xref: /openbmc/linux/kernel/rcu/rcuscale.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update module-based scalability-test facility
4  *
5  * Copyright (C) IBM Corporation, 2015
6  *
7  * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) fmt
11 
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <linux/kthread.h>
18 #include <linux/err.h>
19 #include <linux/spinlock.h>
20 #include <linux/smp.h>
21 #include <linux/rcupdate.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <uapi/linux/sched/types.h>
25 #include <linux/atomic.h>
26 #include <linux/bitops.h>
27 #include <linux/completion.h>
28 #include <linux/moduleparam.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/freezer.h>
33 #include <linux/cpu.h>
34 #include <linux/delay.h>
35 #include <linux/stat.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <asm/byteorder.h>
39 #include <linux/torture.h>
40 #include <linux/vmalloc.h>
41 
42 #include "rcu.h"
43 
44 MODULE_LICENSE("GPL");
45 MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
46 
47 #define SCALE_FLAG "-scale:"
48 #define SCALEOUT_STRING(s) \
49 	pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
50 #define VERBOSE_SCALEOUT_STRING(s) \
51 	do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
52 #define VERBOSE_SCALEOUT_ERRSTRING(s) \
53 	do { if (verbose) pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s); } while (0)
54 
55 /*
56  * The intended use cases for the nreaders and nwriters module parameters
57  * are as follows:
58  *
59  * 1.	Specify only the nr_cpus kernel boot parameter.  This will
60  *	set both nreaders and nwriters to the value specified by
61  *	nr_cpus for a mixed reader/writer test.
62  *
63  * 2.	Specify the nr_cpus kernel boot parameter, but set
64  *	rcuscale.nreaders to zero.  This will set nwriters to the
65  *	value specified by nr_cpus for an update-only test.
66  *
67  * 3.	Specify the nr_cpus kernel boot parameter, but set
68  *	rcuscale.nwriters to zero.  This will set nreaders to the
69  *	value specified by nr_cpus for a read-only test.
70  *
71  * Various other use cases may of course be specified.
72  *
73  * Note that this test's readers are intended only as a test load for
74  * the writers.  The reader scalability statistics will be overly
75  * pessimistic due to the per-critical-section interrupt disabling,
76  * test-end checks, and the pair of calls through pointers.
77  */
78 
79 #ifdef MODULE
80 # define RCUSCALE_SHUTDOWN 0
81 #else
82 # define RCUSCALE_SHUTDOWN 1
83 #endif
84 
85 torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
86 torture_param(int, gp_async_max, 1000, "Max # outstanding waits per reader");
87 torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
88 torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
89 torture_param(int, nreaders, -1, "Number of RCU reader threads");
90 torture_param(int, nwriters, -1, "Number of RCU updater threads");
91 torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
92 	      "Shutdown at end of scalability tests.");
93 torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
94 torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
95 torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
96 torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
97 
98 static char *scale_type = "rcu";
99 module_param(scale_type, charp, 0444);
100 MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");
101 
102 static int nrealreaders;
103 static int nrealwriters;
104 static struct task_struct **writer_tasks;
105 static struct task_struct **reader_tasks;
106 static struct task_struct *shutdown_task;
107 
108 static u64 **writer_durations;
109 static int *writer_n_durations;
110 static atomic_t n_rcu_scale_reader_started;
111 static atomic_t n_rcu_scale_writer_started;
112 static atomic_t n_rcu_scale_writer_finished;
113 static wait_queue_head_t shutdown_wq;
114 static u64 t_rcu_scale_writer_started;
115 static u64 t_rcu_scale_writer_finished;
116 static unsigned long b_rcu_gp_test_started;
117 static unsigned long b_rcu_gp_test_finished;
118 static DEFINE_PER_CPU(atomic_t, n_async_inflight);
119 
120 #define MAX_MEAS 10000
121 #define MIN_MEAS 100
122 
123 /*
124  * Operations vector for selecting different types of tests.
125  */
126 
127 struct rcu_scale_ops {
128 	int ptype;
129 	void (*init)(void);
130 	void (*cleanup)(void);
131 	int (*readlock)(void);
132 	void (*readunlock)(int idx);
133 	unsigned long (*get_gp_seq)(void);
134 	unsigned long (*gp_diff)(unsigned long new, unsigned long old);
135 	unsigned long (*exp_completed)(void);
136 	void (*async)(struct rcu_head *head, rcu_callback_t func);
137 	void (*gp_barrier)(void);
138 	void (*sync)(void);
139 	void (*exp_sync)(void);
140 	const char *name;
141 };
142 
143 static struct rcu_scale_ops *cur_ops;
144 
145 /*
146  * Definitions for rcu scalability testing.
147  */
148 
149 static int rcu_scale_read_lock(void) __acquires(RCU)
150 {
151 	rcu_read_lock();
152 	return 0;
153 }
154 
155 static void rcu_scale_read_unlock(int idx) __releases(RCU)
156 {
157 	rcu_read_unlock();
158 }
159 
160 static unsigned long __maybe_unused rcu_no_completed(void)
161 {
162 	return 0;
163 }
164 
165 static void rcu_sync_scale_init(void)
166 {
167 }
168 
169 static struct rcu_scale_ops rcu_ops = {
170 	.ptype		= RCU_FLAVOR,
171 	.init		= rcu_sync_scale_init,
172 	.readlock	= rcu_scale_read_lock,
173 	.readunlock	= rcu_scale_read_unlock,
174 	.get_gp_seq	= rcu_get_gp_seq,
175 	.gp_diff	= rcu_seq_diff,
176 	.exp_completed	= rcu_exp_batches_completed,
177 	.async		= call_rcu,
178 	.gp_barrier	= rcu_barrier,
179 	.sync		= synchronize_rcu,
180 	.exp_sync	= synchronize_rcu_expedited,
181 	.name		= "rcu"
182 };
183 
184 /*
185  * Definitions for srcu scalability testing.
186  */
187 
188 DEFINE_STATIC_SRCU(srcu_ctl_scale);
189 static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;
190 
191 static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
192 {
193 	return srcu_read_lock(srcu_ctlp);
194 }
195 
196 static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
197 {
198 	srcu_read_unlock(srcu_ctlp, idx);
199 }
200 
201 static unsigned long srcu_scale_completed(void)
202 {
203 	return srcu_batches_completed(srcu_ctlp);
204 }
205 
206 static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
207 {
208 	call_srcu(srcu_ctlp, head, func);
209 }
210 
211 static void srcu_rcu_barrier(void)
212 {
213 	srcu_barrier(srcu_ctlp);
214 }
215 
216 static void srcu_scale_synchronize(void)
217 {
218 	synchronize_srcu(srcu_ctlp);
219 }
220 
221 static void srcu_scale_synchronize_expedited(void)
222 {
223 	synchronize_srcu_expedited(srcu_ctlp);
224 }
225 
226 static struct rcu_scale_ops srcu_ops = {
227 	.ptype		= SRCU_FLAVOR,
228 	.init		= rcu_sync_scale_init,
229 	.readlock	= srcu_scale_read_lock,
230 	.readunlock	= srcu_scale_read_unlock,
231 	.get_gp_seq	= srcu_scale_completed,
232 	.gp_diff	= rcu_seq_diff,
233 	.exp_completed	= srcu_scale_completed,
234 	.async		= srcu_call_rcu,
235 	.gp_barrier	= srcu_rcu_barrier,
236 	.sync		= srcu_scale_synchronize,
237 	.exp_sync	= srcu_scale_synchronize_expedited,
238 	.name		= "srcu"
239 };
240 
241 static struct srcu_struct srcud;
242 
243 static void srcu_sync_scale_init(void)
244 {
245 	srcu_ctlp = &srcud;
246 	init_srcu_struct(srcu_ctlp);
247 }
248 
249 static void srcu_sync_scale_cleanup(void)
250 {
251 	cleanup_srcu_struct(srcu_ctlp);
252 }
253 
254 static struct rcu_scale_ops srcud_ops = {
255 	.ptype		= SRCU_FLAVOR,
256 	.init		= srcu_sync_scale_init,
257 	.cleanup	= srcu_sync_scale_cleanup,
258 	.readlock	= srcu_scale_read_lock,
259 	.readunlock	= srcu_scale_read_unlock,
260 	.get_gp_seq	= srcu_scale_completed,
261 	.gp_diff	= rcu_seq_diff,
262 	.exp_completed	= srcu_scale_completed,
263 	.async		= srcu_call_rcu,
264 	.gp_barrier	= srcu_rcu_barrier,
265 	.sync		= srcu_scale_synchronize,
266 	.exp_sync	= srcu_scale_synchronize_expedited,
267 	.name		= "srcud"
268 };
269 
270 /*
271  * Definitions for RCU-tasks scalability testing.
272  */
273 
274 static int tasks_scale_read_lock(void)
275 {
276 	return 0;
277 }
278 
279 static void tasks_scale_read_unlock(int idx)
280 {
281 }
282 
283 static struct rcu_scale_ops tasks_ops = {
284 	.ptype		= RCU_TASKS_FLAVOR,
285 	.init		= rcu_sync_scale_init,
286 	.readlock	= tasks_scale_read_lock,
287 	.readunlock	= tasks_scale_read_unlock,
288 	.get_gp_seq	= rcu_no_completed,
289 	.gp_diff	= rcu_seq_diff,
290 	.async		= call_rcu_tasks,
291 	.gp_barrier	= rcu_barrier_tasks,
292 	.sync		= synchronize_rcu_tasks,
293 	.exp_sync	= synchronize_rcu_tasks,
294 	.name		= "tasks"
295 };
296 
297 static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
298 {
299 	if (!cur_ops->gp_diff)
300 		return new - old;
301 	return cur_ops->gp_diff(new, old);
302 }
303 
304 /*
305  * If scalability tests complete, wait for shutdown to commence.
306  */
307 static void rcu_scale_wait_shutdown(void)
308 {
309 	cond_resched_tasks_rcu_qs();
310 	if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
311 		return;
312 	while (!torture_must_stop())
313 		schedule_timeout_uninterruptible(1);
314 }
315 
316 /*
317  * RCU scalability reader kthread.  Repeatedly does empty RCU read-side
318  * critical section, minimizing update-side interference.  However, the
319  * point of this test is not to evaluate reader scalability, but instead
320  * to serve as a test load for update-side scalability testing.
321  */
322 static int
323 rcu_scale_reader(void *arg)
324 {
325 	unsigned long flags;
326 	int idx;
327 	long me = (long)arg;
328 
329 	VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
330 	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
331 	set_user_nice(current, MAX_NICE);
332 	atomic_inc(&n_rcu_scale_reader_started);
333 
334 	do {
335 		local_irq_save(flags);
336 		idx = cur_ops->readlock();
337 		cur_ops->readunlock(idx);
338 		local_irq_restore(flags);
339 		rcu_scale_wait_shutdown();
340 	} while (!torture_must_stop());
341 	torture_kthread_stopping("rcu_scale_reader");
342 	return 0;
343 }
344 
345 /*
346  * Callback function for asynchronous grace periods from rcu_scale_writer().
347  */
348 static void rcu_scale_async_cb(struct rcu_head *rhp)
349 {
350 	atomic_dec(this_cpu_ptr(&n_async_inflight));
351 	kfree(rhp);
352 }
353 
354 /*
355  * RCU scale writer kthread.  Repeatedly does a grace period.
356  */
357 static int
358 rcu_scale_writer(void *arg)
359 {
360 	int i = 0;
361 	int i_max;
362 	long me = (long)arg;
363 	struct rcu_head *rhp = NULL;
364 	bool started = false, done = false, alldone = false;
365 	u64 t;
366 	u64 *wdp;
367 	u64 *wdpp = writer_durations[me];
368 
369 	VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
370 	WARN_ON(!wdpp);
371 	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
372 	sched_set_fifo_low(current);
373 
374 	if (holdoff)
375 		schedule_timeout_uninterruptible(holdoff * HZ);
376 
377 	/*
378 	 * Wait until rcu_end_inkernel_boot() is called for normal GP tests
379 	 * so that RCU is not always expedited for normal GP tests.
380 	 * The system_state test is approximate, but works well in practice.
381 	 */
382 	while (!gp_exp && system_state != SYSTEM_RUNNING)
383 		schedule_timeout_uninterruptible(1);
384 
385 	t = ktime_get_mono_fast_ns();
386 	if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
387 		t_rcu_scale_writer_started = t;
388 		if (gp_exp) {
389 			b_rcu_gp_test_started =
390 				cur_ops->exp_completed() / 2;
391 		} else {
392 			b_rcu_gp_test_started = cur_ops->get_gp_seq();
393 		}
394 	}
395 
396 	do {
397 		if (writer_holdoff)
398 			udelay(writer_holdoff);
399 		wdp = &wdpp[i];
400 		*wdp = ktime_get_mono_fast_ns();
401 		if (gp_async) {
402 retry:
403 			if (!rhp)
404 				rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
405 			if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
406 				atomic_inc(this_cpu_ptr(&n_async_inflight));
407 				cur_ops->async(rhp, rcu_scale_async_cb);
408 				rhp = NULL;
409 			} else if (!kthread_should_stop()) {
410 				cur_ops->gp_barrier();
411 				goto retry;
412 			} else {
413 				kfree(rhp); /* Because we are stopping. */
414 			}
415 		} else if (gp_exp) {
416 			cur_ops->exp_sync();
417 		} else {
418 			cur_ops->sync();
419 		}
420 		t = ktime_get_mono_fast_ns();
421 		*wdp = t - *wdp;
422 		i_max = i;
423 		if (!started &&
424 		    atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
425 			started = true;
426 		if (!done && i >= MIN_MEAS) {
427 			done = true;
428 			sched_set_normal(current, 0);
429 			pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
430 				 scale_type, SCALE_FLAG, me, MIN_MEAS);
431 			if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
432 			    nrealwriters) {
433 				schedule_timeout_interruptible(10);
434 				rcu_ftrace_dump(DUMP_ALL);
435 				SCALEOUT_STRING("Test complete");
436 				t_rcu_scale_writer_finished = t;
437 				if (gp_exp) {
438 					b_rcu_gp_test_finished =
439 						cur_ops->exp_completed() / 2;
440 				} else {
441 					b_rcu_gp_test_finished =
442 						cur_ops->get_gp_seq();
443 				}
444 				if (shutdown) {
445 					smp_mb(); /* Assign before wake. */
446 					wake_up(&shutdown_wq);
447 				}
448 			}
449 		}
450 		if (done && !alldone &&
451 		    atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
452 			alldone = true;
453 		if (started && !alldone && i < MAX_MEAS - 1)
454 			i++;
455 		rcu_scale_wait_shutdown();
456 	} while (!torture_must_stop());
457 	if (gp_async) {
458 		cur_ops->gp_barrier();
459 	}
460 	writer_n_durations[me] = i_max;
461 	torture_kthread_stopping("rcu_scale_writer");
462 	return 0;
463 }
464 
465 static void
466 rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
467 {
468 	pr_alert("%s" SCALE_FLAG
469 		 "--- %s: nreaders=%d nwriters=%d verbose=%d shutdown=%d\n",
470 		 scale_type, tag, nrealreaders, nrealwriters, verbose, shutdown);
471 }
472 
473 static void
474 rcu_scale_cleanup(void)
475 {
476 	int i;
477 	int j;
478 	int ngps = 0;
479 	u64 *wdp;
480 	u64 *wdpp;
481 
482 	/*
483 	 * Would like warning at start, but everything is expedited
484 	 * during the mid-boot phase, so have to wait till the end.
485 	 */
486 	if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
487 		VERBOSE_SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
488 	if (rcu_gp_is_normal() && gp_exp)
489 		VERBOSE_SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
490 	if (gp_exp && gp_async)
491 		VERBOSE_SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");
492 
493 	if (torture_cleanup_begin())
494 		return;
495 	if (!cur_ops) {
496 		torture_cleanup_end();
497 		return;
498 	}
499 
500 	if (reader_tasks) {
501 		for (i = 0; i < nrealreaders; i++)
502 			torture_stop_kthread(rcu_scale_reader,
503 					     reader_tasks[i]);
504 		kfree(reader_tasks);
505 	}
506 
507 	if (writer_tasks) {
508 		for (i = 0; i < nrealwriters; i++) {
509 			torture_stop_kthread(rcu_scale_writer,
510 					     writer_tasks[i]);
511 			if (!writer_n_durations)
512 				continue;
513 			j = writer_n_durations[i];
514 			pr_alert("%s%s writer %d gps: %d\n",
515 				 scale_type, SCALE_FLAG, i, j);
516 			ngps += j;
517 		}
518 		pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
519 			 scale_type, SCALE_FLAG,
520 			 t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
521 			 t_rcu_scale_writer_finished -
522 			 t_rcu_scale_writer_started,
523 			 ngps,
524 			 rcuscale_seq_diff(b_rcu_gp_test_finished,
525 					   b_rcu_gp_test_started));
526 		for (i = 0; i < nrealwriters; i++) {
527 			if (!writer_durations)
528 				break;
529 			if (!writer_n_durations)
530 				continue;
531 			wdpp = writer_durations[i];
532 			if (!wdpp)
533 				continue;
534 			for (j = 0; j <= writer_n_durations[i]; j++) {
535 				wdp = &wdpp[j];
536 				pr_alert("%s%s %4d writer-duration: %5d %llu\n",
537 					scale_type, SCALE_FLAG,
538 					i, j, *wdp);
539 				if (j % 100 == 0)
540 					schedule_timeout_uninterruptible(1);
541 			}
542 			kfree(writer_durations[i]);
543 		}
544 		kfree(writer_tasks);
545 		kfree(writer_durations);
546 		kfree(writer_n_durations);
547 	}
548 
549 	/* Do torture-type-specific cleanup operations.  */
550 	if (cur_ops->cleanup != NULL)
551 		cur_ops->cleanup();
552 
553 	torture_cleanup_end();
554 }
555 
556 /*
557  * Return the number if non-negative.  If -1, the number of CPUs.
558  * If less than -1, that much less than the number of CPUs, but
559  * at least one.
560  */
561 static int compute_real(int n)
562 {
563 	int nr;
564 
565 	if (n >= 0) {
566 		nr = n;
567 	} else {
568 		nr = num_online_cpus() + 1 + n;
569 		if (nr <= 0)
570 			nr = 1;
571 	}
572 	return nr;
573 }
574 
575 /*
576  * RCU scalability shutdown kthread.  Just waits to be awakened, then shuts
577  * down system.
578  */
579 static int
580 rcu_scale_shutdown(void *arg)
581 {
582 	wait_event(shutdown_wq,
583 		   atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
584 	smp_mb(); /* Wake before output. */
585 	rcu_scale_cleanup();
586 	kernel_power_off();
587 	return -EINVAL;
588 }
589 
590 /*
591  * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
592  * of iterations and measure total time and number of GP for all iterations to complete.
593  */
594 
595 torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
596 torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
597 torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
598 
599 static struct task_struct **kfree_reader_tasks;
600 static int kfree_nrealthreads;
601 static atomic_t n_kfree_scale_thread_started;
602 static atomic_t n_kfree_scale_thread_ended;
603 
604 struct kfree_obj {
605 	char kfree_obj[8];
606 	struct rcu_head rh;
607 };
608 
609 static int
610 kfree_scale_thread(void *arg)
611 {
612 	int i, loop = 0;
613 	long me = (long)arg;
614 	struct kfree_obj *alloc_ptr;
615 	u64 start_time, end_time;
616 	long long mem_begin, mem_during = 0;
617 
618 	VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
619 	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
620 	set_user_nice(current, MAX_NICE);
621 
622 	start_time = ktime_get_mono_fast_ns();
623 
624 	if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
625 		if (gp_exp)
626 			b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
627 		else
628 			b_rcu_gp_test_started = cur_ops->get_gp_seq();
629 	}
630 
631 	do {
632 		if (!mem_during) {
633 			mem_during = mem_begin = si_mem_available();
634 		} else if (loop % (kfree_loops / 4) == 0) {
635 			mem_during = (mem_during + si_mem_available()) / 2;
636 		}
637 
638 		for (i = 0; i < kfree_alloc_num; i++) {
639 			alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
640 			if (!alloc_ptr)
641 				return -ENOMEM;
642 
643 			kfree_rcu(alloc_ptr, rh);
644 		}
645 
646 		cond_resched();
647 	} while (!torture_must_stop() && ++loop < kfree_loops);
648 
649 	if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
650 		end_time = ktime_get_mono_fast_ns();
651 
652 		if (gp_exp)
653 			b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
654 		else
655 			b_rcu_gp_test_finished = cur_ops->get_gp_seq();
656 
657 		pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
658 		       (unsigned long long)(end_time - start_time), kfree_loops,
659 		       rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
660 		       (mem_begin - mem_during) >> (20 - PAGE_SHIFT));
661 
662 		if (shutdown) {
663 			smp_mb(); /* Assign before wake. */
664 			wake_up(&shutdown_wq);
665 		}
666 	}
667 
668 	torture_kthread_stopping("kfree_scale_thread");
669 	return 0;
670 }
671 
672 static void
673 kfree_scale_cleanup(void)
674 {
675 	int i;
676 
677 	if (torture_cleanup_begin())
678 		return;
679 
680 	if (kfree_reader_tasks) {
681 		for (i = 0; i < kfree_nrealthreads; i++)
682 			torture_stop_kthread(kfree_scale_thread,
683 					     kfree_reader_tasks[i]);
684 		kfree(kfree_reader_tasks);
685 	}
686 
687 	torture_cleanup_end();
688 }
689 
690 /*
691  * shutdown kthread.  Just waits to be awakened, then shuts down system.
692  */
693 static int
694 kfree_scale_shutdown(void *arg)
695 {
696 	wait_event(shutdown_wq,
697 		   atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);
698 
699 	smp_mb(); /* Wake before output. */
700 
701 	kfree_scale_cleanup();
702 	kernel_power_off();
703 	return -EINVAL;
704 }
705 
706 static int __init
707 kfree_scale_init(void)
708 {
709 	long i;
710 	int firsterr = 0;
711 
712 	kfree_nrealthreads = compute_real(kfree_nthreads);
713 	/* Start up the kthreads. */
714 	if (shutdown) {
715 		init_waitqueue_head(&shutdown_wq);
716 		firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
717 						  shutdown_task);
718 		if (firsterr)
719 			goto unwind;
720 		schedule_timeout_uninterruptible(1);
721 	}
722 
723 	pr_alert("kfree object size=%zu\n", kfree_mult * sizeof(struct kfree_obj));
724 
725 	kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
726 			       GFP_KERNEL);
727 	if (kfree_reader_tasks == NULL) {
728 		firsterr = -ENOMEM;
729 		goto unwind;
730 	}
731 
732 	for (i = 0; i < kfree_nrealthreads; i++) {
733 		firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
734 						  kfree_reader_tasks[i]);
735 		if (firsterr)
736 			goto unwind;
737 	}
738 
739 	while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
740 		schedule_timeout_uninterruptible(1);
741 
742 	torture_init_end();
743 	return 0;
744 
745 unwind:
746 	torture_init_end();
747 	kfree_scale_cleanup();
748 	return firsterr;
749 }
750 
751 static int __init
752 rcu_scale_init(void)
753 {
754 	long i;
755 	int firsterr = 0;
756 	static struct rcu_scale_ops *scale_ops[] = {
757 		&rcu_ops, &srcu_ops, &srcud_ops, &tasks_ops,
758 	};
759 
760 	if (!torture_init_begin(scale_type, verbose))
761 		return -EBUSY;
762 
763 	/* Process args and announce that the scalability'er is on the job. */
764 	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
765 		cur_ops = scale_ops[i];
766 		if (strcmp(scale_type, cur_ops->name) == 0)
767 			break;
768 	}
769 	if (i == ARRAY_SIZE(scale_ops)) {
770 		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
771 		pr_alert("rcu-scale types:");
772 		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
773 			pr_cont(" %s", scale_ops[i]->name);
774 		pr_cont("\n");
775 		WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
776 		firsterr = -EINVAL;
777 		cur_ops = NULL;
778 		goto unwind;
779 	}
780 	if (cur_ops->init)
781 		cur_ops->init();
782 
783 	if (kfree_rcu_test)
784 		return kfree_scale_init();
785 
786 	nrealwriters = compute_real(nwriters);
787 	nrealreaders = compute_real(nreaders);
788 	atomic_set(&n_rcu_scale_reader_started, 0);
789 	atomic_set(&n_rcu_scale_writer_started, 0);
790 	atomic_set(&n_rcu_scale_writer_finished, 0);
791 	rcu_scale_print_module_parms(cur_ops, "Start of test");
792 
793 	/* Start up the kthreads. */
794 
795 	if (shutdown) {
796 		init_waitqueue_head(&shutdown_wq);
797 		firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
798 						  shutdown_task);
799 		if (firsterr)
800 			goto unwind;
801 		schedule_timeout_uninterruptible(1);
802 	}
803 	reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
804 			       GFP_KERNEL);
805 	if (reader_tasks == NULL) {
806 		VERBOSE_SCALEOUT_ERRSTRING("out of memory");
807 		firsterr = -ENOMEM;
808 		goto unwind;
809 	}
810 	for (i = 0; i < nrealreaders; i++) {
811 		firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
812 						  reader_tasks[i]);
813 		if (firsterr)
814 			goto unwind;
815 	}
816 	while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
817 		schedule_timeout_uninterruptible(1);
818 	writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]),
819 			       GFP_KERNEL);
820 	writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations),
821 				   GFP_KERNEL);
822 	writer_n_durations =
823 		kcalloc(nrealwriters, sizeof(*writer_n_durations),
824 			GFP_KERNEL);
825 	if (!writer_tasks || !writer_durations || !writer_n_durations) {
826 		VERBOSE_SCALEOUT_ERRSTRING("out of memory");
827 		firsterr = -ENOMEM;
828 		goto unwind;
829 	}
830 	for (i = 0; i < nrealwriters; i++) {
831 		writer_durations[i] =
832 			kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
833 				GFP_KERNEL);
834 		if (!writer_durations[i]) {
835 			firsterr = -ENOMEM;
836 			goto unwind;
837 		}
838 		firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
839 						  writer_tasks[i]);
840 		if (firsterr)
841 			goto unwind;
842 	}
843 	torture_init_end();
844 	return 0;
845 
846 unwind:
847 	torture_init_end();
848 	rcu_scale_cleanup();
849 	return firsterr;
850 }
851 
852 module_init(rcu_scale_init);
853 module_exit(rcu_scale_cleanup);
854