1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update definitions shared among RCU implementations. 4 * 5 * Copyright IBM Corporation, 2011 6 * 7 * Author: Paul E. McKenney <paulmck@linux.ibm.com> 8 */ 9 10 #ifndef __LINUX_RCU_H 11 #define __LINUX_RCU_H 12 13 #include <trace/events/rcu.h> 14 #ifdef CONFIG_RCU_TRACE 15 #define RCU_TRACE(stmt) stmt 16 #else /* #ifdef CONFIG_RCU_TRACE */ 17 #define RCU_TRACE(stmt) 18 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 19 20 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */ 21 #define DYNTICK_IRQ_NONIDLE ((LONG_MAX / 2) + 1) 22 23 24 /* 25 * Grace-period counter management. 26 */ 27 28 #define RCU_SEQ_CTR_SHIFT 2 29 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1) 30 31 /* 32 * Return the counter portion of a sequence number previously returned 33 * by rcu_seq_snap() or rcu_seq_current(). 34 */ 35 static inline unsigned long rcu_seq_ctr(unsigned long s) 36 { 37 return s >> RCU_SEQ_CTR_SHIFT; 38 } 39 40 /* 41 * Return the state portion of a sequence number previously returned 42 * by rcu_seq_snap() or rcu_seq_current(). 43 */ 44 static inline int rcu_seq_state(unsigned long s) 45 { 46 return s & RCU_SEQ_STATE_MASK; 47 } 48 49 /* 50 * Set the state portion of the pointed-to sequence number. 51 * The caller is responsible for preventing conflicting updates. 52 */ 53 static inline void rcu_seq_set_state(unsigned long *sp, int newstate) 54 { 55 WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK); 56 WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate); 57 } 58 59 /* Adjust sequence number for start of update-side operation. */ 60 static inline void rcu_seq_start(unsigned long *sp) 61 { 62 WRITE_ONCE(*sp, *sp + 1); 63 smp_mb(); /* Ensure update-side operation after counter increment. */ 64 WARN_ON_ONCE(rcu_seq_state(*sp) != 1); 65 } 66 67 /* Compute the end-of-grace-period value for the specified sequence number. */ 68 static inline unsigned long rcu_seq_endval(unsigned long *sp) 69 { 70 return (*sp | RCU_SEQ_STATE_MASK) + 1; 71 } 72 73 /* Adjust sequence number for end of update-side operation. */ 74 static inline void rcu_seq_end(unsigned long *sp) 75 { 76 smp_mb(); /* Ensure update-side operation before counter increment. */ 77 WARN_ON_ONCE(!rcu_seq_state(*sp)); 78 WRITE_ONCE(*sp, rcu_seq_endval(sp)); 79 } 80 81 /* 82 * rcu_seq_snap - Take a snapshot of the update side's sequence number. 83 * 84 * This function returns the earliest value of the grace-period sequence number 85 * that will indicate that a full grace period has elapsed since the current 86 * time. Once the grace-period sequence number has reached this value, it will 87 * be safe to invoke all callbacks that have been registered prior to the 88 * current time. This value is the current grace-period number plus two to the 89 * power of the number of low-order bits reserved for state, then rounded up to 90 * the next value in which the state bits are all zero. 91 */ 92 static inline unsigned long rcu_seq_snap(unsigned long *sp) 93 { 94 unsigned long s; 95 96 s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK; 97 smp_mb(); /* Above access must not bleed into critical section. */ 98 return s; 99 } 100 101 /* Return the current value the update side's sequence number, no ordering. */ 102 static inline unsigned long rcu_seq_current(unsigned long *sp) 103 { 104 return READ_ONCE(*sp); 105 } 106 107 /* 108 * Given a snapshot from rcu_seq_snap(), determine whether or not the 109 * corresponding update-side operation has started. 110 */ 111 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s) 112 { 113 return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp)); 114 } 115 116 /* 117 * Given a snapshot from rcu_seq_snap(), determine whether or not a 118 * full update-side operation has occurred. 119 */ 120 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s) 121 { 122 return ULONG_CMP_GE(READ_ONCE(*sp), s); 123 } 124 125 /* 126 * Has a grace period completed since the time the old gp_seq was collected? 127 */ 128 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new) 129 { 130 return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK); 131 } 132 133 /* 134 * Has a grace period started since the time the old gp_seq was collected? 135 */ 136 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new) 137 { 138 return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK, 139 new); 140 } 141 142 /* 143 * Roughly how many full grace periods have elapsed between the collection 144 * of the two specified grace periods? 145 */ 146 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old) 147 { 148 unsigned long rnd_diff; 149 150 if (old == new) 151 return 0; 152 /* 153 * Compute the number of grace periods (still shifted up), plus 154 * one if either of new and old is not an exact grace period. 155 */ 156 rnd_diff = (new & ~RCU_SEQ_STATE_MASK) - 157 ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) + 158 ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK)); 159 if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff)) 160 return 1; /* Definitely no grace period has elapsed. */ 161 return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2; 162 } 163 164 /* 165 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally 166 * by call_rcu() and rcu callback execution, and are therefore not part 167 * of the RCU API. These are in rcupdate.h because they are used by all 168 * RCU implementations. 169 */ 170 171 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 172 # define STATE_RCU_HEAD_READY 0 173 # define STATE_RCU_HEAD_QUEUED 1 174 175 extern struct debug_obj_descr rcuhead_debug_descr; 176 177 static inline int debug_rcu_head_queue(struct rcu_head *head) 178 { 179 int r1; 180 181 r1 = debug_object_activate(head, &rcuhead_debug_descr); 182 debug_object_active_state(head, &rcuhead_debug_descr, 183 STATE_RCU_HEAD_READY, 184 STATE_RCU_HEAD_QUEUED); 185 return r1; 186 } 187 188 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 189 { 190 debug_object_active_state(head, &rcuhead_debug_descr, 191 STATE_RCU_HEAD_QUEUED, 192 STATE_RCU_HEAD_READY); 193 debug_object_deactivate(head, &rcuhead_debug_descr); 194 } 195 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 196 static inline int debug_rcu_head_queue(struct rcu_head *head) 197 { 198 return 0; 199 } 200 201 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 202 { 203 } 204 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 205 206 void kfree(const void *); 207 208 /* 209 * Reclaim the specified callback, either by invoking it (non-lazy case) 210 * or freeing it directly (lazy case). Return true if lazy, false otherwise. 211 */ 212 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head) 213 { 214 rcu_callback_t f; 215 unsigned long offset = (unsigned long)head->func; 216 217 rcu_lock_acquire(&rcu_callback_map); 218 if (__is_kfree_rcu_offset(offset)) { 219 RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);) 220 kfree((void *)head - offset); 221 rcu_lock_release(&rcu_callback_map); 222 return true; 223 } else { 224 RCU_TRACE(trace_rcu_invoke_callback(rn, head);) 225 f = head->func; 226 WRITE_ONCE(head->func, (rcu_callback_t)0L); 227 f(head); 228 rcu_lock_release(&rcu_callback_map); 229 return false; 230 } 231 } 232 233 #ifdef CONFIG_RCU_STALL_COMMON 234 235 extern int rcu_cpu_stall_suppress; 236 int rcu_jiffies_till_stall_check(void); 237 238 #define rcu_ftrace_dump_stall_suppress() \ 239 do { \ 240 if (!rcu_cpu_stall_suppress) \ 241 rcu_cpu_stall_suppress = 3; \ 242 } while (0) 243 244 #define rcu_ftrace_dump_stall_unsuppress() \ 245 do { \ 246 if (rcu_cpu_stall_suppress == 3) \ 247 rcu_cpu_stall_suppress = 0; \ 248 } while (0) 249 250 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */ 251 #define rcu_ftrace_dump_stall_suppress() 252 #define rcu_ftrace_dump_stall_unsuppress() 253 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 254 255 /* 256 * Strings used in tracepoints need to be exported via the 257 * tracing system such that tools like perf and trace-cmd can 258 * translate the string address pointers to actual text. 259 */ 260 #define TPS(x) tracepoint_string(x) 261 262 /* 263 * Dump the ftrace buffer, but only one time per callsite per boot. 264 */ 265 #define rcu_ftrace_dump(oops_dump_mode) \ 266 do { \ 267 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \ 268 \ 269 if (!atomic_read(&___rfd_beenhere) && \ 270 !atomic_xchg(&___rfd_beenhere, 1)) { \ 271 tracing_off(); \ 272 rcu_ftrace_dump_stall_suppress(); \ 273 ftrace_dump(oops_dump_mode); \ 274 rcu_ftrace_dump_stall_unsuppress(); \ 275 } \ 276 } while (0) 277 278 void rcu_early_boot_tests(void); 279 void rcu_test_sync_prims(void); 280 281 /* 282 * This function really isn't for public consumption, but RCU is special in 283 * that context switches can allow the state machine to make progress. 284 */ 285 extern void resched_cpu(int cpu); 286 287 #if defined(SRCU) || !defined(TINY_RCU) 288 289 #include <linux/rcu_node_tree.h> 290 291 extern int rcu_num_lvls; 292 extern int num_rcu_lvl[]; 293 extern int rcu_num_nodes; 294 static bool rcu_fanout_exact; 295 static int rcu_fanout_leaf; 296 297 /* 298 * Compute the per-level fanout, either using the exact fanout specified 299 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 300 */ 301 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt) 302 { 303 int i; 304 305 if (rcu_fanout_exact) { 306 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 307 for (i = rcu_num_lvls - 2; i >= 0; i--) 308 levelspread[i] = RCU_FANOUT; 309 } else { 310 int ccur; 311 int cprv; 312 313 cprv = nr_cpu_ids; 314 for (i = rcu_num_lvls - 1; i >= 0; i--) { 315 ccur = levelcnt[i]; 316 levelspread[i] = (cprv + ccur - 1) / ccur; 317 cprv = ccur; 318 } 319 } 320 } 321 322 /* Returns a pointer to the first leaf rcu_node structure. */ 323 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1]) 324 325 /* Is this rcu_node a leaf? */ 326 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1) 327 328 /* Is this rcu_node the last leaf? */ 329 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1]) 330 331 /* 332 * Do a full breadth-first scan of the {s,}rcu_node structures for the 333 * specified state structure (for SRCU) or the only rcu_state structure 334 * (for RCU). 335 */ 336 #define srcu_for_each_node_breadth_first(sp, rnp) \ 337 for ((rnp) = &(sp)->node[0]; \ 338 (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++) 339 #define rcu_for_each_node_breadth_first(rnp) \ 340 srcu_for_each_node_breadth_first(&rcu_state, rnp) 341 342 /* 343 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure. 344 * Note that if there is a singleton rcu_node tree with but one rcu_node 345 * structure, this loop -will- visit the rcu_node structure. It is still 346 * a leaf node, even if it is also the root node. 347 */ 348 #define rcu_for_each_leaf_node(rnp) \ 349 for ((rnp) = rcu_first_leaf_node(); \ 350 (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++) 351 352 /* 353 * Iterate over all possible CPUs in a leaf RCU node. 354 */ 355 #define for_each_leaf_node_possible_cpu(rnp, cpu) \ 356 for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \ 357 (cpu) <= rnp->grphi; \ 358 (cpu) = cpumask_next((cpu), cpu_possible_mask)) 359 360 /* 361 * Iterate over all CPUs in a leaf RCU node's specified mask. 362 */ 363 #define rcu_find_next_bit(rnp, cpu, mask) \ 364 ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu))) 365 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \ 366 for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \ 367 (cpu) <= rnp->grphi; \ 368 (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask))) 369 370 /* 371 * Wrappers for the rcu_node::lock acquire and release. 372 * 373 * Because the rcu_nodes form a tree, the tree traversal locking will observe 374 * different lock values, this in turn means that an UNLOCK of one level 375 * followed by a LOCK of another level does not imply a full memory barrier; 376 * and most importantly transitivity is lost. 377 * 378 * In order to restore full ordering between tree levels, augment the regular 379 * lock acquire functions with smp_mb__after_unlock_lock(). 380 * 381 * As ->lock of struct rcu_node is a __private field, therefore one should use 382 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock. 383 */ 384 #define raw_spin_lock_rcu_node(p) \ 385 do { \ 386 raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \ 387 smp_mb__after_unlock_lock(); \ 388 } while (0) 389 390 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock)) 391 392 #define raw_spin_lock_irq_rcu_node(p) \ 393 do { \ 394 raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 395 smp_mb__after_unlock_lock(); \ 396 } while (0) 397 398 #define raw_spin_unlock_irq_rcu_node(p) \ 399 raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 400 401 #define raw_spin_lock_irqsave_rcu_node(p, flags) \ 402 do { \ 403 raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 404 smp_mb__after_unlock_lock(); \ 405 } while (0) 406 407 #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \ 408 raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) 409 410 #define raw_spin_trylock_rcu_node(p) \ 411 ({ \ 412 bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \ 413 \ 414 if (___locked) \ 415 smp_mb__after_unlock_lock(); \ 416 ___locked; \ 417 }) 418 419 #define raw_lockdep_assert_held_rcu_node(p) \ 420 lockdep_assert_held(&ACCESS_PRIVATE(p, lock)) 421 422 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */ 423 424 #ifdef CONFIG_SRCU 425 void srcu_init(void); 426 #else /* #ifdef CONFIG_SRCU */ 427 static inline void srcu_init(void) { } 428 #endif /* #else #ifdef CONFIG_SRCU */ 429 430 #ifdef CONFIG_TINY_RCU 431 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 432 static inline bool rcu_gp_is_normal(void) { return true; } 433 static inline bool rcu_gp_is_expedited(void) { return false; } 434 static inline void rcu_expedite_gp(void) { } 435 static inline void rcu_unexpedite_gp(void) { } 436 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { } 437 #else /* #ifdef CONFIG_TINY_RCU */ 438 bool rcu_gp_is_normal(void); /* Internal RCU use. */ 439 bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 440 void rcu_expedite_gp(void); 441 void rcu_unexpedite_gp(void); 442 void rcupdate_announce_bootup_oddness(void); 443 void rcu_request_urgent_qs_task(struct task_struct *t); 444 #endif /* #else #ifdef CONFIG_TINY_RCU */ 445 446 #define RCU_SCHEDULER_INACTIVE 0 447 #define RCU_SCHEDULER_INIT 1 448 #define RCU_SCHEDULER_RUNNING 2 449 450 enum rcutorture_type { 451 RCU_FLAVOR, 452 RCU_TASKS_FLAVOR, 453 SRCU_FLAVOR, 454 INVALID_RCU_FLAVOR 455 }; 456 457 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 458 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 459 unsigned long *gp_seq); 460 void rcutorture_record_progress(unsigned long vernum); 461 void do_trace_rcu_torture_read(const char *rcutorturename, 462 struct rcu_head *rhp, 463 unsigned long secs, 464 unsigned long c_old, 465 unsigned long c); 466 #else 467 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 468 int *flags, unsigned long *gp_seq) 469 { 470 *flags = 0; 471 *gp_seq = 0; 472 } 473 static inline void rcutorture_record_progress(unsigned long vernum) { } 474 #ifdef CONFIG_RCU_TRACE 475 void do_trace_rcu_torture_read(const char *rcutorturename, 476 struct rcu_head *rhp, 477 unsigned long secs, 478 unsigned long c_old, 479 unsigned long c); 480 #else 481 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 482 do { } while (0) 483 #endif 484 #endif 485 486 #ifdef CONFIG_TINY_SRCU 487 488 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type, 489 struct srcu_struct *sp, int *flags, 490 unsigned long *gp_seq) 491 { 492 if (test_type != SRCU_FLAVOR) 493 return; 494 *flags = 0; 495 *gp_seq = sp->srcu_idx; 496 } 497 498 #elif defined(CONFIG_TREE_SRCU) 499 500 void srcutorture_get_gp_data(enum rcutorture_type test_type, 501 struct srcu_struct *sp, int *flags, 502 unsigned long *gp_seq); 503 504 #endif 505 506 #ifdef CONFIG_TINY_RCU 507 static inline unsigned long rcu_get_gp_seq(void) { return 0; } 508 static inline unsigned long rcu_exp_batches_completed(void) { return 0; } 509 static inline unsigned long 510 srcu_batches_completed(struct srcu_struct *sp) { return 0; } 511 static inline void rcu_force_quiescent_state(void) { } 512 static inline void show_rcu_gp_kthreads(void) { } 513 static inline int rcu_get_gp_kthreads_prio(void) { return 0; } 514 static inline void rcu_fwd_progress_check(unsigned long j) { } 515 #else /* #ifdef CONFIG_TINY_RCU */ 516 unsigned long rcu_get_gp_seq(void); 517 unsigned long rcu_exp_batches_completed(void); 518 unsigned long srcu_batches_completed(struct srcu_struct *sp); 519 void show_rcu_gp_kthreads(void); 520 int rcu_get_gp_kthreads_prio(void); 521 void rcu_fwd_progress_check(unsigned long j); 522 void rcu_force_quiescent_state(void); 523 extern struct workqueue_struct *rcu_gp_wq; 524 extern struct workqueue_struct *rcu_par_gp_wq; 525 #endif /* #else #ifdef CONFIG_TINY_RCU */ 526 527 #ifdef CONFIG_RCU_NOCB_CPU 528 bool rcu_is_nocb_cpu(int cpu); 529 void rcu_bind_current_to_nocb(void); 530 #else 531 static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 532 static inline void rcu_bind_current_to_nocb(void) { } 533 #endif 534 535 #endif /* __LINUX_RCU_H */ 536