xref: /openbmc/linux/kernel/rcu/rcu.h (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12 
13 #include <trace/events/rcu.h>
14 
15 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
16 #define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
17 
18 
19 /*
20  * Grace-period counter management.
21  */
22 
23 #define RCU_SEQ_CTR_SHIFT	2
24 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
25 
26 /*
27  * Return the counter portion of a sequence number previously returned
28  * by rcu_seq_snap() or rcu_seq_current().
29  */
30 static inline unsigned long rcu_seq_ctr(unsigned long s)
31 {
32 	return s >> RCU_SEQ_CTR_SHIFT;
33 }
34 
35 /*
36  * Return the state portion of a sequence number previously returned
37  * by rcu_seq_snap() or rcu_seq_current().
38  */
39 static inline int rcu_seq_state(unsigned long s)
40 {
41 	return s & RCU_SEQ_STATE_MASK;
42 }
43 
44 /*
45  * Set the state portion of the pointed-to sequence number.
46  * The caller is responsible for preventing conflicting updates.
47  */
48 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
49 {
50 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
51 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
52 }
53 
54 /* Adjust sequence number for start of update-side operation. */
55 static inline void rcu_seq_start(unsigned long *sp)
56 {
57 	WRITE_ONCE(*sp, *sp + 1);
58 	smp_mb(); /* Ensure update-side operation after counter increment. */
59 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
60 }
61 
62 /* Compute the end-of-grace-period value for the specified sequence number. */
63 static inline unsigned long rcu_seq_endval(unsigned long *sp)
64 {
65 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
66 }
67 
68 /* Adjust sequence number for end of update-side operation. */
69 static inline void rcu_seq_end(unsigned long *sp)
70 {
71 	smp_mb(); /* Ensure update-side operation before counter increment. */
72 	WARN_ON_ONCE(!rcu_seq_state(*sp));
73 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
74 }
75 
76 /*
77  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
78  *
79  * This function returns the earliest value of the grace-period sequence number
80  * that will indicate that a full grace period has elapsed since the current
81  * time.  Once the grace-period sequence number has reached this value, it will
82  * be safe to invoke all callbacks that have been registered prior to the
83  * current time. This value is the current grace-period number plus two to the
84  * power of the number of low-order bits reserved for state, then rounded up to
85  * the next value in which the state bits are all zero.
86  */
87 static inline unsigned long rcu_seq_snap(unsigned long *sp)
88 {
89 	unsigned long s;
90 
91 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
92 	smp_mb(); /* Above access must not bleed into critical section. */
93 	return s;
94 }
95 
96 /* Return the current value the update side's sequence number, no ordering. */
97 static inline unsigned long rcu_seq_current(unsigned long *sp)
98 {
99 	return READ_ONCE(*sp);
100 }
101 
102 /*
103  * Given a snapshot from rcu_seq_snap(), determine whether or not the
104  * corresponding update-side operation has started.
105  */
106 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
107 {
108 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
109 }
110 
111 /*
112  * Given a snapshot from rcu_seq_snap(), determine whether or not a
113  * full update-side operation has occurred.
114  */
115 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
116 {
117 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
118 }
119 
120 /*
121  * Has a grace period completed since the time the old gp_seq was collected?
122  */
123 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
124 {
125 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
126 }
127 
128 /*
129  * Has a grace period started since the time the old gp_seq was collected?
130  */
131 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
132 {
133 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
134 			    new);
135 }
136 
137 /*
138  * Roughly how many full grace periods have elapsed between the collection
139  * of the two specified grace periods?
140  */
141 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
142 {
143 	unsigned long rnd_diff;
144 
145 	if (old == new)
146 		return 0;
147 	/*
148 	 * Compute the number of grace periods (still shifted up), plus
149 	 * one if either of new and old is not an exact grace period.
150 	 */
151 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
152 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
153 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
154 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
155 		return 1; /* Definitely no grace period has elapsed. */
156 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
157 }
158 
159 /*
160  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
161  * by call_rcu() and rcu callback execution, and are therefore not part
162  * of the RCU API. These are in rcupdate.h because they are used by all
163  * RCU implementations.
164  */
165 
166 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
167 # define STATE_RCU_HEAD_READY	0
168 # define STATE_RCU_HEAD_QUEUED	1
169 
170 extern struct debug_obj_descr rcuhead_debug_descr;
171 
172 static inline int debug_rcu_head_queue(struct rcu_head *head)
173 {
174 	int r1;
175 
176 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
177 	debug_object_active_state(head, &rcuhead_debug_descr,
178 				  STATE_RCU_HEAD_READY,
179 				  STATE_RCU_HEAD_QUEUED);
180 	return r1;
181 }
182 
183 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
184 {
185 	debug_object_active_state(head, &rcuhead_debug_descr,
186 				  STATE_RCU_HEAD_QUEUED,
187 				  STATE_RCU_HEAD_READY);
188 	debug_object_deactivate(head, &rcuhead_debug_descr);
189 }
190 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
191 static inline int debug_rcu_head_queue(struct rcu_head *head)
192 {
193 	return 0;
194 }
195 
196 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
197 {
198 }
199 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
200 
201 void kfree(const void *);
202 
203 /*
204  * Reclaim the specified callback, either by invoking it (non-lazy case)
205  * or freeing it directly (lazy case).  Return true if lazy, false otherwise.
206  */
207 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
208 {
209 	rcu_callback_t f;
210 	unsigned long offset = (unsigned long)head->func;
211 
212 	rcu_lock_acquire(&rcu_callback_map);
213 	if (__is_kfree_rcu_offset(offset)) {
214 		trace_rcu_invoke_kfree_callback(rn, head, offset);
215 		kfree((void *)head - offset);
216 		rcu_lock_release(&rcu_callback_map);
217 		return true;
218 	} else {
219 		trace_rcu_invoke_callback(rn, head);
220 		f = head->func;
221 		WRITE_ONCE(head->func, (rcu_callback_t)0L);
222 		f(head);
223 		rcu_lock_release(&rcu_callback_map);
224 		return false;
225 	}
226 }
227 
228 #ifdef CONFIG_RCU_STALL_COMMON
229 
230 extern int rcu_cpu_stall_ftrace_dump;
231 extern int rcu_cpu_stall_suppress;
232 extern int rcu_cpu_stall_timeout;
233 int rcu_jiffies_till_stall_check(void);
234 
235 #define rcu_ftrace_dump_stall_suppress() \
236 do { \
237 	if (!rcu_cpu_stall_suppress) \
238 		rcu_cpu_stall_suppress = 3; \
239 } while (0)
240 
241 #define rcu_ftrace_dump_stall_unsuppress() \
242 do { \
243 	if (rcu_cpu_stall_suppress == 3) \
244 		rcu_cpu_stall_suppress = 0; \
245 } while (0)
246 
247 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
248 #define rcu_ftrace_dump_stall_suppress()
249 #define rcu_ftrace_dump_stall_unsuppress()
250 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
251 
252 /*
253  * Strings used in tracepoints need to be exported via the
254  * tracing system such that tools like perf and trace-cmd can
255  * translate the string address pointers to actual text.
256  */
257 #define TPS(x)  tracepoint_string(x)
258 
259 /*
260  * Dump the ftrace buffer, but only one time per callsite per boot.
261  */
262 #define rcu_ftrace_dump(oops_dump_mode) \
263 do { \
264 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
265 	\
266 	if (!atomic_read(&___rfd_beenhere) && \
267 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
268 		tracing_off(); \
269 		rcu_ftrace_dump_stall_suppress(); \
270 		ftrace_dump(oops_dump_mode); \
271 		rcu_ftrace_dump_stall_unsuppress(); \
272 	} \
273 } while (0)
274 
275 void rcu_early_boot_tests(void);
276 void rcu_test_sync_prims(void);
277 
278 /*
279  * This function really isn't for public consumption, but RCU is special in
280  * that context switches can allow the state machine to make progress.
281  */
282 extern void resched_cpu(int cpu);
283 
284 #if defined(SRCU) || !defined(TINY_RCU)
285 
286 #include <linux/rcu_node_tree.h>
287 
288 extern int rcu_num_lvls;
289 extern int num_rcu_lvl[];
290 extern int rcu_num_nodes;
291 static bool rcu_fanout_exact;
292 static int rcu_fanout_leaf;
293 
294 /*
295  * Compute the per-level fanout, either using the exact fanout specified
296  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
297  */
298 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
299 {
300 	int i;
301 
302 	for (i = 0; i < RCU_NUM_LVLS; i++)
303 		levelspread[i] = INT_MIN;
304 	if (rcu_fanout_exact) {
305 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
306 		for (i = rcu_num_lvls - 2; i >= 0; i--)
307 			levelspread[i] = RCU_FANOUT;
308 	} else {
309 		int ccur;
310 		int cprv;
311 
312 		cprv = nr_cpu_ids;
313 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
314 			ccur = levelcnt[i];
315 			levelspread[i] = (cprv + ccur - 1) / ccur;
316 			cprv = ccur;
317 		}
318 	}
319 }
320 
321 /* Returns a pointer to the first leaf rcu_node structure. */
322 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
323 
324 /* Is this rcu_node a leaf? */
325 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
326 
327 /* Is this rcu_node the last leaf? */
328 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
329 
330 /*
331  * Do a full breadth-first scan of the {s,}rcu_node structures for the
332  * specified state structure (for SRCU) or the only rcu_state structure
333  * (for RCU).
334  */
335 #define srcu_for_each_node_breadth_first(sp, rnp) \
336 	for ((rnp) = &(sp)->node[0]; \
337 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
338 #define rcu_for_each_node_breadth_first(rnp) \
339 	srcu_for_each_node_breadth_first(&rcu_state, rnp)
340 
341 /*
342  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
343  * Note that if there is a singleton rcu_node tree with but one rcu_node
344  * structure, this loop -will- visit the rcu_node structure.  It is still
345  * a leaf node, even if it is also the root node.
346  */
347 #define rcu_for_each_leaf_node(rnp) \
348 	for ((rnp) = rcu_first_leaf_node(); \
349 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
350 
351 /*
352  * Iterate over all possible CPUs in a leaf RCU node.
353  */
354 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
355 	for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
356 	     (cpu) <= rnp->grphi; \
357 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
358 
359 /*
360  * Iterate over all CPUs in a leaf RCU node's specified mask.
361  */
362 #define rcu_find_next_bit(rnp, cpu, mask) \
363 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
364 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
365 	for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
366 	     (cpu) <= rnp->grphi; \
367 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
368 
369 /*
370  * Wrappers for the rcu_node::lock acquire and release.
371  *
372  * Because the rcu_nodes form a tree, the tree traversal locking will observe
373  * different lock values, this in turn means that an UNLOCK of one level
374  * followed by a LOCK of another level does not imply a full memory barrier;
375  * and most importantly transitivity is lost.
376  *
377  * In order to restore full ordering between tree levels, augment the regular
378  * lock acquire functions with smp_mb__after_unlock_lock().
379  *
380  * As ->lock of struct rcu_node is a __private field, therefore one should use
381  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
382  */
383 #define raw_spin_lock_rcu_node(p)					\
384 do {									\
385 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
386 	smp_mb__after_unlock_lock();					\
387 } while (0)
388 
389 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
390 
391 #define raw_spin_lock_irq_rcu_node(p)					\
392 do {									\
393 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
394 	smp_mb__after_unlock_lock();					\
395 } while (0)
396 
397 #define raw_spin_unlock_irq_rcu_node(p)					\
398 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
399 
400 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
401 do {									\
402 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
403 	smp_mb__after_unlock_lock();					\
404 } while (0)
405 
406 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
407 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
408 
409 #define raw_spin_trylock_rcu_node(p)					\
410 ({									\
411 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
412 									\
413 	if (___locked)							\
414 		smp_mb__after_unlock_lock();				\
415 	___locked;							\
416 })
417 
418 #define raw_lockdep_assert_held_rcu_node(p)				\
419 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
420 
421 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
422 
423 #ifdef CONFIG_SRCU
424 void srcu_init(void);
425 #else /* #ifdef CONFIG_SRCU */
426 static inline void srcu_init(void) { }
427 #endif /* #else #ifdef CONFIG_SRCU */
428 
429 #ifdef CONFIG_TINY_RCU
430 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
431 static inline bool rcu_gp_is_normal(void) { return true; }
432 static inline bool rcu_gp_is_expedited(void) { return false; }
433 static inline void rcu_expedite_gp(void) { }
434 static inline void rcu_unexpedite_gp(void) { }
435 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
436 #else /* #ifdef CONFIG_TINY_RCU */
437 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
438 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
439 void rcu_expedite_gp(void);
440 void rcu_unexpedite_gp(void);
441 void rcupdate_announce_bootup_oddness(void);
442 void rcu_request_urgent_qs_task(struct task_struct *t);
443 #endif /* #else #ifdef CONFIG_TINY_RCU */
444 
445 #define RCU_SCHEDULER_INACTIVE	0
446 #define RCU_SCHEDULER_INIT	1
447 #define RCU_SCHEDULER_RUNNING	2
448 
449 enum rcutorture_type {
450 	RCU_FLAVOR,
451 	RCU_TASKS_FLAVOR,
452 	RCU_TRIVIAL_FLAVOR,
453 	SRCU_FLAVOR,
454 	INVALID_RCU_FLAVOR
455 };
456 
457 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
458 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
459 			    unsigned long *gp_seq);
460 void do_trace_rcu_torture_read(const char *rcutorturename,
461 			       struct rcu_head *rhp,
462 			       unsigned long secs,
463 			       unsigned long c_old,
464 			       unsigned long c);
465 #else
466 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
467 					  int *flags, unsigned long *gp_seq)
468 {
469 	*flags = 0;
470 	*gp_seq = 0;
471 }
472 #ifdef CONFIG_RCU_TRACE
473 void do_trace_rcu_torture_read(const char *rcutorturename,
474 			       struct rcu_head *rhp,
475 			       unsigned long secs,
476 			       unsigned long c_old,
477 			       unsigned long c);
478 #else
479 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
480 	do { } while (0)
481 #endif
482 #endif
483 
484 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
485 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
486 #endif
487 
488 #ifdef CONFIG_TINY_SRCU
489 
490 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
491 					   struct srcu_struct *sp, int *flags,
492 					   unsigned long *gp_seq)
493 {
494 	if (test_type != SRCU_FLAVOR)
495 		return;
496 	*flags = 0;
497 	*gp_seq = sp->srcu_idx;
498 }
499 
500 #elif defined(CONFIG_TREE_SRCU)
501 
502 void srcutorture_get_gp_data(enum rcutorture_type test_type,
503 			     struct srcu_struct *sp, int *flags,
504 			     unsigned long *gp_seq);
505 
506 #endif
507 
508 #ifdef CONFIG_TINY_RCU
509 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
510 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
511 static inline unsigned long
512 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
513 static inline void rcu_force_quiescent_state(void) { }
514 static inline void show_rcu_gp_kthreads(void) { }
515 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
516 static inline void rcu_fwd_progress_check(unsigned long j) { }
517 #else /* #ifdef CONFIG_TINY_RCU */
518 unsigned long rcu_get_gp_seq(void);
519 unsigned long rcu_exp_batches_completed(void);
520 unsigned long srcu_batches_completed(struct srcu_struct *sp);
521 void show_rcu_gp_kthreads(void);
522 int rcu_get_gp_kthreads_prio(void);
523 void rcu_fwd_progress_check(unsigned long j);
524 void rcu_force_quiescent_state(void);
525 extern struct workqueue_struct *rcu_gp_wq;
526 extern struct workqueue_struct *rcu_par_gp_wq;
527 #endif /* #else #ifdef CONFIG_TINY_RCU */
528 
529 #ifdef CONFIG_RCU_NOCB_CPU
530 bool rcu_is_nocb_cpu(int cpu);
531 void rcu_bind_current_to_nocb(void);
532 #else
533 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
534 static inline void rcu_bind_current_to_nocb(void) { }
535 #endif
536 
537 #endif /* __LINUX_RCU_H */
538