xref: /openbmc/linux/kernel/rcu/rcu.h (revision f3956ebb)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12 
13 #include <trace/events/rcu.h>
14 
15 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
16 #define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
17 
18 
19 /*
20  * Grace-period counter management.
21  */
22 
23 #define RCU_SEQ_CTR_SHIFT	2
24 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
25 
26 /*
27  * Return the counter portion of a sequence number previously returned
28  * by rcu_seq_snap() or rcu_seq_current().
29  */
30 static inline unsigned long rcu_seq_ctr(unsigned long s)
31 {
32 	return s >> RCU_SEQ_CTR_SHIFT;
33 }
34 
35 /*
36  * Return the state portion of a sequence number previously returned
37  * by rcu_seq_snap() or rcu_seq_current().
38  */
39 static inline int rcu_seq_state(unsigned long s)
40 {
41 	return s & RCU_SEQ_STATE_MASK;
42 }
43 
44 /*
45  * Set the state portion of the pointed-to sequence number.
46  * The caller is responsible for preventing conflicting updates.
47  */
48 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
49 {
50 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
51 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
52 }
53 
54 /* Adjust sequence number for start of update-side operation. */
55 static inline void rcu_seq_start(unsigned long *sp)
56 {
57 	WRITE_ONCE(*sp, *sp + 1);
58 	smp_mb(); /* Ensure update-side operation after counter increment. */
59 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
60 }
61 
62 /* Compute the end-of-grace-period value for the specified sequence number. */
63 static inline unsigned long rcu_seq_endval(unsigned long *sp)
64 {
65 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
66 }
67 
68 /* Adjust sequence number for end of update-side operation. */
69 static inline void rcu_seq_end(unsigned long *sp)
70 {
71 	smp_mb(); /* Ensure update-side operation before counter increment. */
72 	WARN_ON_ONCE(!rcu_seq_state(*sp));
73 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
74 }
75 
76 /*
77  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
78  *
79  * This function returns the earliest value of the grace-period sequence number
80  * that will indicate that a full grace period has elapsed since the current
81  * time.  Once the grace-period sequence number has reached this value, it will
82  * be safe to invoke all callbacks that have been registered prior to the
83  * current time. This value is the current grace-period number plus two to the
84  * power of the number of low-order bits reserved for state, then rounded up to
85  * the next value in which the state bits are all zero.
86  */
87 static inline unsigned long rcu_seq_snap(unsigned long *sp)
88 {
89 	unsigned long s;
90 
91 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
92 	smp_mb(); /* Above access must not bleed into critical section. */
93 	return s;
94 }
95 
96 /* Return the current value the update side's sequence number, no ordering. */
97 static inline unsigned long rcu_seq_current(unsigned long *sp)
98 {
99 	return READ_ONCE(*sp);
100 }
101 
102 /*
103  * Given a snapshot from rcu_seq_snap(), determine whether or not the
104  * corresponding update-side operation has started.
105  */
106 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
107 {
108 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
109 }
110 
111 /*
112  * Given a snapshot from rcu_seq_snap(), determine whether or not a
113  * full update-side operation has occurred.
114  */
115 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
116 {
117 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
118 }
119 
120 /*
121  * Has a grace period completed since the time the old gp_seq was collected?
122  */
123 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
124 {
125 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
126 }
127 
128 /*
129  * Has a grace period started since the time the old gp_seq was collected?
130  */
131 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
132 {
133 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
134 			    new);
135 }
136 
137 /*
138  * Roughly how many full grace periods have elapsed between the collection
139  * of the two specified grace periods?
140  */
141 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
142 {
143 	unsigned long rnd_diff;
144 
145 	if (old == new)
146 		return 0;
147 	/*
148 	 * Compute the number of grace periods (still shifted up), plus
149 	 * one if either of new and old is not an exact grace period.
150 	 */
151 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
152 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
153 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
154 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
155 		return 1; /* Definitely no grace period has elapsed. */
156 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
157 }
158 
159 /*
160  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
161  * by call_rcu() and rcu callback execution, and are therefore not part
162  * of the RCU API. These are in rcupdate.h because they are used by all
163  * RCU implementations.
164  */
165 
166 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
167 # define STATE_RCU_HEAD_READY	0
168 # define STATE_RCU_HEAD_QUEUED	1
169 
170 extern const struct debug_obj_descr rcuhead_debug_descr;
171 
172 static inline int debug_rcu_head_queue(struct rcu_head *head)
173 {
174 	int r1;
175 
176 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
177 	debug_object_active_state(head, &rcuhead_debug_descr,
178 				  STATE_RCU_HEAD_READY,
179 				  STATE_RCU_HEAD_QUEUED);
180 	return r1;
181 }
182 
183 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
184 {
185 	debug_object_active_state(head, &rcuhead_debug_descr,
186 				  STATE_RCU_HEAD_QUEUED,
187 				  STATE_RCU_HEAD_READY);
188 	debug_object_deactivate(head, &rcuhead_debug_descr);
189 }
190 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
191 static inline int debug_rcu_head_queue(struct rcu_head *head)
192 {
193 	return 0;
194 }
195 
196 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
197 {
198 }
199 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
200 
201 extern int rcu_cpu_stall_suppress_at_boot;
202 
203 static inline bool rcu_stall_is_suppressed_at_boot(void)
204 {
205 	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
206 }
207 
208 #ifdef CONFIG_RCU_STALL_COMMON
209 
210 extern int rcu_cpu_stall_ftrace_dump;
211 extern int rcu_cpu_stall_suppress;
212 extern int rcu_cpu_stall_timeout;
213 int rcu_jiffies_till_stall_check(void);
214 
215 static inline bool rcu_stall_is_suppressed(void)
216 {
217 	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
218 }
219 
220 #define rcu_ftrace_dump_stall_suppress() \
221 do { \
222 	if (!rcu_cpu_stall_suppress) \
223 		rcu_cpu_stall_suppress = 3; \
224 } while (0)
225 
226 #define rcu_ftrace_dump_stall_unsuppress() \
227 do { \
228 	if (rcu_cpu_stall_suppress == 3) \
229 		rcu_cpu_stall_suppress = 0; \
230 } while (0)
231 
232 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
233 
234 static inline bool rcu_stall_is_suppressed(void)
235 {
236 	return rcu_stall_is_suppressed_at_boot();
237 }
238 #define rcu_ftrace_dump_stall_suppress()
239 #define rcu_ftrace_dump_stall_unsuppress()
240 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
241 
242 /*
243  * Strings used in tracepoints need to be exported via the
244  * tracing system such that tools like perf and trace-cmd can
245  * translate the string address pointers to actual text.
246  */
247 #define TPS(x)  tracepoint_string(x)
248 
249 /*
250  * Dump the ftrace buffer, but only one time per callsite per boot.
251  */
252 #define rcu_ftrace_dump(oops_dump_mode) \
253 do { \
254 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
255 	\
256 	if (!atomic_read(&___rfd_beenhere) && \
257 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
258 		tracing_off(); \
259 		rcu_ftrace_dump_stall_suppress(); \
260 		ftrace_dump(oops_dump_mode); \
261 		rcu_ftrace_dump_stall_unsuppress(); \
262 	} \
263 } while (0)
264 
265 void rcu_early_boot_tests(void);
266 void rcu_test_sync_prims(void);
267 
268 /*
269  * This function really isn't for public consumption, but RCU is special in
270  * that context switches can allow the state machine to make progress.
271  */
272 extern void resched_cpu(int cpu);
273 
274 #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU)
275 
276 #include <linux/rcu_node_tree.h>
277 
278 extern int rcu_num_lvls;
279 extern int num_rcu_lvl[];
280 extern int rcu_num_nodes;
281 static bool rcu_fanout_exact;
282 static int rcu_fanout_leaf;
283 
284 /*
285  * Compute the per-level fanout, either using the exact fanout specified
286  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
287  */
288 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
289 {
290 	int i;
291 
292 	for (i = 0; i < RCU_NUM_LVLS; i++)
293 		levelspread[i] = INT_MIN;
294 	if (rcu_fanout_exact) {
295 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
296 		for (i = rcu_num_lvls - 2; i >= 0; i--)
297 			levelspread[i] = RCU_FANOUT;
298 	} else {
299 		int ccur;
300 		int cprv;
301 
302 		cprv = nr_cpu_ids;
303 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
304 			ccur = levelcnt[i];
305 			levelspread[i] = (cprv + ccur - 1) / ccur;
306 			cprv = ccur;
307 		}
308 	}
309 }
310 
311 extern void rcu_init_geometry(void);
312 
313 /* Returns a pointer to the first leaf rcu_node structure. */
314 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
315 
316 /* Is this rcu_node a leaf? */
317 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
318 
319 /* Is this rcu_node the last leaf? */
320 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
321 
322 /*
323  * Do a full breadth-first scan of the {s,}rcu_node structures for the
324  * specified state structure (for SRCU) or the only rcu_state structure
325  * (for RCU).
326  */
327 #define srcu_for_each_node_breadth_first(sp, rnp) \
328 	for ((rnp) = &(sp)->node[0]; \
329 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
330 #define rcu_for_each_node_breadth_first(rnp) \
331 	srcu_for_each_node_breadth_first(&rcu_state, rnp)
332 
333 /*
334  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
335  * Note that if there is a singleton rcu_node tree with but one rcu_node
336  * structure, this loop -will- visit the rcu_node structure.  It is still
337  * a leaf node, even if it is also the root node.
338  */
339 #define rcu_for_each_leaf_node(rnp) \
340 	for ((rnp) = rcu_first_leaf_node(); \
341 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
342 
343 /*
344  * Iterate over all possible CPUs in a leaf RCU node.
345  */
346 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
347 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
348 	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
349 	     (cpu) <= rnp->grphi; \
350 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
351 
352 /*
353  * Iterate over all CPUs in a leaf RCU node's specified mask.
354  */
355 #define rcu_find_next_bit(rnp, cpu, mask) \
356 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
357 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
358 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
359 	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
360 	     (cpu) <= rnp->grphi; \
361 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
362 
363 /*
364  * Wrappers for the rcu_node::lock acquire and release.
365  *
366  * Because the rcu_nodes form a tree, the tree traversal locking will observe
367  * different lock values, this in turn means that an UNLOCK of one level
368  * followed by a LOCK of another level does not imply a full memory barrier;
369  * and most importantly transitivity is lost.
370  *
371  * In order to restore full ordering between tree levels, augment the regular
372  * lock acquire functions with smp_mb__after_unlock_lock().
373  *
374  * As ->lock of struct rcu_node is a __private field, therefore one should use
375  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
376  */
377 #define raw_spin_lock_rcu_node(p)					\
378 do {									\
379 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
380 	smp_mb__after_unlock_lock();					\
381 } while (0)
382 
383 #define raw_spin_unlock_rcu_node(p)					\
384 do {									\
385 	lockdep_assert_irqs_disabled();					\
386 	raw_spin_unlock(&ACCESS_PRIVATE(p, lock));			\
387 } while (0)
388 
389 #define raw_spin_lock_irq_rcu_node(p)					\
390 do {									\
391 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
392 	smp_mb__after_unlock_lock();					\
393 } while (0)
394 
395 #define raw_spin_unlock_irq_rcu_node(p)					\
396 do {									\
397 	lockdep_assert_irqs_disabled();					\
398 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock));			\
399 } while (0)
400 
401 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
402 do {									\
403 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
404 	smp_mb__after_unlock_lock();					\
405 } while (0)
406 
407 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
408 do {									\
409 	lockdep_assert_irqs_disabled();					\
410 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags);	\
411 } while (0)
412 
413 #define raw_spin_trylock_rcu_node(p)					\
414 ({									\
415 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
416 									\
417 	if (___locked)							\
418 		smp_mb__after_unlock_lock();				\
419 	___locked;							\
420 })
421 
422 #define raw_lockdep_assert_held_rcu_node(p)				\
423 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
424 
425 #endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */
426 
427 #ifdef CONFIG_TINY_RCU
428 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
429 static inline bool rcu_gp_is_normal(void) { return true; }
430 static inline bool rcu_gp_is_expedited(void) { return false; }
431 static inline void rcu_expedite_gp(void) { }
432 static inline void rcu_unexpedite_gp(void) { }
433 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
434 #else /* #ifdef CONFIG_TINY_RCU */
435 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
436 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
437 void rcu_expedite_gp(void);
438 void rcu_unexpedite_gp(void);
439 void rcupdate_announce_bootup_oddness(void);
440 #ifdef CONFIG_TASKS_RCU_GENERIC
441 void show_rcu_tasks_gp_kthreads(void);
442 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
443 static inline void show_rcu_tasks_gp_kthreads(void) {}
444 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
445 void rcu_request_urgent_qs_task(struct task_struct *t);
446 #endif /* #else #ifdef CONFIG_TINY_RCU */
447 
448 #define RCU_SCHEDULER_INACTIVE	0
449 #define RCU_SCHEDULER_INIT	1
450 #define RCU_SCHEDULER_RUNNING	2
451 
452 enum rcutorture_type {
453 	RCU_FLAVOR,
454 	RCU_TASKS_FLAVOR,
455 	RCU_TASKS_RUDE_FLAVOR,
456 	RCU_TASKS_TRACING_FLAVOR,
457 	RCU_TRIVIAL_FLAVOR,
458 	SRCU_FLAVOR,
459 	INVALID_RCU_FLAVOR
460 };
461 
462 #if defined(CONFIG_TREE_RCU)
463 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
464 			    unsigned long *gp_seq);
465 void do_trace_rcu_torture_read(const char *rcutorturename,
466 			       struct rcu_head *rhp,
467 			       unsigned long secs,
468 			       unsigned long c_old,
469 			       unsigned long c);
470 void rcu_gp_set_torture_wait(int duration);
471 #else
472 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
473 					  int *flags, unsigned long *gp_seq)
474 {
475 	*flags = 0;
476 	*gp_seq = 0;
477 }
478 #ifdef CONFIG_RCU_TRACE
479 void do_trace_rcu_torture_read(const char *rcutorturename,
480 			       struct rcu_head *rhp,
481 			       unsigned long secs,
482 			       unsigned long c_old,
483 			       unsigned long c);
484 #else
485 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
486 	do { } while (0)
487 #endif
488 static inline void rcu_gp_set_torture_wait(int duration) { }
489 #endif
490 
491 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
492 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
493 #endif
494 
495 #ifdef CONFIG_TINY_SRCU
496 
497 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
498 					   struct srcu_struct *sp, int *flags,
499 					   unsigned long *gp_seq)
500 {
501 	if (test_type != SRCU_FLAVOR)
502 		return;
503 	*flags = 0;
504 	*gp_seq = sp->srcu_idx;
505 }
506 
507 #elif defined(CONFIG_TREE_SRCU)
508 
509 void srcutorture_get_gp_data(enum rcutorture_type test_type,
510 			     struct srcu_struct *sp, int *flags,
511 			     unsigned long *gp_seq);
512 
513 #endif
514 
515 #ifdef CONFIG_TINY_RCU
516 static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
517 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
518 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
519 static inline unsigned long
520 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
521 static inline void rcu_force_quiescent_state(void) { }
522 static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
523 static inline void show_rcu_gp_kthreads(void) { }
524 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
525 static inline void rcu_fwd_progress_check(unsigned long j) { }
526 #else /* #ifdef CONFIG_TINY_RCU */
527 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
528 unsigned long rcu_get_gp_seq(void);
529 unsigned long rcu_exp_batches_completed(void);
530 unsigned long srcu_batches_completed(struct srcu_struct *sp);
531 bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
532 void show_rcu_gp_kthreads(void);
533 int rcu_get_gp_kthreads_prio(void);
534 void rcu_fwd_progress_check(unsigned long j);
535 void rcu_force_quiescent_state(void);
536 extern struct workqueue_struct *rcu_gp_wq;
537 extern struct workqueue_struct *rcu_par_gp_wq;
538 #endif /* #else #ifdef CONFIG_TINY_RCU */
539 
540 #ifdef CONFIG_RCU_NOCB_CPU
541 bool rcu_is_nocb_cpu(int cpu);
542 void rcu_bind_current_to_nocb(void);
543 #else
544 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
545 static inline void rcu_bind_current_to_nocb(void) { }
546 #endif
547 
548 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
549 void show_rcu_tasks_classic_gp_kthread(void);
550 #else
551 static inline void show_rcu_tasks_classic_gp_kthread(void) {}
552 #endif
553 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
554 void show_rcu_tasks_rude_gp_kthread(void);
555 #else
556 static inline void show_rcu_tasks_rude_gp_kthread(void) {}
557 #endif
558 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
559 void show_rcu_tasks_trace_gp_kthread(void);
560 #else
561 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
562 #endif
563 
564 #endif /* __LINUX_RCU_H */
565