1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update definitions shared among RCU implementations. 4 * 5 * Copyright IBM Corporation, 2011 6 * 7 * Author: Paul E. McKenney <paulmck@linux.ibm.com> 8 */ 9 10 #ifndef __LINUX_RCU_H 11 #define __LINUX_RCU_H 12 13 #include <trace/events/rcu.h> 14 15 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */ 16 #define DYNTICK_IRQ_NONIDLE ((LONG_MAX / 2) + 1) 17 18 19 /* 20 * Grace-period counter management. 21 */ 22 23 #define RCU_SEQ_CTR_SHIFT 2 24 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1) 25 26 /* 27 * Return the counter portion of a sequence number previously returned 28 * by rcu_seq_snap() or rcu_seq_current(). 29 */ 30 static inline unsigned long rcu_seq_ctr(unsigned long s) 31 { 32 return s >> RCU_SEQ_CTR_SHIFT; 33 } 34 35 /* 36 * Return the state portion of a sequence number previously returned 37 * by rcu_seq_snap() or rcu_seq_current(). 38 */ 39 static inline int rcu_seq_state(unsigned long s) 40 { 41 return s & RCU_SEQ_STATE_MASK; 42 } 43 44 /* 45 * Set the state portion of the pointed-to sequence number. 46 * The caller is responsible for preventing conflicting updates. 47 */ 48 static inline void rcu_seq_set_state(unsigned long *sp, int newstate) 49 { 50 WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK); 51 WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate); 52 } 53 54 /* Adjust sequence number for start of update-side operation. */ 55 static inline void rcu_seq_start(unsigned long *sp) 56 { 57 WRITE_ONCE(*sp, *sp + 1); 58 smp_mb(); /* Ensure update-side operation after counter increment. */ 59 WARN_ON_ONCE(rcu_seq_state(*sp) != 1); 60 } 61 62 /* Compute the end-of-grace-period value for the specified sequence number. */ 63 static inline unsigned long rcu_seq_endval(unsigned long *sp) 64 { 65 return (*sp | RCU_SEQ_STATE_MASK) + 1; 66 } 67 68 /* Adjust sequence number for end of update-side operation. */ 69 static inline void rcu_seq_end(unsigned long *sp) 70 { 71 smp_mb(); /* Ensure update-side operation before counter increment. */ 72 WARN_ON_ONCE(!rcu_seq_state(*sp)); 73 WRITE_ONCE(*sp, rcu_seq_endval(sp)); 74 } 75 76 /* 77 * rcu_seq_snap - Take a snapshot of the update side's sequence number. 78 * 79 * This function returns the earliest value of the grace-period sequence number 80 * that will indicate that a full grace period has elapsed since the current 81 * time. Once the grace-period sequence number has reached this value, it will 82 * be safe to invoke all callbacks that have been registered prior to the 83 * current time. This value is the current grace-period number plus two to the 84 * power of the number of low-order bits reserved for state, then rounded up to 85 * the next value in which the state bits are all zero. 86 */ 87 static inline unsigned long rcu_seq_snap(unsigned long *sp) 88 { 89 unsigned long s; 90 91 s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK; 92 smp_mb(); /* Above access must not bleed into critical section. */ 93 return s; 94 } 95 96 /* Return the current value the update side's sequence number, no ordering. */ 97 static inline unsigned long rcu_seq_current(unsigned long *sp) 98 { 99 return READ_ONCE(*sp); 100 } 101 102 /* 103 * Given a snapshot from rcu_seq_snap(), determine whether or not the 104 * corresponding update-side operation has started. 105 */ 106 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s) 107 { 108 return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp)); 109 } 110 111 /* 112 * Given a snapshot from rcu_seq_snap(), determine whether or not a 113 * full update-side operation has occurred. 114 */ 115 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s) 116 { 117 return ULONG_CMP_GE(READ_ONCE(*sp), s); 118 } 119 120 /* 121 * Has a grace period completed since the time the old gp_seq was collected? 122 */ 123 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new) 124 { 125 return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK); 126 } 127 128 /* 129 * Has a grace period started since the time the old gp_seq was collected? 130 */ 131 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new) 132 { 133 return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK, 134 new); 135 } 136 137 /* 138 * Roughly how many full grace periods have elapsed between the collection 139 * of the two specified grace periods? 140 */ 141 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old) 142 { 143 unsigned long rnd_diff; 144 145 if (old == new) 146 return 0; 147 /* 148 * Compute the number of grace periods (still shifted up), plus 149 * one if either of new and old is not an exact grace period. 150 */ 151 rnd_diff = (new & ~RCU_SEQ_STATE_MASK) - 152 ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) + 153 ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK)); 154 if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff)) 155 return 1; /* Definitely no grace period has elapsed. */ 156 return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2; 157 } 158 159 /* 160 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally 161 * by call_rcu() and rcu callback execution, and are therefore not part 162 * of the RCU API. These are in rcupdate.h because they are used by all 163 * RCU implementations. 164 */ 165 166 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 167 # define STATE_RCU_HEAD_READY 0 168 # define STATE_RCU_HEAD_QUEUED 1 169 170 extern struct debug_obj_descr rcuhead_debug_descr; 171 172 static inline int debug_rcu_head_queue(struct rcu_head *head) 173 { 174 int r1; 175 176 r1 = debug_object_activate(head, &rcuhead_debug_descr); 177 debug_object_active_state(head, &rcuhead_debug_descr, 178 STATE_RCU_HEAD_READY, 179 STATE_RCU_HEAD_QUEUED); 180 return r1; 181 } 182 183 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 184 { 185 debug_object_active_state(head, &rcuhead_debug_descr, 186 STATE_RCU_HEAD_QUEUED, 187 STATE_RCU_HEAD_READY); 188 debug_object_deactivate(head, &rcuhead_debug_descr); 189 } 190 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 191 static inline int debug_rcu_head_queue(struct rcu_head *head) 192 { 193 return 0; 194 } 195 196 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 197 { 198 } 199 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 200 201 extern int rcu_cpu_stall_suppress_at_boot; 202 203 static inline bool rcu_stall_is_suppressed_at_boot(void) 204 { 205 return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended(); 206 } 207 208 #ifdef CONFIG_RCU_STALL_COMMON 209 210 extern int rcu_cpu_stall_ftrace_dump; 211 extern int rcu_cpu_stall_suppress; 212 extern int rcu_cpu_stall_timeout; 213 int rcu_jiffies_till_stall_check(void); 214 215 static inline bool rcu_stall_is_suppressed(void) 216 { 217 return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress; 218 } 219 220 #define rcu_ftrace_dump_stall_suppress() \ 221 do { \ 222 if (!rcu_cpu_stall_suppress) \ 223 rcu_cpu_stall_suppress = 3; \ 224 } while (0) 225 226 #define rcu_ftrace_dump_stall_unsuppress() \ 227 do { \ 228 if (rcu_cpu_stall_suppress == 3) \ 229 rcu_cpu_stall_suppress = 0; \ 230 } while (0) 231 232 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */ 233 234 static inline bool rcu_stall_is_suppressed(void) 235 { 236 return rcu_stall_is_suppressed_at_boot(); 237 } 238 #define rcu_ftrace_dump_stall_suppress() 239 #define rcu_ftrace_dump_stall_unsuppress() 240 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 241 242 /* 243 * Strings used in tracepoints need to be exported via the 244 * tracing system such that tools like perf and trace-cmd can 245 * translate the string address pointers to actual text. 246 */ 247 #define TPS(x) tracepoint_string(x) 248 249 /* 250 * Dump the ftrace buffer, but only one time per callsite per boot. 251 */ 252 #define rcu_ftrace_dump(oops_dump_mode) \ 253 do { \ 254 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \ 255 \ 256 if (!atomic_read(&___rfd_beenhere) && \ 257 !atomic_xchg(&___rfd_beenhere, 1)) { \ 258 tracing_off(); \ 259 rcu_ftrace_dump_stall_suppress(); \ 260 ftrace_dump(oops_dump_mode); \ 261 rcu_ftrace_dump_stall_unsuppress(); \ 262 } \ 263 } while (0) 264 265 void rcu_early_boot_tests(void); 266 void rcu_test_sync_prims(void); 267 268 /* 269 * This function really isn't for public consumption, but RCU is special in 270 * that context switches can allow the state machine to make progress. 271 */ 272 extern void resched_cpu(int cpu); 273 274 #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) 275 276 #include <linux/rcu_node_tree.h> 277 278 extern int rcu_num_lvls; 279 extern int num_rcu_lvl[]; 280 extern int rcu_num_nodes; 281 static bool rcu_fanout_exact; 282 static int rcu_fanout_leaf; 283 284 /* 285 * Compute the per-level fanout, either using the exact fanout specified 286 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 287 */ 288 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt) 289 { 290 int i; 291 292 for (i = 0; i < RCU_NUM_LVLS; i++) 293 levelspread[i] = INT_MIN; 294 if (rcu_fanout_exact) { 295 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 296 for (i = rcu_num_lvls - 2; i >= 0; i--) 297 levelspread[i] = RCU_FANOUT; 298 } else { 299 int ccur; 300 int cprv; 301 302 cprv = nr_cpu_ids; 303 for (i = rcu_num_lvls - 1; i >= 0; i--) { 304 ccur = levelcnt[i]; 305 levelspread[i] = (cprv + ccur - 1) / ccur; 306 cprv = ccur; 307 } 308 } 309 } 310 311 /* Returns a pointer to the first leaf rcu_node structure. */ 312 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1]) 313 314 /* Is this rcu_node a leaf? */ 315 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1) 316 317 /* Is this rcu_node the last leaf? */ 318 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1]) 319 320 /* 321 * Do a full breadth-first scan of the {s,}rcu_node structures for the 322 * specified state structure (for SRCU) or the only rcu_state structure 323 * (for RCU). 324 */ 325 #define srcu_for_each_node_breadth_first(sp, rnp) \ 326 for ((rnp) = &(sp)->node[0]; \ 327 (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++) 328 #define rcu_for_each_node_breadth_first(rnp) \ 329 srcu_for_each_node_breadth_first(&rcu_state, rnp) 330 331 /* 332 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure. 333 * Note that if there is a singleton rcu_node tree with but one rcu_node 334 * structure, this loop -will- visit the rcu_node structure. It is still 335 * a leaf node, even if it is also the root node. 336 */ 337 #define rcu_for_each_leaf_node(rnp) \ 338 for ((rnp) = rcu_first_leaf_node(); \ 339 (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++) 340 341 /* 342 * Iterate over all possible CPUs in a leaf RCU node. 343 */ 344 #define for_each_leaf_node_possible_cpu(rnp, cpu) \ 345 for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \ 346 (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \ 347 (cpu) <= rnp->grphi; \ 348 (cpu) = cpumask_next((cpu), cpu_possible_mask)) 349 350 /* 351 * Iterate over all CPUs in a leaf RCU node's specified mask. 352 */ 353 #define rcu_find_next_bit(rnp, cpu, mask) \ 354 ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu))) 355 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \ 356 for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \ 357 (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \ 358 (cpu) <= rnp->grphi; \ 359 (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask))) 360 361 /* 362 * Wrappers for the rcu_node::lock acquire and release. 363 * 364 * Because the rcu_nodes form a tree, the tree traversal locking will observe 365 * different lock values, this in turn means that an UNLOCK of one level 366 * followed by a LOCK of another level does not imply a full memory barrier; 367 * and most importantly transitivity is lost. 368 * 369 * In order to restore full ordering between tree levels, augment the regular 370 * lock acquire functions with smp_mb__after_unlock_lock(). 371 * 372 * As ->lock of struct rcu_node is a __private field, therefore one should use 373 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock. 374 */ 375 #define raw_spin_lock_rcu_node(p) \ 376 do { \ 377 raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \ 378 smp_mb__after_unlock_lock(); \ 379 } while (0) 380 381 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock)) 382 383 #define raw_spin_lock_irq_rcu_node(p) \ 384 do { \ 385 raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 386 smp_mb__after_unlock_lock(); \ 387 } while (0) 388 389 #define raw_spin_unlock_irq_rcu_node(p) \ 390 raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 391 392 #define raw_spin_lock_irqsave_rcu_node(p, flags) \ 393 do { \ 394 raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 395 smp_mb__after_unlock_lock(); \ 396 } while (0) 397 398 #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \ 399 raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) 400 401 #define raw_spin_trylock_rcu_node(p) \ 402 ({ \ 403 bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \ 404 \ 405 if (___locked) \ 406 smp_mb__after_unlock_lock(); \ 407 ___locked; \ 408 }) 409 410 #define raw_lockdep_assert_held_rcu_node(p) \ 411 lockdep_assert_held(&ACCESS_PRIVATE(p, lock)) 412 413 #endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */ 414 415 #ifdef CONFIG_SRCU 416 void srcu_init(void); 417 #else /* #ifdef CONFIG_SRCU */ 418 static inline void srcu_init(void) { } 419 #endif /* #else #ifdef CONFIG_SRCU */ 420 421 #ifdef CONFIG_TINY_RCU 422 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 423 static inline bool rcu_gp_is_normal(void) { return true; } 424 static inline bool rcu_gp_is_expedited(void) { return false; } 425 static inline void rcu_expedite_gp(void) { } 426 static inline void rcu_unexpedite_gp(void) { } 427 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { } 428 #else /* #ifdef CONFIG_TINY_RCU */ 429 bool rcu_gp_is_normal(void); /* Internal RCU use. */ 430 bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 431 void rcu_expedite_gp(void); 432 void rcu_unexpedite_gp(void); 433 void rcupdate_announce_bootup_oddness(void); 434 void rcu_request_urgent_qs_task(struct task_struct *t); 435 #endif /* #else #ifdef CONFIG_TINY_RCU */ 436 437 #define RCU_SCHEDULER_INACTIVE 0 438 #define RCU_SCHEDULER_INIT 1 439 #define RCU_SCHEDULER_RUNNING 2 440 441 enum rcutorture_type { 442 RCU_FLAVOR, 443 RCU_TASKS_FLAVOR, 444 RCU_TRIVIAL_FLAVOR, 445 SRCU_FLAVOR, 446 INVALID_RCU_FLAVOR 447 }; 448 449 #if defined(CONFIG_TREE_RCU) 450 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 451 unsigned long *gp_seq); 452 void do_trace_rcu_torture_read(const char *rcutorturename, 453 struct rcu_head *rhp, 454 unsigned long secs, 455 unsigned long c_old, 456 unsigned long c); 457 #else 458 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 459 int *flags, unsigned long *gp_seq) 460 { 461 *flags = 0; 462 *gp_seq = 0; 463 } 464 #ifdef CONFIG_RCU_TRACE 465 void do_trace_rcu_torture_read(const char *rcutorturename, 466 struct rcu_head *rhp, 467 unsigned long secs, 468 unsigned long c_old, 469 unsigned long c); 470 #else 471 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 472 do { } while (0) 473 #endif 474 #endif 475 476 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST) 477 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask); 478 #endif 479 480 #ifdef CONFIG_TINY_SRCU 481 482 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type, 483 struct srcu_struct *sp, int *flags, 484 unsigned long *gp_seq) 485 { 486 if (test_type != SRCU_FLAVOR) 487 return; 488 *flags = 0; 489 *gp_seq = sp->srcu_idx; 490 } 491 492 #elif defined(CONFIG_TREE_SRCU) 493 494 void srcutorture_get_gp_data(enum rcutorture_type test_type, 495 struct srcu_struct *sp, int *flags, 496 unsigned long *gp_seq); 497 498 #endif 499 500 #ifdef CONFIG_TINY_RCU 501 static inline unsigned long rcu_get_gp_seq(void) { return 0; } 502 static inline unsigned long rcu_exp_batches_completed(void) { return 0; } 503 static inline unsigned long 504 srcu_batches_completed(struct srcu_struct *sp) { return 0; } 505 static inline void rcu_force_quiescent_state(void) { } 506 static inline void show_rcu_gp_kthreads(void) { } 507 static inline int rcu_get_gp_kthreads_prio(void) { return 0; } 508 static inline void rcu_fwd_progress_check(unsigned long j) { } 509 #else /* #ifdef CONFIG_TINY_RCU */ 510 unsigned long rcu_get_gp_seq(void); 511 unsigned long rcu_exp_batches_completed(void); 512 unsigned long srcu_batches_completed(struct srcu_struct *sp); 513 void show_rcu_gp_kthreads(void); 514 int rcu_get_gp_kthreads_prio(void); 515 void rcu_fwd_progress_check(unsigned long j); 516 void rcu_force_quiescent_state(void); 517 extern struct workqueue_struct *rcu_gp_wq; 518 extern struct workqueue_struct *rcu_par_gp_wq; 519 #endif /* #else #ifdef CONFIG_TINY_RCU */ 520 521 #ifdef CONFIG_RCU_NOCB_CPU 522 bool rcu_is_nocb_cpu(int cpu); 523 void rcu_bind_current_to_nocb(void); 524 #else 525 static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 526 static inline void rcu_bind_current_to_nocb(void) { } 527 #endif 528 529 #endif /* __LINUX_RCU_H */ 530