 292 int i; 293 294 for (i = nloops; i >= 0; i--) { 295 atomic_inc(&refcnt); 296 atomic_dec(&refcnt); 297 } 298 } 299 300 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl) 301 { 302 int i; 303 304 for (i = nloops; i >= 0; i--) { 305 atomic_inc(&refcnt); 306 un_delay(udl, ndl); 307 atomic_dec(&refcnt); 308 } 309 } 310 311 static struct ref_scale_ops refcnt_ops = { 312 .init = rcu_sync_scale_init, 313 .readsection = ref_refcnt_section, 314 .delaysection = ref_refcnt_delay_section, 315 .name = "refcnt" 316 }; 317 318 // Definitions for rwlock 319 static rwlock_t test_rwlock; 320 321 static bool ref_rwlock_init(void) 322 { 323 rwlock_init(&test_rwlock); 324 return true; 325 } 326 327 static void ref_rwlock_section(const int nloops) 328 { 329 int i; 330 331 for (i = nloops; i >= 0; i--) { 332 read_lock(&test_rwlock); 333 read_unlock(&test_rwlock); 334 } 335 } 336 337 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl) 338 { 339 int i; 340 341 for (i = nloops; i >= 0; i--) { 342 read_lock(&test_rwlock); 343 un_delay(udl, ndl); 344 read_unlock(&test_rwlock); 345 } 346 } 347 348 static struct ref_scale_ops rwlock_ops = { 349 .init = ref_rwlock_init, 350 .readsection = ref_rwlock_section, 351 .delaysection = ref_rwlock_delay_section, 352 .name = "rwlock" 353 }; 354 355 // Definitions for rwsem 356 static struct rw_semaphore test_rwsem; 357 358 static bool ref_rwsem_init(void) 359 { 360 init_rwsem(&test_rwsem); 361 return true; 362 } 363 364 static void ref_rwsem_section(const int nloops) 365 { 366 int i; 367 368 for (i = nloops; i >= 0; i--) { 369 down_read(&test_rwsem); 370 up_read(&test_rwsem); 371 } 372 } 373 374 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl) 375 { 376 int i; 377 378 for (i = nloops; i >= 0; i--) { 379 down_read(&test_rwsem); 380 un_delay(udl, ndl); 381 up_read(&test_rwsem); 382 } 383 } 384 385 static struct ref_scale_ops rwsem_ops = { 386 .init = ref_rwsem_init, 387 .readsection = ref_rwsem_section, 388 .delaysection = ref_rwsem_delay_section, 389 .name = "rwsem" 390 }; 391 392 // Definitions for global spinlock 393 static DEFINE_RAW_SPINLOCK(test_lock); 394 395 static void ref_lock_section(const int nloops) 396 { 397 int i; 398 399 preempt_disable(); 400 for (i = nloops; i >= 0; i--) { 401 raw_spin_lock(&test_lock); 402 raw_spin_unlock(&test_lock); 403 } 404 preempt_enable(); 405 } 406 407 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl) 408 { 409 int i; 410 411 preempt_disable(); 412 for (i = nloops; i >= 0; i--) { 413 raw_spin_lock(&test_lock); 414 un_delay(udl, ndl); 415 raw_spin_unlock(&test_lock); 416 } 417 preempt_enable(); 418 } 419 420 static struct ref_scale_ops lock_ops = { 421 .readsection = ref_lock_section, 422 .delaysection = ref_lock_delay_section, 423 .name = "lock" 424 }; 425 426 // Definitions for global irq-save spinlock 427 428 static void ref_lock_irq_section(const int nloops) 429 { 430 unsigned long flags; 431 int i; 432 433 preempt_disable(); 434 for (i = nloops; i >= 0; i--) { 435 raw_spin_lock_irqsave(&test_lock, flags); 436 raw_spin_unlock_irqrestore(&test_lock, flags); 437 } 438 preempt_enable(); 439 } 440 441 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl) 442 { 443 unsigned long flags; 444 int i; 445 446 preempt_disable(); 447 for (i = nloops; i >= 0; i--) { 448 raw_spin_lock_irqsave(&test_lock, flags); 449 un_delay(udl, ndl); 450 raw_spin_unlock_irqrestore(&test_lock, flags); 451 } 452 preempt_enable(); 453 } 454 455 static struct ref_scale_ops lock_irq_ops = { 456 .readsection = ref_lock_irq_section, 457 .delaysection = ref_lock_irq_delay_section, 458 .name = "lock-irq" 459 }; 460 461 // Definitions acquire-release. 462 static DEFINE_PER_CPU(unsigned long, test_acqrel); 463 464 static void ref_acqrel_section(const int nloops) 465 { 466 unsigned long x; 467 int i; 468 469 preempt_disable(); 470 for (i = nloops; i >= 0; i--) { 471 x = smp_load_acquire(this_cpu_ptr(&test_acqrel)); 472 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1); 473 } 474 preempt_enable(); 475 } 476 477 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl) 478 { 479 unsigned long x; 480 int i; 481 482 preempt_disable(); 483 for (i = nloops; i >= 0; i--) { 484 x = smp_load_acquire(this_cpu_ptr(&test_acqrel)); 485 un_delay(udl, ndl); 486 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1); 487 } 488 preempt_enable(); 489 } 490 491 static struct ref_scale_ops acqrel_ops = { 492 .readsection = ref_acqrel_section, 493 .delaysection = ref_acqrel_delay_section, 494 .name = "acqrel" 495 }; 496 497 static volatile u64 stopopts; 498 499 static void ref_clock_section(const int nloops) 500 { 501 u64 x = 0; 502 int i; 503 504 preempt_disable(); 505 for (i = nloops; i >= 0; i--) 506 x += ktime_get_real_fast_ns(); 507 preempt_enable(); 508 stopopts = x; 509 } 510 511 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl) 512 { 513 u64 x = 0; 514 int i; 515 516 preempt_disable(); 517 for (i = nloops; i >= 0; i--) { 518 x += ktime_get_real_fast_ns(); 519 un_delay(udl, ndl); 520 } 521 preempt_enable(); 522 stopopts = x; 523 } 524 525 static struct ref_scale_ops clock_ops = { 526 .readsection = ref_clock_section, 527 .delaysection = ref_clock_delay_section, 528 .name = "clock" 529 }; 530 531 //////////////////////////////////////////////////////////////////////// 532 // 533 // Methods leveraging SLAB_TYPESAFE_BY_RCU. 534 // 535 536 // Item to look up in a typesafe manner. Array of pointers to these. 537 struct refscale_typesafe { 538 atomic_t rts_refctr; // Used by all flavors 539 spinlock_t rts_lock; 540 seqlock_t rts_seqlock; 541 unsigned int a; 542 unsigned int b; 543 }; 544 545 static struct kmem_cache *typesafe_kmem_cachep; 546 static struct refscale_typesafe **rtsarray; 547 static long rtsarray_size; 548 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand); 549 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start); 550 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start); 551 552 // Conditionally acquire an explicit in-structure reference count. 553 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start) 554 { 555 return atomic_inc_not_zero(&rtsp->rts_refctr); 556 } 557 558 // Unconditionally release an explicit in-structure reference count. 559 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start) 560 { 561 if (!atomic_dec_return(&rtsp->rts_refctr)) { 562 WRITE_ONCE(rtsp->a, rtsp->a + 1); 563 kmem_cache_free(typesafe_kmem_cachep, rtsp); 564 } 565 return true; 566 } 567 568 // Unconditionally acquire an explicit in-structure spinlock. 569 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start) 570 { 571 spin_lock(&rtsp->rts_lock); 572 return true; 573 } 574 575 // Unconditionally release an explicit in-structure spinlock. 576 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start) 577 { 578 spin_unlock(&rtsp->rts_lock); 579 return true; 580 } 581 582 // Unconditionally acquire an explicit in-structure sequence lock. 583 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start) 584 { 585 *start = read_seqbegin(&rtsp->rts_seqlock); 586 return true; 587 } 588 589 // Conditionally release an explicit in-structure sequence lock. Return 590 // true if this release was successful, that is, if no retry is required. 591 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start) 592 { 593 return !read_seqretry(&rtsp->rts_seqlock, start); 594 } 595 596 // Do a read-side critical section with the specified delay in 597 // microseconds and nanoseconds inserted so as to increase probability 598 // of failure. 599 static void typesafe_delay_section(const int nloops, const int udl, const int ndl) 600 { 601 unsigned int a; 602 unsigned int b; 603 int i; 604 long idx; 605 struct refscale_typesafe *rtsp; 606 unsigned int start; 607 608 for (i = nloops; i >= 0; i--) { 609 preempt_disable(); 610 idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size; 611 preempt_enable(); 612 retry: 613 rcu_read_lock(); 614 rtsp = rcu_dereference(rtsarray[idx]); 615 a = READ_ONCE(rtsp->a); 616 if (!rts_acquire(rtsp, &start)) { 617 rcu_read_unlock(); 618 goto retry; 619 } 620 if (a != READ_ONCE(rtsp->a)) { 621 (void)rts_release(rtsp, start); 622 rcu_read_unlock(); 623 goto retry; 624 } 625 un_delay(udl, ndl); 626 // Remember, seqlock read-side release can fail. 627 if (!rts_release(rtsp, start)) { 628 rcu_read_unlock(); 629 goto retry; 630 } 631 b = READ_ONCE(rtsp->a); 632 WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b); 633 b = rtsp->b; 634 rcu_read_unlock(); 635 WARN_ON_ONCE(a * a != b); 636 } 637 } 638 639 // Because the acquisition and release methods are expensive, there 640 // is no point in optimizing away the un_delay() function's two checks. 641 // Thus simply define typesafe_read_section() as a simple wrapper around 642 // typesafe_delay_section(). 643 static void typesafe_read_section(const int nloops) 644 { 645 typesafe_delay_section(nloops, 0, 0); 646 } 647 648 // Allocate and initialize one refscale_typesafe structure. 649 static struct refscale_typesafe *typesafe_alloc_one(void) 650 { 651 struct refscale_typesafe *rtsp; 652 653 rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL); 654 if (!rtsp) 655 return NULL; 656 atomic_set(&rtsp->rts_refctr, 1); 657 WRITE_ONCE(rtsp->a, rtsp->a + 1); 658 WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a); 659 return rtsp; 660 } 661 662 // Slab-allocator constructor for refscale_typesafe structures created 663 // out of a new slab of system memory. 664 static void refscale_typesafe_ctor(void *rtsp_in) 665 { 666 struct refscale_typesafe *rtsp = rtsp_in; 667 668 spin_lock_init(&rtsp->rts_lock); 669 seqlock_init(&rtsp->rts_seqlock); 670 preempt_disable(); 671 rtsp->a = torture_random(this_cpu_ptr(&refscale_rand)); 672 preempt_enable(); 673 } 674 675 static struct ref_scale_ops typesafe_ref_ops; 676 static struct ref_scale_ops typesafe_lock_ops; 677 static struct ref_scale_ops typesafe_seqlock_ops; 678 679 // Initialize for a typesafe test. 680 static bool typesafe_init(void) 681 { 682 long idx; 683 long si = lookup_instances; 684 685 typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe", 686 sizeof(struct refscale_typesafe), sizeof(void *), 687 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor); 688 if (!typesafe_kmem_cachep) 689 return false; 690 if (si < 0) 691 si = -si * nr_cpu_ids; 692 else if (si == 0) 693 si = nr_cpu_ids; 694 rtsarray_size = si; 695 rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL); 696 if (!rtsarray) 697 return false; 698 for (idx = 0; idx < rtsarray_size; idx++) { 699 rtsarray[idx] = typesafe_alloc_one(); 700 if (!rtsarray[idx]) 701 return false; 702 } 703 if (cur_ops == &typesafe_ref_ops) { 704 rts_acquire = typesafe_ref_acquire; 705 rts_release = typesafe_ref_release; 706 } else if (cur_ops == &typesafe_lock_ops) { 707 rts_acquire = typesafe_lock_acquire; 708 rts_release = typesafe_lock_release; 709 } else if (cur_ops == &typesafe_seqlock_ops) { 710 rts_acquire = typesafe_seqlock_acquire; 711 rts_release = typesafe_seqlock_release; 712 } else { 713 WARN_ON_ONCE(1); 714 return false; 715 } 716 return true; 717 } 718 719 // Clean up after a typesafe test. 720 static void typesafe_cleanup(void) 721 { 722 long idx; 723 724 if (rtsarray) { 725 for (idx = 0; idx < rtsarray_size; idx++) 726 kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]); 727 kfree(rtsarray); 728 rtsarray = NULL; 729 rtsarray_size = 0; 730 } 731 kmem_cache_destroy(typesafe_kmem_cachep); 732 typesafe_kmem_cachep = NULL; 733 rts_acquire = NULL; 734 rts_release = NULL; 735 } 736 737 // The typesafe_init() function distinguishes these structures by address. 738 static struct ref_scale_ops typesafe_ref_ops = { 739 .init = typesafe_init, 740 .cleanup = typesafe_cleanup, 741 .readsection = typesafe_read_section, 742 .delaysection = typesafe_delay_section, 743 .name = "typesafe_ref" 744 }; 745 746 static struct ref_scale_ops typesafe_lock_ops = { 747 .init = typesafe_init, 748 .cleanup = typesafe_cleanup, 749 .readsection = typesafe_read_section, 750 .delaysection = typesafe_delay_section, 751 .name = "typesafe_lock" 752 }; 753 754 static struct ref_scale_ops typesafe_seqlock_ops = { 755 .init = typesafe_init, 756 .cleanup = typesafe_cleanup, 757 .readsection = typesafe_read_section, 758 .delaysection = typesafe_delay_section, 759 .name = "typesafe_seqlock" 760 }; 761 762 static void rcu_scale_one_reader(void) 763 { 764 if (readdelay <= 0) 765 cur_ops->readsection(loops); 766 else 767 cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000); 768 } 769 770 // Reader kthread. Repeatedly does empty RCU read-side 771 // critical section, minimizing update-side interference. 772 static int 773 ref_scale_reader(void *arg) 774 { 775 unsigned long flags; 776 long me = (long)arg; 777 struct reader_task *rt = &(reader_tasks[me]); 778 u64 start; 779 s64 duration; 780 781 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me); 782 WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids))); 783 set_user_nice(current, MAX_NICE); 784 atomic_inc(&n_init); 785 if (holdoff) 786 schedule_timeout_interruptible(holdoff * HZ); 787 repeat: 788 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id()); 789 790 // Wait for signal that this reader can start. 791 wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) || 792 torture_must_stop()); 793 794 if (torture_must_stop()) 795 goto end; 796 797 // Make sure that the CPU is affinitized appropriately during testing. 798 WARN_ON_ONCE(raw_smp_processor_id() != me); 799 800 WRITE_ONCE(rt->start_reader, 0); 801 if (!atomic_dec_return(&n_started)) 802 while (atomic_read_acquire(&n_started)) 803 cpu_relax(); 804 805 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx); 806 807 808 // To reduce noise, do an initial cache-warming invocation, check 809 // in, and then keep warming until everyone has checked in. 810 rcu_scale_one_reader(); 811 if (!atomic_dec_return(&n_warmedup)) 812 while (atomic_read_acquire(&n_warmedup)) 813 rcu_scale_one_reader(); 814 // Also keep interrupts disabled. This also has the effect 815 // of preventing entries into slow path for rcu_read_unlock(). 816 local_irq_save(flags); 817 start = ktime_get_mono_fast_ns(); 818 819 rcu_scale_one_reader(); 820 821 duration = ktime_get_mono_fast_ns() - start; 822 local_irq_restore(flags); 823 824 rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration; 825 // To reduce runtime-skew noise, do maintain-load invocations until 826 // everyone is done. 827 if (!atomic_dec_return(&n_cooleddown)) 828 while (atomic_read_acquire(&n_cooleddown)) 829 rcu_scale_one_reader(); 830 831 if (atomic_dec_and_test(&nreaders_exp)) 832 wake_up(&main_wq); 833 834 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)", 835 me, exp_idx, atomic_read(&nreaders_exp)); 836 837 if (!torture_must_stop()) 838 goto repeat; 839 end: 840 torture_kthread_stopping("ref_scale_reader"); 841 return 0; 842 } 843 844 static void reset_readers(void) 845 { 846 int i; 847 struct reader_task *rt; 848 849 for (i = 0; i < nreaders; i++) { 850 rt = &(reader_tasks[i]); 851 852 rt->last_duration_ns = 0; 853 } 854 } 855 856 // Print the results of each reader and return the sum of all their durations. 857 static u64 process_durations(int n) 858 { 859 int i; 860 struct reader_task *rt; 861 char buf1[64]; 862 char *buf; 863 u64 sum = 0; 864 865 buf = kmalloc(800 + 64, GFP_KERNEL); 866 if (!buf) 867 return 0; 868 buf[0] = 0; 869 sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)", 870 exp_idx); 871 872 for (i = 0; i < n && !torture_must_stop(); i++) { 873 rt = &(reader_tasks[i]); 874 sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns); 875 876 if (i % 5 == 0) 877 strcat(buf, "\n"); 878 if (strlen(buf) >= 800) { 879 pr_alert("%s", buf); 880 buf[0] = 0; 881 } 882 strcat(buf, buf1); 883 884 sum += rt->last_duration_ns; 885 } 886 pr_alert("%s\n", buf); 887 888 kfree(buf); 889 return sum; 890 } 891 892 // The main_func is the main orchestrator, it performs a bunch of 893 // experiments. For every experiment, it orders all the readers 894 // involved to start and waits for them to finish the experiment. It 895 // then reads their timestamps and starts the next experiment. Each 896 // experiment progresses from 1 concurrent reader to N of them at which 897 // point all the timestamps are printed. 898 static int main_func(void *arg) 899 { 900 int exp, r; 901 char buf1[64]; 902 char *buf; 903 u64 *result_avg; 904 905 set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids)); 906 set_user_nice(current, MAX_NICE); 907 908 VERBOSE_SCALEOUT("main_func task started"); 909 result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL); 910 buf = kzalloc(800 + 64, GFP_KERNEL); 911 if (!result_avg || !buf) { 912 SCALEOUT_ERRSTRING("out of memory"); 913 goto oom_exit; 914 } 915 if (holdoff) 916 schedule_timeout_interruptible(holdoff * HZ); 917 918 // Wait for all threads to start. 919 atomic_inc(&n_init); 920 while (atomic_read(&n_init) < nreaders + 1) 921 schedule_timeout_uninterruptible(1); 922 923 // Start exp readers up per experiment 924 for (exp = 0; exp < nruns && !torture_must_stop(); exp++) { 925 if (torture_must_stop()) 926 goto end; 927 928 reset_readers(); 929 atomic_set(&nreaders_exp, nreaders); 930 atomic_set(&n_started, nreaders); 931 atomic_set(&n_warmedup, nreaders); 932 atomic_set(&n_cooleddown, nreaders); 933 934 exp_idx = exp; 935 936 for (r = 0; r < nreaders; r++) { 937 smp_store_release(&reader_tasks[r].start_reader, 1); 938 wake_up(&reader_tasks[r].wq); 939 } 940 941 VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers", 942 nreaders); 943 944 wait_event(main_wq, 945 !atomic_read(&nreaders_exp) || torture_must_stop()); 946 947 VERBOSE_SCALEOUT("main_func: experiment ended"); 948 949 if (torture_must_stop()) 950 goto end; 951 952 result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops); 953 } 954 955 // Print the average of all experiments 956 SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n"); 957 958 pr_alert("Runs\tTime(ns)\n"); 959 for (exp = 0; exp < nruns; exp++) { 960 u64 avg; 961 u32 rem; 962 963 avg = div_u64_rem(result_avg[exp], 1000, &rem); 964 sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem); 965 strcat(buf, buf1); 966 if (strlen(buf) >= 800) { 967 pr_alert("%s", buf); 968 buf[0] = 0; 969 } 970 } 971 972 pr_alert("%s", buf); 973 974 oom_exit: 975 // This will shutdown everything including us. 976 if (shutdown) { 977 shutdown_start = 1; 978 wake_up(&shutdown_wq); 979 } 980 981 // Wait for torture to stop us 982 while (!torture_must_stop()) 983 schedule_timeout_uninterruptible(1); 984 985 end: 986 torture_kthread_stopping("main_func"); 987 kfree(result_avg); 988 kfree(buf); 989 return 0; 990 } 991 992 static void 993 ref_scale_print_module_parms(struct ref_scale_ops *cur_ops, const char *tag) 994 { 995 pr_alert("%s" SCALE_FLAG 996 "--- %s: verbose=%d shutdown=%d holdoff=%d loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag, 997 verbose, shutdown, holdoff, loops, nreaders, nruns, readdelay); 998 } 999 1000 static void 1001 ref_scale_cleanup(void) 1002 { 1003 int i; 1004 1005 if (torture_cleanup_begin()) 1006 return; 1007 1008 if (!cur_ops) { 1009 torture_cleanup_end(); 1010 return; 1011 } 1012 1013 if (reader_tasks) { 1014 for (i = 0; i < nreaders; i++) 1015 torture_stop_kthread("ref_scale_reader", 1016 reader_tasks[i].task); 1017 } 1018 kfree(reader_tasks); 1019 1020 torture_stop_kthread("main_task", main_task); 1021 kfree(main_task); 1022 1023 // Do scale-type-specific cleanup operations. 1024 if (cur_ops->cleanup != NULL) 1025 cur_ops->cleanup(); 1026 1027 torture_cleanup_end(); 1028 } 1029 1030 // Shutdown kthread. Just waits to be awakened, then shuts down system. 1031 static int 1032 ref_scale_shutdown(void *arg) 1033 { 1034 wait_event(shutdown_wq, shutdown_start); 1035 1036 smp_mb(); // Wake before output. 1037 ref_scale_cleanup(); 1038 kernel_power_off(); 1039 1040 return -EINVAL; 1041 } 1042 1043 static int __init 1044 ref_scale_init(void) 1045 { 1046 long i; 1047 int firsterr = 0; 1048 static struct ref_scale_ops *scale_ops[] = { 1049 &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops, 1050 &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, 1051 &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops, 1052 }; 1053 1054 if (!torture_init_begin(scale_type, verbose)) 1055 return -EBUSY; 1056 1057 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) { 1058 cur_ops = scale_ops[i]; 1059 if (strcmp(scale_type, cur_ops->name) == 0) 1060 break; 1061 } 1062 if (i == ARRAY_SIZE(scale_ops)) { 1063 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type); 1064 pr_alert("rcu-scale types:"); 1065 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) 1066 pr_cont(" %s", scale_ops[i]->name); 1067 pr_cont("\n"); 1068 firsterr = -EINVAL; 1069 cur_ops = NULL; 1070 goto unwind; 1071 } 1072 if (cur_ops->init) 1073 if (!cur_ops->init()) { 1074 firsterr = -EUCLEAN; 1075 goto unwind; 1076 } 1077 1078 ref_scale_print_module_parms(cur_ops, "Start of test"); 1079 1080 // Shutdown task 1081 if (shutdown) { 1082 init_waitqueue_head(&shutdown_wq); 1083 firsterr = torture_create_kthread(ref_scale_shutdown, NULL, 1084 shutdown_task); 1085 if (torture_init_error(firsterr)) 1086 goto unwind; 1087 schedule_timeout_uninterruptible(1); 1088 } 1089 1090 // Reader tasks (default to ~75% of online CPUs). 1091 if (nreaders < 0) 1092 nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2); 1093 if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops)) 1094 loops = 1; 1095 if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders)) 1096 nreaders = 1; 1097 if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns)) 1098 nruns = 1; 1099 reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]), 1100 GFP_KERNEL); 1101 if (!reader_tasks) { 1102 SCALEOUT_ERRSTRING("out of memory"); 1103 firsterr = -ENOMEM; 1104 goto unwind; 1105 } 1106 1107 VERBOSE_SCALEOUT("Starting %d reader threads", nreaders); 1108 1109 for (i = 0; i < nreaders; i++) { 1110 firsterr = torture_create_kthread(ref_scale_reader, (void *)i, 1111 reader_tasks[i].task); 1112 if (torture_init_error(firsterr)) 1113 goto unwind; 1114 1115 init_waitqueue_head(&(reader_tasks[i].wq)); 1116 } 1117 1118 // Main Task 1119 init_waitqueue_head(&main_wq); 1120 firsterr = torture_create_kthread(main_func, NULL, main_task); 1121 if (torture_init_error(firsterr)) 1122 goto unwind; 1123 1124 torture_init_end(); 1125 return 0; 1126 1127 unwind: 1128 torture_init_end(); 1129 ref_scale_cleanup(); 1130 if (shutdown) { 1131 WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST)); 1132 kernel_power_off(); 1133 } 1134 return firsterr; 1135 } 1136 1137 module_init(ref_scale_init); 1138 module_exit(ref_scale_cleanup); 1139