xref: /openbmc/linux/kernel/rcu/rcuscale.c (revision eb96b740192b2a09720aaed8a8c132e6a29d5bdb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update module-based scalability-test facility
4  *
5  * Copyright (C) IBM Corporation, 2015
6  *
7  * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) fmt
11 
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <linux/kthread.h>
18 #include <linux/err.h>
19 #include <linux/spinlock.h>
20 #include <linux/smp.h>
21 #include <linux/rcupdate.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <uapi/linux/sched/types.h>
25 #include <linux/atomic.h>
26 #include <linux/bitops.h>
27 #include <linux/completion.h>
28 #include <linux/moduleparam.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/freezer.h>
33 #include <linux/cpu.h>
34 #include <linux/delay.h>
35 #include <linux/stat.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <asm/byteorder.h>
39 #include <linux/torture.h>
40 #include <linux/vmalloc.h>
41 #include <linux/rcupdate_trace.h>
42 
43 #include "rcu.h"
44 
45 MODULE_LICENSE("GPL");
46 MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
47 
48 #define SCALE_FLAG "-scale:"
49 #define SCALEOUT_STRING(s) \
50 	pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
51 #define VERBOSE_SCALEOUT_STRING(s) \
52 	do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
53 #define SCALEOUT_ERRSTRING(s) \
54 	pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s)
55 
56 /*
57  * The intended use cases for the nreaders and nwriters module parameters
58  * are as follows:
59  *
60  * 1.	Specify only the nr_cpus kernel boot parameter.  This will
61  *	set both nreaders and nwriters to the value specified by
62  *	nr_cpus for a mixed reader/writer test.
63  *
64  * 2.	Specify the nr_cpus kernel boot parameter, but set
65  *	rcuscale.nreaders to zero.  This will set nwriters to the
66  *	value specified by nr_cpus for an update-only test.
67  *
68  * 3.	Specify the nr_cpus kernel boot parameter, but set
69  *	rcuscale.nwriters to zero.  This will set nreaders to the
70  *	value specified by nr_cpus for a read-only test.
71  *
72  * Various other use cases may of course be specified.
73  *
74  * Note that this test's readers are intended only as a test load for
75  * the writers.  The reader scalability statistics will be overly
76  * pessimistic due to the per-critical-section interrupt disabling,
77  * test-end checks, and the pair of calls through pointers.
78  */
79 
80 #ifdef MODULE
81 # define RCUSCALE_SHUTDOWN 0
82 #else
83 # define RCUSCALE_SHUTDOWN 1
84 #endif
85 
86 torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
87 torture_param(int, gp_async_max, 1000, "Max # outstanding waits per reader");
88 torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
89 torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
90 torture_param(int, nreaders, -1, "Number of RCU reader threads");
91 torture_param(int, nwriters, -1, "Number of RCU updater threads");
92 torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
93 	      "Shutdown at end of scalability tests.");
94 torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
95 torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
96 torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
97 torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
98 torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?");
99 
100 static char *scale_type = "rcu";
101 module_param(scale_type, charp, 0444);
102 MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");
103 
104 static int nrealreaders;
105 static int nrealwriters;
106 static struct task_struct **writer_tasks;
107 static struct task_struct **reader_tasks;
108 static struct task_struct *shutdown_task;
109 
110 static u64 **writer_durations;
111 static int *writer_n_durations;
112 static atomic_t n_rcu_scale_reader_started;
113 static atomic_t n_rcu_scale_writer_started;
114 static atomic_t n_rcu_scale_writer_finished;
115 static wait_queue_head_t shutdown_wq;
116 static u64 t_rcu_scale_writer_started;
117 static u64 t_rcu_scale_writer_finished;
118 static unsigned long b_rcu_gp_test_started;
119 static unsigned long b_rcu_gp_test_finished;
120 static DEFINE_PER_CPU(atomic_t, n_async_inflight);
121 
122 #define MAX_MEAS 10000
123 #define MIN_MEAS 100
124 
125 /*
126  * Operations vector for selecting different types of tests.
127  */
128 
129 struct rcu_scale_ops {
130 	int ptype;
131 	void (*init)(void);
132 	void (*cleanup)(void);
133 	int (*readlock)(void);
134 	void (*readunlock)(int idx);
135 	unsigned long (*get_gp_seq)(void);
136 	unsigned long (*gp_diff)(unsigned long new, unsigned long old);
137 	unsigned long (*exp_completed)(void);
138 	void (*async)(struct rcu_head *head, rcu_callback_t func);
139 	void (*gp_barrier)(void);
140 	void (*sync)(void);
141 	void (*exp_sync)(void);
142 	const char *name;
143 };
144 
145 static struct rcu_scale_ops *cur_ops;
146 
147 /*
148  * Definitions for rcu scalability testing.
149  */
150 
151 static int rcu_scale_read_lock(void) __acquires(RCU)
152 {
153 	rcu_read_lock();
154 	return 0;
155 }
156 
157 static void rcu_scale_read_unlock(int idx) __releases(RCU)
158 {
159 	rcu_read_unlock();
160 }
161 
162 static unsigned long __maybe_unused rcu_no_completed(void)
163 {
164 	return 0;
165 }
166 
167 static void rcu_sync_scale_init(void)
168 {
169 }
170 
171 static struct rcu_scale_ops rcu_ops = {
172 	.ptype		= RCU_FLAVOR,
173 	.init		= rcu_sync_scale_init,
174 	.readlock	= rcu_scale_read_lock,
175 	.readunlock	= rcu_scale_read_unlock,
176 	.get_gp_seq	= rcu_get_gp_seq,
177 	.gp_diff	= rcu_seq_diff,
178 	.exp_completed	= rcu_exp_batches_completed,
179 	.async		= call_rcu_hurry,
180 	.gp_barrier	= rcu_barrier,
181 	.sync		= synchronize_rcu,
182 	.exp_sync	= synchronize_rcu_expedited,
183 	.name		= "rcu"
184 };
185 
186 /*
187  * Definitions for srcu scalability testing.
188  */
189 
190 DEFINE_STATIC_SRCU(srcu_ctl_scale);
191 static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;
192 
193 static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
194 {
195 	return srcu_read_lock(srcu_ctlp);
196 }
197 
198 static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
199 {
200 	srcu_read_unlock(srcu_ctlp, idx);
201 }
202 
203 static unsigned long srcu_scale_completed(void)
204 {
205 	return srcu_batches_completed(srcu_ctlp);
206 }
207 
208 static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
209 {
210 	call_srcu(srcu_ctlp, head, func);
211 }
212 
213 static void srcu_rcu_barrier(void)
214 {
215 	srcu_barrier(srcu_ctlp);
216 }
217 
218 static void srcu_scale_synchronize(void)
219 {
220 	synchronize_srcu(srcu_ctlp);
221 }
222 
223 static void srcu_scale_synchronize_expedited(void)
224 {
225 	synchronize_srcu_expedited(srcu_ctlp);
226 }
227 
228 static struct rcu_scale_ops srcu_ops = {
229 	.ptype		= SRCU_FLAVOR,
230 	.init		= rcu_sync_scale_init,
231 	.readlock	= srcu_scale_read_lock,
232 	.readunlock	= srcu_scale_read_unlock,
233 	.get_gp_seq	= srcu_scale_completed,
234 	.gp_diff	= rcu_seq_diff,
235 	.exp_completed	= srcu_scale_completed,
236 	.async		= srcu_call_rcu,
237 	.gp_barrier	= srcu_rcu_barrier,
238 	.sync		= srcu_scale_synchronize,
239 	.exp_sync	= srcu_scale_synchronize_expedited,
240 	.name		= "srcu"
241 };
242 
243 static struct srcu_struct srcud;
244 
245 static void srcu_sync_scale_init(void)
246 {
247 	srcu_ctlp = &srcud;
248 	init_srcu_struct(srcu_ctlp);
249 }
250 
251 static void srcu_sync_scale_cleanup(void)
252 {
253 	cleanup_srcu_struct(srcu_ctlp);
254 }
255 
256 static struct rcu_scale_ops srcud_ops = {
257 	.ptype		= SRCU_FLAVOR,
258 	.init		= srcu_sync_scale_init,
259 	.cleanup	= srcu_sync_scale_cleanup,
260 	.readlock	= srcu_scale_read_lock,
261 	.readunlock	= srcu_scale_read_unlock,
262 	.get_gp_seq	= srcu_scale_completed,
263 	.gp_diff	= rcu_seq_diff,
264 	.exp_completed	= srcu_scale_completed,
265 	.async		= srcu_call_rcu,
266 	.gp_barrier	= srcu_rcu_barrier,
267 	.sync		= srcu_scale_synchronize,
268 	.exp_sync	= srcu_scale_synchronize_expedited,
269 	.name		= "srcud"
270 };
271 
272 #ifdef CONFIG_TASKS_RCU
273 
274 /*
275  * Definitions for RCU-tasks scalability testing.
276  */
277 
278 static int tasks_scale_read_lock(void)
279 {
280 	return 0;
281 }
282 
283 static void tasks_scale_read_unlock(int idx)
284 {
285 }
286 
287 static struct rcu_scale_ops tasks_ops = {
288 	.ptype		= RCU_TASKS_FLAVOR,
289 	.init		= rcu_sync_scale_init,
290 	.readlock	= tasks_scale_read_lock,
291 	.readunlock	= tasks_scale_read_unlock,
292 	.get_gp_seq	= rcu_no_completed,
293 	.gp_diff	= rcu_seq_diff,
294 	.async		= call_rcu_tasks,
295 	.gp_barrier	= rcu_barrier_tasks,
296 	.sync		= synchronize_rcu_tasks,
297 	.exp_sync	= synchronize_rcu_tasks,
298 	.name		= "tasks"
299 };
300 
301 #define TASKS_OPS &tasks_ops,
302 
303 #else // #ifdef CONFIG_TASKS_RCU
304 
305 #define TASKS_OPS
306 
307 #endif // #else // #ifdef CONFIG_TASKS_RCU
308 
309 #ifdef CONFIG_TASKS_TRACE_RCU
310 
311 /*
312  * Definitions for RCU-tasks-trace scalability testing.
313  */
314 
315 static int tasks_trace_scale_read_lock(void)
316 {
317 	rcu_read_lock_trace();
318 	return 0;
319 }
320 
321 static void tasks_trace_scale_read_unlock(int idx)
322 {
323 	rcu_read_unlock_trace();
324 }
325 
326 static struct rcu_scale_ops tasks_tracing_ops = {
327 	.ptype		= RCU_TASKS_FLAVOR,
328 	.init		= rcu_sync_scale_init,
329 	.readlock	= tasks_trace_scale_read_lock,
330 	.readunlock	= tasks_trace_scale_read_unlock,
331 	.get_gp_seq	= rcu_no_completed,
332 	.gp_diff	= rcu_seq_diff,
333 	.async		= call_rcu_tasks_trace,
334 	.gp_barrier	= rcu_barrier_tasks_trace,
335 	.sync		= synchronize_rcu_tasks_trace,
336 	.exp_sync	= synchronize_rcu_tasks_trace,
337 	.name		= "tasks-tracing"
338 };
339 
340 #define TASKS_TRACING_OPS &tasks_tracing_ops,
341 
342 #else // #ifdef CONFIG_TASKS_TRACE_RCU
343 
344 #define TASKS_TRACING_OPS
345 
346 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
347 
348 static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
349 {
350 	if (!cur_ops->gp_diff)
351 		return new - old;
352 	return cur_ops->gp_diff(new, old);
353 }
354 
355 /*
356  * If scalability tests complete, wait for shutdown to commence.
357  */
358 static void rcu_scale_wait_shutdown(void)
359 {
360 	cond_resched_tasks_rcu_qs();
361 	if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
362 		return;
363 	while (!torture_must_stop())
364 		schedule_timeout_uninterruptible(1);
365 }
366 
367 /*
368  * RCU scalability reader kthread.  Repeatedly does empty RCU read-side
369  * critical section, minimizing update-side interference.  However, the
370  * point of this test is not to evaluate reader scalability, but instead
371  * to serve as a test load for update-side scalability testing.
372  */
373 static int
374 rcu_scale_reader(void *arg)
375 {
376 	unsigned long flags;
377 	int idx;
378 	long me = (long)arg;
379 
380 	VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
381 	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
382 	set_user_nice(current, MAX_NICE);
383 	atomic_inc(&n_rcu_scale_reader_started);
384 
385 	do {
386 		local_irq_save(flags);
387 		idx = cur_ops->readlock();
388 		cur_ops->readunlock(idx);
389 		local_irq_restore(flags);
390 		rcu_scale_wait_shutdown();
391 	} while (!torture_must_stop());
392 	torture_kthread_stopping("rcu_scale_reader");
393 	return 0;
394 }
395 
396 /*
397  * Callback function for asynchronous grace periods from rcu_scale_writer().
398  */
399 static void rcu_scale_async_cb(struct rcu_head *rhp)
400 {
401 	atomic_dec(this_cpu_ptr(&n_async_inflight));
402 	kfree(rhp);
403 }
404 
405 /*
406  * RCU scale writer kthread.  Repeatedly does a grace period.
407  */
408 static int
409 rcu_scale_writer(void *arg)
410 {
411 	int i = 0;
412 	int i_max;
413 	long me = (long)arg;
414 	struct rcu_head *rhp = NULL;
415 	bool started = false, done = false, alldone = false;
416 	u64 t;
417 	u64 *wdp;
418 	u64 *wdpp = writer_durations[me];
419 
420 	VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
421 	WARN_ON(!wdpp);
422 	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
423 	current->flags |= PF_NO_SETAFFINITY;
424 	sched_set_fifo_low(current);
425 
426 	if (holdoff)
427 		schedule_timeout_uninterruptible(holdoff * HZ);
428 
429 	/*
430 	 * Wait until rcu_end_inkernel_boot() is called for normal GP tests
431 	 * so that RCU is not always expedited for normal GP tests.
432 	 * The system_state test is approximate, but works well in practice.
433 	 */
434 	while (!gp_exp && system_state != SYSTEM_RUNNING)
435 		schedule_timeout_uninterruptible(1);
436 
437 	t = ktime_get_mono_fast_ns();
438 	if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
439 		t_rcu_scale_writer_started = t;
440 		if (gp_exp) {
441 			b_rcu_gp_test_started =
442 				cur_ops->exp_completed() / 2;
443 		} else {
444 			b_rcu_gp_test_started = cur_ops->get_gp_seq();
445 		}
446 	}
447 
448 	do {
449 		if (writer_holdoff)
450 			udelay(writer_holdoff);
451 		wdp = &wdpp[i];
452 		*wdp = ktime_get_mono_fast_ns();
453 		if (gp_async) {
454 retry:
455 			if (!rhp)
456 				rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
457 			if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
458 				atomic_inc(this_cpu_ptr(&n_async_inflight));
459 				cur_ops->async(rhp, rcu_scale_async_cb);
460 				rhp = NULL;
461 			} else if (!kthread_should_stop()) {
462 				cur_ops->gp_barrier();
463 				goto retry;
464 			} else {
465 				kfree(rhp); /* Because we are stopping. */
466 			}
467 		} else if (gp_exp) {
468 			cur_ops->exp_sync();
469 		} else {
470 			cur_ops->sync();
471 		}
472 		t = ktime_get_mono_fast_ns();
473 		*wdp = t - *wdp;
474 		i_max = i;
475 		if (!started &&
476 		    atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
477 			started = true;
478 		if (!done && i >= MIN_MEAS) {
479 			done = true;
480 			sched_set_normal(current, 0);
481 			pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
482 				 scale_type, SCALE_FLAG, me, MIN_MEAS);
483 			if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
484 			    nrealwriters) {
485 				schedule_timeout_interruptible(10);
486 				rcu_ftrace_dump(DUMP_ALL);
487 				SCALEOUT_STRING("Test complete");
488 				t_rcu_scale_writer_finished = t;
489 				if (gp_exp) {
490 					b_rcu_gp_test_finished =
491 						cur_ops->exp_completed() / 2;
492 				} else {
493 					b_rcu_gp_test_finished =
494 						cur_ops->get_gp_seq();
495 				}
496 				if (shutdown) {
497 					smp_mb(); /* Assign before wake. */
498 					wake_up(&shutdown_wq);
499 				}
500 			}
501 		}
502 		if (done && !alldone &&
503 		    atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
504 			alldone = true;
505 		if (started && !alldone && i < MAX_MEAS - 1)
506 			i++;
507 		rcu_scale_wait_shutdown();
508 	} while (!torture_must_stop());
509 	if (gp_async) {
510 		cur_ops->gp_barrier();
511 	}
512 	writer_n_durations[me] = i_max + 1;
513 	torture_kthread_stopping("rcu_scale_writer");
514 	return 0;
515 }
516 
517 static void
518 rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
519 {
520 	pr_alert("%s" SCALE_FLAG
521 		 "--- %s: nreaders=%d nwriters=%d verbose=%d shutdown=%d\n",
522 		 scale_type, tag, nrealreaders, nrealwriters, verbose, shutdown);
523 }
524 
525 static void
526 rcu_scale_cleanup(void)
527 {
528 	int i;
529 	int j;
530 	int ngps = 0;
531 	u64 *wdp;
532 	u64 *wdpp;
533 
534 	/*
535 	 * Would like warning at start, but everything is expedited
536 	 * during the mid-boot phase, so have to wait till the end.
537 	 */
538 	if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
539 		SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
540 	if (rcu_gp_is_normal() && gp_exp)
541 		SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
542 	if (gp_exp && gp_async)
543 		SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");
544 
545 	if (torture_cleanup_begin())
546 		return;
547 	if (!cur_ops) {
548 		torture_cleanup_end();
549 		return;
550 	}
551 
552 	if (reader_tasks) {
553 		for (i = 0; i < nrealreaders; i++)
554 			torture_stop_kthread(rcu_scale_reader,
555 					     reader_tasks[i]);
556 		kfree(reader_tasks);
557 	}
558 
559 	if (writer_tasks) {
560 		for (i = 0; i < nrealwriters; i++) {
561 			torture_stop_kthread(rcu_scale_writer,
562 					     writer_tasks[i]);
563 			if (!writer_n_durations)
564 				continue;
565 			j = writer_n_durations[i];
566 			pr_alert("%s%s writer %d gps: %d\n",
567 				 scale_type, SCALE_FLAG, i, j);
568 			ngps += j;
569 		}
570 		pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
571 			 scale_type, SCALE_FLAG,
572 			 t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
573 			 t_rcu_scale_writer_finished -
574 			 t_rcu_scale_writer_started,
575 			 ngps,
576 			 rcuscale_seq_diff(b_rcu_gp_test_finished,
577 					   b_rcu_gp_test_started));
578 		for (i = 0; i < nrealwriters; i++) {
579 			if (!writer_durations)
580 				break;
581 			if (!writer_n_durations)
582 				continue;
583 			wdpp = writer_durations[i];
584 			if (!wdpp)
585 				continue;
586 			for (j = 0; j < writer_n_durations[i]; j++) {
587 				wdp = &wdpp[j];
588 				pr_alert("%s%s %4d writer-duration: %5d %llu\n",
589 					scale_type, SCALE_FLAG,
590 					i, j, *wdp);
591 				if (j % 100 == 0)
592 					schedule_timeout_uninterruptible(1);
593 			}
594 			kfree(writer_durations[i]);
595 		}
596 		kfree(writer_tasks);
597 		kfree(writer_durations);
598 		kfree(writer_n_durations);
599 	}
600 
601 	/* Do torture-type-specific cleanup operations.  */
602 	if (cur_ops->cleanup != NULL)
603 		cur_ops->cleanup();
604 
605 	torture_cleanup_end();
606 }
607 
608 /*
609  * Return the number if non-negative.  If -1, the number of CPUs.
610  * If less than -1, that much less than the number of CPUs, but
611  * at least one.
612  */
613 static int compute_real(int n)
614 {
615 	int nr;
616 
617 	if (n >= 0) {
618 		nr = n;
619 	} else {
620 		nr = num_online_cpus() + 1 + n;
621 		if (nr <= 0)
622 			nr = 1;
623 	}
624 	return nr;
625 }
626 
627 /*
628  * RCU scalability shutdown kthread.  Just waits to be awakened, then shuts
629  * down system.
630  */
631 static int
632 rcu_scale_shutdown(void *arg)
633 {
634 	wait_event(shutdown_wq,
635 		   atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
636 	smp_mb(); /* Wake before output. */
637 	rcu_scale_cleanup();
638 	kernel_power_off();
639 	return -EINVAL;
640 }
641 
642 /*
643  * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
644  * of iterations and measure total time and number of GP for all iterations to complete.
645  */
646 
647 torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
648 torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
649 torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
650 torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?");
651 torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?");
652 
653 static struct task_struct **kfree_reader_tasks;
654 static int kfree_nrealthreads;
655 static atomic_t n_kfree_scale_thread_started;
656 static atomic_t n_kfree_scale_thread_ended;
657 
658 struct kfree_obj {
659 	char kfree_obj[8];
660 	struct rcu_head rh;
661 };
662 
663 /* Used if doing RCU-kfree'ing via call_rcu(). */
664 static void kfree_call_rcu(struct rcu_head *rh)
665 {
666 	struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh);
667 
668 	kfree(obj);
669 }
670 
671 static int
672 kfree_scale_thread(void *arg)
673 {
674 	int i, loop = 0;
675 	long me = (long)arg;
676 	struct kfree_obj *alloc_ptr;
677 	u64 start_time, end_time;
678 	long long mem_begin, mem_during = 0;
679 	bool kfree_rcu_test_both;
680 	DEFINE_TORTURE_RANDOM(tr);
681 
682 	VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
683 	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
684 	set_user_nice(current, MAX_NICE);
685 	kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double);
686 
687 	start_time = ktime_get_mono_fast_ns();
688 
689 	if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
690 		if (gp_exp)
691 			b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
692 		else
693 			b_rcu_gp_test_started = cur_ops->get_gp_seq();
694 	}
695 
696 	do {
697 		if (!mem_during) {
698 			mem_during = mem_begin = si_mem_available();
699 		} else if (loop % (kfree_loops / 4) == 0) {
700 			mem_during = (mem_during + si_mem_available()) / 2;
701 		}
702 
703 		for (i = 0; i < kfree_alloc_num; i++) {
704 			alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
705 			if (!alloc_ptr)
706 				return -ENOMEM;
707 
708 			if (kfree_by_call_rcu) {
709 				call_rcu(&(alloc_ptr->rh), kfree_call_rcu);
710 				continue;
711 			}
712 
713 			// By default kfree_rcu_test_single and kfree_rcu_test_double are
714 			// initialized to false. If both have the same value (false or true)
715 			// both are randomly tested, otherwise only the one with value true
716 			// is tested.
717 			if ((kfree_rcu_test_single && !kfree_rcu_test_double) ||
718 					(kfree_rcu_test_both && torture_random(&tr) & 0x800))
719 				kfree_rcu(alloc_ptr);
720 			else
721 				kfree_rcu(alloc_ptr, rh);
722 		}
723 
724 		cond_resched();
725 	} while (!torture_must_stop() && ++loop < kfree_loops);
726 
727 	if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
728 		end_time = ktime_get_mono_fast_ns();
729 
730 		if (gp_exp)
731 			b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
732 		else
733 			b_rcu_gp_test_finished = cur_ops->get_gp_seq();
734 
735 		pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
736 		       (unsigned long long)(end_time - start_time), kfree_loops,
737 		       rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
738 		       (mem_begin - mem_during) >> (20 - PAGE_SHIFT));
739 
740 		if (shutdown) {
741 			smp_mb(); /* Assign before wake. */
742 			wake_up(&shutdown_wq);
743 		}
744 	}
745 
746 	torture_kthread_stopping("kfree_scale_thread");
747 	return 0;
748 }
749 
750 static void
751 kfree_scale_cleanup(void)
752 {
753 	int i;
754 
755 	if (torture_cleanup_begin())
756 		return;
757 
758 	if (kfree_reader_tasks) {
759 		for (i = 0; i < kfree_nrealthreads; i++)
760 			torture_stop_kthread(kfree_scale_thread,
761 					     kfree_reader_tasks[i]);
762 		kfree(kfree_reader_tasks);
763 	}
764 
765 	torture_cleanup_end();
766 }
767 
768 /*
769  * shutdown kthread.  Just waits to be awakened, then shuts down system.
770  */
771 static int
772 kfree_scale_shutdown(void *arg)
773 {
774 	wait_event(shutdown_wq,
775 		   atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);
776 
777 	smp_mb(); /* Wake before output. */
778 
779 	kfree_scale_cleanup();
780 	kernel_power_off();
781 	return -EINVAL;
782 }
783 
784 // Used if doing RCU-kfree'ing via call_rcu().
785 static unsigned long jiffies_at_lazy_cb;
786 static struct rcu_head lazy_test1_rh;
787 static int rcu_lazy_test1_cb_called;
788 static void call_rcu_lazy_test1(struct rcu_head *rh)
789 {
790 	jiffies_at_lazy_cb = jiffies;
791 	WRITE_ONCE(rcu_lazy_test1_cb_called, 1);
792 }
793 
794 static int __init
795 kfree_scale_init(void)
796 {
797 	int firsterr = 0;
798 	long i;
799 	unsigned long jif_start;
800 	unsigned long orig_jif;
801 
802 	// Also, do a quick self-test to ensure laziness is as much as
803 	// expected.
804 	if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) {
805 		pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n");
806 		kfree_by_call_rcu = 0;
807 	}
808 
809 	if (kfree_by_call_rcu) {
810 		/* do a test to check the timeout. */
811 		orig_jif = rcu_lazy_get_jiffies_till_flush();
812 
813 		rcu_lazy_set_jiffies_till_flush(2 * HZ);
814 		rcu_barrier();
815 
816 		jif_start = jiffies;
817 		jiffies_at_lazy_cb = 0;
818 		call_rcu(&lazy_test1_rh, call_rcu_lazy_test1);
819 
820 		smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1);
821 
822 		rcu_lazy_set_jiffies_till_flush(orig_jif);
823 
824 		if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
825 			pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
826 			WARN_ON_ONCE(1);
827 			return -1;
828 		}
829 
830 		if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) {
831 			pr_alert("ERROR: call_rcu() CBs are being too lazy!\n");
832 			WARN_ON_ONCE(1);
833 			return -1;
834 		}
835 	}
836 
837 	kfree_nrealthreads = compute_real(kfree_nthreads);
838 	/* Start up the kthreads. */
839 	if (shutdown) {
840 		init_waitqueue_head(&shutdown_wq);
841 		firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
842 						  shutdown_task);
843 		if (torture_init_error(firsterr))
844 			goto unwind;
845 		schedule_timeout_uninterruptible(1);
846 	}
847 
848 	pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n",
849 			kfree_mult * sizeof(struct kfree_obj),
850 			kfree_by_call_rcu);
851 
852 	kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
853 			       GFP_KERNEL);
854 	if (kfree_reader_tasks == NULL) {
855 		firsterr = -ENOMEM;
856 		goto unwind;
857 	}
858 
859 	for (i = 0; i < kfree_nrealthreads; i++) {
860 		firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
861 						  kfree_reader_tasks[i]);
862 		if (torture_init_error(firsterr))
863 			goto unwind;
864 	}
865 
866 	while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
867 		schedule_timeout_uninterruptible(1);
868 
869 	torture_init_end();
870 	return 0;
871 
872 unwind:
873 	torture_init_end();
874 	kfree_scale_cleanup();
875 	return firsterr;
876 }
877 
878 static int __init
879 rcu_scale_init(void)
880 {
881 	long i;
882 	int firsterr = 0;
883 	static struct rcu_scale_ops *scale_ops[] = {
884 		&rcu_ops, &srcu_ops, &srcud_ops, TASKS_OPS TASKS_TRACING_OPS
885 	};
886 
887 	if (!torture_init_begin(scale_type, verbose))
888 		return -EBUSY;
889 
890 	/* Process args and announce that the scalability'er is on the job. */
891 	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
892 		cur_ops = scale_ops[i];
893 		if (strcmp(scale_type, cur_ops->name) == 0)
894 			break;
895 	}
896 	if (i == ARRAY_SIZE(scale_ops)) {
897 		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
898 		pr_alert("rcu-scale types:");
899 		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
900 			pr_cont(" %s", scale_ops[i]->name);
901 		pr_cont("\n");
902 		firsterr = -EINVAL;
903 		cur_ops = NULL;
904 		goto unwind;
905 	}
906 	if (cur_ops->init)
907 		cur_ops->init();
908 
909 	if (kfree_rcu_test)
910 		return kfree_scale_init();
911 
912 	nrealwriters = compute_real(nwriters);
913 	nrealreaders = compute_real(nreaders);
914 	atomic_set(&n_rcu_scale_reader_started, 0);
915 	atomic_set(&n_rcu_scale_writer_started, 0);
916 	atomic_set(&n_rcu_scale_writer_finished, 0);
917 	rcu_scale_print_module_parms(cur_ops, "Start of test");
918 
919 	/* Start up the kthreads. */
920 
921 	if (shutdown) {
922 		init_waitqueue_head(&shutdown_wq);
923 		firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
924 						  shutdown_task);
925 		if (torture_init_error(firsterr))
926 			goto unwind;
927 		schedule_timeout_uninterruptible(1);
928 	}
929 	reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
930 			       GFP_KERNEL);
931 	if (reader_tasks == NULL) {
932 		SCALEOUT_ERRSTRING("out of memory");
933 		firsterr = -ENOMEM;
934 		goto unwind;
935 	}
936 	for (i = 0; i < nrealreaders; i++) {
937 		firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
938 						  reader_tasks[i]);
939 		if (torture_init_error(firsterr))
940 			goto unwind;
941 	}
942 	while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
943 		schedule_timeout_uninterruptible(1);
944 	writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]),
945 			       GFP_KERNEL);
946 	writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations),
947 				   GFP_KERNEL);
948 	writer_n_durations =
949 		kcalloc(nrealwriters, sizeof(*writer_n_durations),
950 			GFP_KERNEL);
951 	if (!writer_tasks || !writer_durations || !writer_n_durations) {
952 		SCALEOUT_ERRSTRING("out of memory");
953 		firsterr = -ENOMEM;
954 		goto unwind;
955 	}
956 	for (i = 0; i < nrealwriters; i++) {
957 		writer_durations[i] =
958 			kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
959 				GFP_KERNEL);
960 		if (!writer_durations[i]) {
961 			firsterr = -ENOMEM;
962 			goto unwind;
963 		}
964 		firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
965 						  writer_tasks[i]);
966 		if (torture_init_error(firsterr))
967 			goto unwind;
968 	}
969 	torture_init_end();
970 	return 0;
971 
972 unwind:
973 	torture_init_end();
974 	rcu_scale_cleanup();
975 	if (shutdown) {
976 		WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
977 		kernel_power_off();
978 	}
979 	return firsterr;
980 }
981 
982 module_init(rcu_scale_init);
983 module_exit(rcu_scale_cleanup);
984