1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update definitions shared among RCU implementations. 4 * 5 * Copyright IBM Corporation, 2011 6 * 7 * Author: Paul E. McKenney <paulmck@linux.ibm.com> 8 */ 9 10 #ifndef __LINUX_RCU_H 11 #define __LINUX_RCU_H 12 13 #include <trace/events/rcu.h> 14 15 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */ 16 #define DYNTICK_IRQ_NONIDLE ((LONG_MAX / 2) + 1) 17 18 19 /* 20 * Grace-period counter management. 21 */ 22 23 #define RCU_SEQ_CTR_SHIFT 2 24 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1) 25 26 /* 27 * Return the counter portion of a sequence number previously returned 28 * by rcu_seq_snap() or rcu_seq_current(). 29 */ 30 static inline unsigned long rcu_seq_ctr(unsigned long s) 31 { 32 return s >> RCU_SEQ_CTR_SHIFT; 33 } 34 35 /* 36 * Return the state portion of a sequence number previously returned 37 * by rcu_seq_snap() or rcu_seq_current(). 38 */ 39 static inline int rcu_seq_state(unsigned long s) 40 { 41 return s & RCU_SEQ_STATE_MASK; 42 } 43 44 /* 45 * Set the state portion of the pointed-to sequence number. 46 * The caller is responsible for preventing conflicting updates. 47 */ 48 static inline void rcu_seq_set_state(unsigned long *sp, int newstate) 49 { 50 WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK); 51 WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate); 52 } 53 54 /* Adjust sequence number for start of update-side operation. */ 55 static inline void rcu_seq_start(unsigned long *sp) 56 { 57 WRITE_ONCE(*sp, *sp + 1); 58 smp_mb(); /* Ensure update-side operation after counter increment. */ 59 WARN_ON_ONCE(rcu_seq_state(*sp) != 1); 60 } 61 62 /* Compute the end-of-grace-period value for the specified sequence number. */ 63 static inline unsigned long rcu_seq_endval(unsigned long *sp) 64 { 65 return (*sp | RCU_SEQ_STATE_MASK) + 1; 66 } 67 68 /* Adjust sequence number for end of update-side operation. */ 69 static inline void rcu_seq_end(unsigned long *sp) 70 { 71 smp_mb(); /* Ensure update-side operation before counter increment. */ 72 WARN_ON_ONCE(!rcu_seq_state(*sp)); 73 WRITE_ONCE(*sp, rcu_seq_endval(sp)); 74 } 75 76 /* 77 * rcu_seq_snap - Take a snapshot of the update side's sequence number. 78 * 79 * This function returns the earliest value of the grace-period sequence number 80 * that will indicate that a full grace period has elapsed since the current 81 * time. Once the grace-period sequence number has reached this value, it will 82 * be safe to invoke all callbacks that have been registered prior to the 83 * current time. This value is the current grace-period number plus two to the 84 * power of the number of low-order bits reserved for state, then rounded up to 85 * the next value in which the state bits are all zero. 86 */ 87 static inline unsigned long rcu_seq_snap(unsigned long *sp) 88 { 89 unsigned long s; 90 91 s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK; 92 smp_mb(); /* Above access must not bleed into critical section. */ 93 return s; 94 } 95 96 /* Return the current value the update side's sequence number, no ordering. */ 97 static inline unsigned long rcu_seq_current(unsigned long *sp) 98 { 99 return READ_ONCE(*sp); 100 } 101 102 /* 103 * Given a snapshot from rcu_seq_snap(), determine whether or not the 104 * corresponding update-side operation has started. 105 */ 106 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s) 107 { 108 return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp)); 109 } 110 111 /* 112 * Given a snapshot from rcu_seq_snap(), determine whether or not a 113 * full update-side operation has occurred. 114 */ 115 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s) 116 { 117 return ULONG_CMP_GE(READ_ONCE(*sp), s); 118 } 119 120 /* 121 * Has a grace period completed since the time the old gp_seq was collected? 122 */ 123 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new) 124 { 125 return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK); 126 } 127 128 /* 129 * Has a grace period started since the time the old gp_seq was collected? 130 */ 131 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new) 132 { 133 return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK, 134 new); 135 } 136 137 /* 138 * Roughly how many full grace periods have elapsed between the collection 139 * of the two specified grace periods? 140 */ 141 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old) 142 { 143 unsigned long rnd_diff; 144 145 if (old == new) 146 return 0; 147 /* 148 * Compute the number of grace periods (still shifted up), plus 149 * one if either of new and old is not an exact grace period. 150 */ 151 rnd_diff = (new & ~RCU_SEQ_STATE_MASK) - 152 ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) + 153 ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK)); 154 if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff)) 155 return 1; /* Definitely no grace period has elapsed. */ 156 return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2; 157 } 158 159 /* 160 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally 161 * by call_rcu() and rcu callback execution, and are therefore not part 162 * of the RCU API. These are in rcupdate.h because they are used by all 163 * RCU implementations. 164 */ 165 166 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 167 # define STATE_RCU_HEAD_READY 0 168 # define STATE_RCU_HEAD_QUEUED 1 169 170 extern struct debug_obj_descr rcuhead_debug_descr; 171 172 static inline int debug_rcu_head_queue(struct rcu_head *head) 173 { 174 int r1; 175 176 r1 = debug_object_activate(head, &rcuhead_debug_descr); 177 debug_object_active_state(head, &rcuhead_debug_descr, 178 STATE_RCU_HEAD_READY, 179 STATE_RCU_HEAD_QUEUED); 180 return r1; 181 } 182 183 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 184 { 185 debug_object_active_state(head, &rcuhead_debug_descr, 186 STATE_RCU_HEAD_QUEUED, 187 STATE_RCU_HEAD_READY); 188 debug_object_deactivate(head, &rcuhead_debug_descr); 189 } 190 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 191 static inline int debug_rcu_head_queue(struct rcu_head *head) 192 { 193 return 0; 194 } 195 196 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 197 { 198 } 199 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 200 201 #ifdef CONFIG_RCU_STALL_COMMON 202 203 extern int rcu_cpu_stall_ftrace_dump; 204 extern int rcu_cpu_stall_suppress; 205 extern int rcu_cpu_stall_timeout; 206 int rcu_jiffies_till_stall_check(void); 207 208 #define rcu_ftrace_dump_stall_suppress() \ 209 do { \ 210 if (!rcu_cpu_stall_suppress) \ 211 rcu_cpu_stall_suppress = 3; \ 212 } while (0) 213 214 #define rcu_ftrace_dump_stall_unsuppress() \ 215 do { \ 216 if (rcu_cpu_stall_suppress == 3) \ 217 rcu_cpu_stall_suppress = 0; \ 218 } while (0) 219 220 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */ 221 #define rcu_ftrace_dump_stall_suppress() 222 #define rcu_ftrace_dump_stall_unsuppress() 223 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 224 225 /* 226 * Strings used in tracepoints need to be exported via the 227 * tracing system such that tools like perf and trace-cmd can 228 * translate the string address pointers to actual text. 229 */ 230 #define TPS(x) tracepoint_string(x) 231 232 /* 233 * Dump the ftrace buffer, but only one time per callsite per boot. 234 */ 235 #define rcu_ftrace_dump(oops_dump_mode) \ 236 do { \ 237 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \ 238 \ 239 if (!atomic_read(&___rfd_beenhere) && \ 240 !atomic_xchg(&___rfd_beenhere, 1)) { \ 241 tracing_off(); \ 242 rcu_ftrace_dump_stall_suppress(); \ 243 ftrace_dump(oops_dump_mode); \ 244 rcu_ftrace_dump_stall_unsuppress(); \ 245 } \ 246 } while (0) 247 248 void rcu_early_boot_tests(void); 249 void rcu_test_sync_prims(void); 250 251 /* 252 * This function really isn't for public consumption, but RCU is special in 253 * that context switches can allow the state machine to make progress. 254 */ 255 extern void resched_cpu(int cpu); 256 257 #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) 258 259 #include <linux/rcu_node_tree.h> 260 261 extern int rcu_num_lvls; 262 extern int num_rcu_lvl[]; 263 extern int rcu_num_nodes; 264 static bool rcu_fanout_exact; 265 static int rcu_fanout_leaf; 266 267 /* 268 * Compute the per-level fanout, either using the exact fanout specified 269 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 270 */ 271 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt) 272 { 273 int i; 274 275 for (i = 0; i < RCU_NUM_LVLS; i++) 276 levelspread[i] = INT_MIN; 277 if (rcu_fanout_exact) { 278 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 279 for (i = rcu_num_lvls - 2; i >= 0; i--) 280 levelspread[i] = RCU_FANOUT; 281 } else { 282 int ccur; 283 int cprv; 284 285 cprv = nr_cpu_ids; 286 for (i = rcu_num_lvls - 1; i >= 0; i--) { 287 ccur = levelcnt[i]; 288 levelspread[i] = (cprv + ccur - 1) / ccur; 289 cprv = ccur; 290 } 291 } 292 } 293 294 /* Returns a pointer to the first leaf rcu_node structure. */ 295 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1]) 296 297 /* Is this rcu_node a leaf? */ 298 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1) 299 300 /* Is this rcu_node the last leaf? */ 301 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1]) 302 303 /* 304 * Do a full breadth-first scan of the {s,}rcu_node structures for the 305 * specified state structure (for SRCU) or the only rcu_state structure 306 * (for RCU). 307 */ 308 #define srcu_for_each_node_breadth_first(sp, rnp) \ 309 for ((rnp) = &(sp)->node[0]; \ 310 (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++) 311 #define rcu_for_each_node_breadth_first(rnp) \ 312 srcu_for_each_node_breadth_first(&rcu_state, rnp) 313 314 /* 315 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure. 316 * Note that if there is a singleton rcu_node tree with but one rcu_node 317 * structure, this loop -will- visit the rcu_node structure. It is still 318 * a leaf node, even if it is also the root node. 319 */ 320 #define rcu_for_each_leaf_node(rnp) \ 321 for ((rnp) = rcu_first_leaf_node(); \ 322 (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++) 323 324 /* 325 * Iterate over all possible CPUs in a leaf RCU node. 326 */ 327 #define for_each_leaf_node_possible_cpu(rnp, cpu) \ 328 for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \ 329 (cpu) <= rnp->grphi; \ 330 (cpu) = cpumask_next((cpu), cpu_possible_mask)) 331 332 /* 333 * Iterate over all CPUs in a leaf RCU node's specified mask. 334 */ 335 #define rcu_find_next_bit(rnp, cpu, mask) \ 336 ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu))) 337 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \ 338 for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \ 339 (cpu) <= rnp->grphi; \ 340 (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask))) 341 342 /* 343 * Wrappers for the rcu_node::lock acquire and release. 344 * 345 * Because the rcu_nodes form a tree, the tree traversal locking will observe 346 * different lock values, this in turn means that an UNLOCK of one level 347 * followed by a LOCK of another level does not imply a full memory barrier; 348 * and most importantly transitivity is lost. 349 * 350 * In order to restore full ordering between tree levels, augment the regular 351 * lock acquire functions with smp_mb__after_unlock_lock(). 352 * 353 * As ->lock of struct rcu_node is a __private field, therefore one should use 354 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock. 355 */ 356 #define raw_spin_lock_rcu_node(p) \ 357 do { \ 358 raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \ 359 smp_mb__after_unlock_lock(); \ 360 } while (0) 361 362 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock)) 363 364 #define raw_spin_lock_irq_rcu_node(p) \ 365 do { \ 366 raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 367 smp_mb__after_unlock_lock(); \ 368 } while (0) 369 370 #define raw_spin_unlock_irq_rcu_node(p) \ 371 raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 372 373 #define raw_spin_lock_irqsave_rcu_node(p, flags) \ 374 do { \ 375 raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 376 smp_mb__after_unlock_lock(); \ 377 } while (0) 378 379 #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \ 380 raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) 381 382 #define raw_spin_trylock_rcu_node(p) \ 383 ({ \ 384 bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \ 385 \ 386 if (___locked) \ 387 smp_mb__after_unlock_lock(); \ 388 ___locked; \ 389 }) 390 391 #define raw_lockdep_assert_held_rcu_node(p) \ 392 lockdep_assert_held(&ACCESS_PRIVATE(p, lock)) 393 394 #endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */ 395 396 #ifdef CONFIG_SRCU 397 void srcu_init(void); 398 #else /* #ifdef CONFIG_SRCU */ 399 static inline void srcu_init(void) { } 400 #endif /* #else #ifdef CONFIG_SRCU */ 401 402 #ifdef CONFIG_TINY_RCU 403 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 404 static inline bool rcu_gp_is_normal(void) { return true; } 405 static inline bool rcu_gp_is_expedited(void) { return false; } 406 static inline void rcu_expedite_gp(void) { } 407 static inline void rcu_unexpedite_gp(void) { } 408 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { } 409 #else /* #ifdef CONFIG_TINY_RCU */ 410 bool rcu_gp_is_normal(void); /* Internal RCU use. */ 411 bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 412 void rcu_expedite_gp(void); 413 void rcu_unexpedite_gp(void); 414 void rcupdate_announce_bootup_oddness(void); 415 void rcu_request_urgent_qs_task(struct task_struct *t); 416 #endif /* #else #ifdef CONFIG_TINY_RCU */ 417 418 #define RCU_SCHEDULER_INACTIVE 0 419 #define RCU_SCHEDULER_INIT 1 420 #define RCU_SCHEDULER_RUNNING 2 421 422 enum rcutorture_type { 423 RCU_FLAVOR, 424 RCU_TASKS_FLAVOR, 425 RCU_TRIVIAL_FLAVOR, 426 SRCU_FLAVOR, 427 INVALID_RCU_FLAVOR 428 }; 429 430 #if defined(CONFIG_TREE_RCU) 431 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 432 unsigned long *gp_seq); 433 void do_trace_rcu_torture_read(const char *rcutorturename, 434 struct rcu_head *rhp, 435 unsigned long secs, 436 unsigned long c_old, 437 unsigned long c); 438 #else 439 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 440 int *flags, unsigned long *gp_seq) 441 { 442 *flags = 0; 443 *gp_seq = 0; 444 } 445 #ifdef CONFIG_RCU_TRACE 446 void do_trace_rcu_torture_read(const char *rcutorturename, 447 struct rcu_head *rhp, 448 unsigned long secs, 449 unsigned long c_old, 450 unsigned long c); 451 #else 452 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 453 do { } while (0) 454 #endif 455 #endif 456 457 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST) 458 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask); 459 #endif 460 461 #ifdef CONFIG_TINY_SRCU 462 463 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type, 464 struct srcu_struct *sp, int *flags, 465 unsigned long *gp_seq) 466 { 467 if (test_type != SRCU_FLAVOR) 468 return; 469 *flags = 0; 470 *gp_seq = sp->srcu_idx; 471 } 472 473 #elif defined(CONFIG_TREE_SRCU) 474 475 void srcutorture_get_gp_data(enum rcutorture_type test_type, 476 struct srcu_struct *sp, int *flags, 477 unsigned long *gp_seq); 478 479 #endif 480 481 #ifdef CONFIG_TINY_RCU 482 static inline unsigned long rcu_get_gp_seq(void) { return 0; } 483 static inline unsigned long rcu_exp_batches_completed(void) { return 0; } 484 static inline unsigned long 485 srcu_batches_completed(struct srcu_struct *sp) { return 0; } 486 static inline void rcu_force_quiescent_state(void) { } 487 static inline void show_rcu_gp_kthreads(void) { } 488 static inline int rcu_get_gp_kthreads_prio(void) { return 0; } 489 static inline void rcu_fwd_progress_check(unsigned long j) { } 490 #else /* #ifdef CONFIG_TINY_RCU */ 491 unsigned long rcu_get_gp_seq(void); 492 unsigned long rcu_exp_batches_completed(void); 493 unsigned long srcu_batches_completed(struct srcu_struct *sp); 494 void show_rcu_gp_kthreads(void); 495 int rcu_get_gp_kthreads_prio(void); 496 void rcu_fwd_progress_check(unsigned long j); 497 void rcu_force_quiescent_state(void); 498 extern struct workqueue_struct *rcu_gp_wq; 499 extern struct workqueue_struct *rcu_par_gp_wq; 500 #endif /* #else #ifdef CONFIG_TINY_RCU */ 501 502 #ifdef CONFIG_RCU_NOCB_CPU 503 bool rcu_is_nocb_cpu(int cpu); 504 void rcu_bind_current_to_nocb(void); 505 #else 506 static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 507 static inline void rcu_bind_current_to_nocb(void) { } 508 #endif 509 510 #endif /* __LINUX_RCU_H */ 511