xref: /openbmc/linux/kernel/rcu/rcu.h (revision 814137768b5a9504f758aa760e7b1ac355539783)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12 
13 #include <trace/events/rcu.h>
14 #ifdef CONFIG_RCU_TRACE
15 #define RCU_TRACE(stmt) stmt
16 #else /* #ifdef CONFIG_RCU_TRACE */
17 #define RCU_TRACE(stmt)
18 #endif /* #else #ifdef CONFIG_RCU_TRACE */
19 
20 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
21 #define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
22 
23 
24 /*
25  * Grace-period counter management.
26  */
27 
28 #define RCU_SEQ_CTR_SHIFT	2
29 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
30 
31 /*
32  * Return the counter portion of a sequence number previously returned
33  * by rcu_seq_snap() or rcu_seq_current().
34  */
35 static inline unsigned long rcu_seq_ctr(unsigned long s)
36 {
37 	return s >> RCU_SEQ_CTR_SHIFT;
38 }
39 
40 /*
41  * Return the state portion of a sequence number previously returned
42  * by rcu_seq_snap() or rcu_seq_current().
43  */
44 static inline int rcu_seq_state(unsigned long s)
45 {
46 	return s & RCU_SEQ_STATE_MASK;
47 }
48 
49 /*
50  * Set the state portion of the pointed-to sequence number.
51  * The caller is responsible for preventing conflicting updates.
52  */
53 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
54 {
55 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
56 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
57 }
58 
59 /* Adjust sequence number for start of update-side operation. */
60 static inline void rcu_seq_start(unsigned long *sp)
61 {
62 	WRITE_ONCE(*sp, *sp + 1);
63 	smp_mb(); /* Ensure update-side operation after counter increment. */
64 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
65 }
66 
67 /* Compute the end-of-grace-period value for the specified sequence number. */
68 static inline unsigned long rcu_seq_endval(unsigned long *sp)
69 {
70 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
71 }
72 
73 /* Adjust sequence number for end of update-side operation. */
74 static inline void rcu_seq_end(unsigned long *sp)
75 {
76 	smp_mb(); /* Ensure update-side operation before counter increment. */
77 	WARN_ON_ONCE(!rcu_seq_state(*sp));
78 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
79 }
80 
81 /*
82  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
83  *
84  * This function returns the earliest value of the grace-period sequence number
85  * that will indicate that a full grace period has elapsed since the current
86  * time.  Once the grace-period sequence number has reached this value, it will
87  * be safe to invoke all callbacks that have been registered prior to the
88  * current time. This value is the current grace-period number plus two to the
89  * power of the number of low-order bits reserved for state, then rounded up to
90  * the next value in which the state bits are all zero.
91  */
92 static inline unsigned long rcu_seq_snap(unsigned long *sp)
93 {
94 	unsigned long s;
95 
96 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
97 	smp_mb(); /* Above access must not bleed into critical section. */
98 	return s;
99 }
100 
101 /* Return the current value the update side's sequence number, no ordering. */
102 static inline unsigned long rcu_seq_current(unsigned long *sp)
103 {
104 	return READ_ONCE(*sp);
105 }
106 
107 /*
108  * Given a snapshot from rcu_seq_snap(), determine whether or not the
109  * corresponding update-side operation has started.
110  */
111 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
112 {
113 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
114 }
115 
116 /*
117  * Given a snapshot from rcu_seq_snap(), determine whether or not a
118  * full update-side operation has occurred.
119  */
120 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
121 {
122 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
123 }
124 
125 /*
126  * Has a grace period completed since the time the old gp_seq was collected?
127  */
128 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
129 {
130 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
131 }
132 
133 /*
134  * Has a grace period started since the time the old gp_seq was collected?
135  */
136 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
137 {
138 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
139 			    new);
140 }
141 
142 /*
143  * Roughly how many full grace periods have elapsed between the collection
144  * of the two specified grace periods?
145  */
146 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
147 {
148 	unsigned long rnd_diff;
149 
150 	if (old == new)
151 		return 0;
152 	/*
153 	 * Compute the number of grace periods (still shifted up), plus
154 	 * one if either of new and old is not an exact grace period.
155 	 */
156 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
157 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
158 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
159 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
160 		return 1; /* Definitely no grace period has elapsed. */
161 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
162 }
163 
164 /*
165  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
166  * by call_rcu() and rcu callback execution, and are therefore not part
167  * of the RCU API. These are in rcupdate.h because they are used by all
168  * RCU implementations.
169  */
170 
171 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
172 # define STATE_RCU_HEAD_READY	0
173 # define STATE_RCU_HEAD_QUEUED	1
174 
175 extern struct debug_obj_descr rcuhead_debug_descr;
176 
177 static inline int debug_rcu_head_queue(struct rcu_head *head)
178 {
179 	int r1;
180 
181 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
182 	debug_object_active_state(head, &rcuhead_debug_descr,
183 				  STATE_RCU_HEAD_READY,
184 				  STATE_RCU_HEAD_QUEUED);
185 	return r1;
186 }
187 
188 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
189 {
190 	debug_object_active_state(head, &rcuhead_debug_descr,
191 				  STATE_RCU_HEAD_QUEUED,
192 				  STATE_RCU_HEAD_READY);
193 	debug_object_deactivate(head, &rcuhead_debug_descr);
194 }
195 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
196 static inline int debug_rcu_head_queue(struct rcu_head *head)
197 {
198 	return 0;
199 }
200 
201 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
202 {
203 }
204 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
205 
206 void kfree(const void *);
207 
208 /*
209  * Reclaim the specified callback, either by invoking it (non-lazy case)
210  * or freeing it directly (lazy case).  Return true if lazy, false otherwise.
211  */
212 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
213 {
214 	rcu_callback_t f;
215 	unsigned long offset = (unsigned long)head->func;
216 
217 	rcu_lock_acquire(&rcu_callback_map);
218 	if (__is_kfree_rcu_offset(offset)) {
219 		RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
220 		kfree((void *)head - offset);
221 		rcu_lock_release(&rcu_callback_map);
222 		return true;
223 	} else {
224 		RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
225 		f = head->func;
226 		WRITE_ONCE(head->func, (rcu_callback_t)0L);
227 		f(head);
228 		rcu_lock_release(&rcu_callback_map);
229 		return false;
230 	}
231 }
232 
233 #ifdef CONFIG_RCU_STALL_COMMON
234 
235 extern int rcu_cpu_stall_suppress;
236 extern int rcu_cpu_stall_timeout;
237 int rcu_jiffies_till_stall_check(void);
238 
239 #define rcu_ftrace_dump_stall_suppress() \
240 do { \
241 	if (!rcu_cpu_stall_suppress) \
242 		rcu_cpu_stall_suppress = 3; \
243 } while (0)
244 
245 #define rcu_ftrace_dump_stall_unsuppress() \
246 do { \
247 	if (rcu_cpu_stall_suppress == 3) \
248 		rcu_cpu_stall_suppress = 0; \
249 } while (0)
250 
251 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
252 #define rcu_ftrace_dump_stall_suppress()
253 #define rcu_ftrace_dump_stall_unsuppress()
254 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
255 
256 /*
257  * Strings used in tracepoints need to be exported via the
258  * tracing system such that tools like perf and trace-cmd can
259  * translate the string address pointers to actual text.
260  */
261 #define TPS(x)  tracepoint_string(x)
262 
263 /*
264  * Dump the ftrace buffer, but only one time per callsite per boot.
265  */
266 #define rcu_ftrace_dump(oops_dump_mode) \
267 do { \
268 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
269 	\
270 	if (!atomic_read(&___rfd_beenhere) && \
271 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
272 		tracing_off(); \
273 		rcu_ftrace_dump_stall_suppress(); \
274 		ftrace_dump(oops_dump_mode); \
275 		rcu_ftrace_dump_stall_unsuppress(); \
276 	} \
277 } while (0)
278 
279 void rcu_early_boot_tests(void);
280 void rcu_test_sync_prims(void);
281 
282 /*
283  * This function really isn't for public consumption, but RCU is special in
284  * that context switches can allow the state machine to make progress.
285  */
286 extern void resched_cpu(int cpu);
287 
288 #if defined(SRCU) || !defined(TINY_RCU)
289 
290 #include <linux/rcu_node_tree.h>
291 
292 extern int rcu_num_lvls;
293 extern int num_rcu_lvl[];
294 extern int rcu_num_nodes;
295 static bool rcu_fanout_exact;
296 static int rcu_fanout_leaf;
297 
298 /*
299  * Compute the per-level fanout, either using the exact fanout specified
300  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
301  */
302 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
303 {
304 	int i;
305 
306 	if (rcu_fanout_exact) {
307 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
308 		for (i = rcu_num_lvls - 2; i >= 0; i--)
309 			levelspread[i] = RCU_FANOUT;
310 	} else {
311 		int ccur;
312 		int cprv;
313 
314 		cprv = nr_cpu_ids;
315 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
316 			ccur = levelcnt[i];
317 			levelspread[i] = (cprv + ccur - 1) / ccur;
318 			cprv = ccur;
319 		}
320 	}
321 }
322 
323 /* Returns a pointer to the first leaf rcu_node structure. */
324 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
325 
326 /* Is this rcu_node a leaf? */
327 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
328 
329 /* Is this rcu_node the last leaf? */
330 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
331 
332 /*
333  * Do a full breadth-first scan of the {s,}rcu_node structures for the
334  * specified state structure (for SRCU) or the only rcu_state structure
335  * (for RCU).
336  */
337 #define srcu_for_each_node_breadth_first(sp, rnp) \
338 	for ((rnp) = &(sp)->node[0]; \
339 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
340 #define rcu_for_each_node_breadth_first(rnp) \
341 	srcu_for_each_node_breadth_first(&rcu_state, rnp)
342 
343 /*
344  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
345  * Note that if there is a singleton rcu_node tree with but one rcu_node
346  * structure, this loop -will- visit the rcu_node structure.  It is still
347  * a leaf node, even if it is also the root node.
348  */
349 #define rcu_for_each_leaf_node(rnp) \
350 	for ((rnp) = rcu_first_leaf_node(); \
351 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
352 
353 /*
354  * Iterate over all possible CPUs in a leaf RCU node.
355  */
356 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
357 	for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
358 	     (cpu) <= rnp->grphi; \
359 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
360 
361 /*
362  * Iterate over all CPUs in a leaf RCU node's specified mask.
363  */
364 #define rcu_find_next_bit(rnp, cpu, mask) \
365 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
366 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
367 	for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
368 	     (cpu) <= rnp->grphi; \
369 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
370 
371 /*
372  * Wrappers for the rcu_node::lock acquire and release.
373  *
374  * Because the rcu_nodes form a tree, the tree traversal locking will observe
375  * different lock values, this in turn means that an UNLOCK of one level
376  * followed by a LOCK of another level does not imply a full memory barrier;
377  * and most importantly transitivity is lost.
378  *
379  * In order to restore full ordering between tree levels, augment the regular
380  * lock acquire functions with smp_mb__after_unlock_lock().
381  *
382  * As ->lock of struct rcu_node is a __private field, therefore one should use
383  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
384  */
385 #define raw_spin_lock_rcu_node(p)					\
386 do {									\
387 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
388 	smp_mb__after_unlock_lock();					\
389 } while (0)
390 
391 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
392 
393 #define raw_spin_lock_irq_rcu_node(p)					\
394 do {									\
395 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
396 	smp_mb__after_unlock_lock();					\
397 } while (0)
398 
399 #define raw_spin_unlock_irq_rcu_node(p)					\
400 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
401 
402 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
403 do {									\
404 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
405 	smp_mb__after_unlock_lock();					\
406 } while (0)
407 
408 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
409 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
410 
411 #define raw_spin_trylock_rcu_node(p)					\
412 ({									\
413 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
414 									\
415 	if (___locked)							\
416 		smp_mb__after_unlock_lock();				\
417 	___locked;							\
418 })
419 
420 #define raw_lockdep_assert_held_rcu_node(p)				\
421 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
422 
423 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
424 
425 #ifdef CONFIG_SRCU
426 void srcu_init(void);
427 #else /* #ifdef CONFIG_SRCU */
428 static inline void srcu_init(void) { }
429 #endif /* #else #ifdef CONFIG_SRCU */
430 
431 #ifdef CONFIG_TINY_RCU
432 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
433 static inline bool rcu_gp_is_normal(void) { return true; }
434 static inline bool rcu_gp_is_expedited(void) { return false; }
435 static inline void rcu_expedite_gp(void) { }
436 static inline void rcu_unexpedite_gp(void) { }
437 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
438 #else /* #ifdef CONFIG_TINY_RCU */
439 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
440 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
441 void rcu_expedite_gp(void);
442 void rcu_unexpedite_gp(void);
443 void rcupdate_announce_bootup_oddness(void);
444 void rcu_request_urgent_qs_task(struct task_struct *t);
445 #endif /* #else #ifdef CONFIG_TINY_RCU */
446 
447 #define RCU_SCHEDULER_INACTIVE	0
448 #define RCU_SCHEDULER_INIT	1
449 #define RCU_SCHEDULER_RUNNING	2
450 
451 enum rcutorture_type {
452 	RCU_FLAVOR,
453 	RCU_TASKS_FLAVOR,
454 	SRCU_FLAVOR,
455 	INVALID_RCU_FLAVOR
456 };
457 
458 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
459 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
460 			    unsigned long *gp_seq);
461 void rcutorture_record_progress(unsigned long vernum);
462 void do_trace_rcu_torture_read(const char *rcutorturename,
463 			       struct rcu_head *rhp,
464 			       unsigned long secs,
465 			       unsigned long c_old,
466 			       unsigned long c);
467 #else
468 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
469 					  int *flags, unsigned long *gp_seq)
470 {
471 	*flags = 0;
472 	*gp_seq = 0;
473 }
474 static inline void rcutorture_record_progress(unsigned long vernum) { }
475 #ifdef CONFIG_RCU_TRACE
476 void do_trace_rcu_torture_read(const char *rcutorturename,
477 			       struct rcu_head *rhp,
478 			       unsigned long secs,
479 			       unsigned long c_old,
480 			       unsigned long c);
481 #else
482 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
483 	do { } while (0)
484 #endif
485 #endif
486 
487 #ifdef CONFIG_TINY_SRCU
488 
489 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
490 					   struct srcu_struct *sp, int *flags,
491 					   unsigned long *gp_seq)
492 {
493 	if (test_type != SRCU_FLAVOR)
494 		return;
495 	*flags = 0;
496 	*gp_seq = sp->srcu_idx;
497 }
498 
499 #elif defined(CONFIG_TREE_SRCU)
500 
501 void srcutorture_get_gp_data(enum rcutorture_type test_type,
502 			     struct srcu_struct *sp, int *flags,
503 			     unsigned long *gp_seq);
504 
505 #endif
506 
507 #ifdef CONFIG_TINY_RCU
508 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
509 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
510 static inline unsigned long
511 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
512 static inline void rcu_force_quiescent_state(void) { }
513 static inline void show_rcu_gp_kthreads(void) { }
514 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
515 static inline void rcu_fwd_progress_check(unsigned long j) { }
516 #else /* #ifdef CONFIG_TINY_RCU */
517 unsigned long rcu_get_gp_seq(void);
518 unsigned long rcu_exp_batches_completed(void);
519 unsigned long srcu_batches_completed(struct srcu_struct *sp);
520 void show_rcu_gp_kthreads(void);
521 int rcu_get_gp_kthreads_prio(void);
522 void rcu_fwd_progress_check(unsigned long j);
523 void rcu_force_quiescent_state(void);
524 extern struct workqueue_struct *rcu_gp_wq;
525 extern struct workqueue_struct *rcu_par_gp_wq;
526 #endif /* #else #ifdef CONFIG_TINY_RCU */
527 
528 #ifdef CONFIG_RCU_NOCB_CPU
529 bool rcu_is_nocb_cpu(int cpu);
530 void rcu_bind_current_to_nocb(void);
531 #else
532 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
533 static inline void rcu_bind_current_to_nocb(void) { }
534 #endif
535 
536 #endif /* __LINUX_RCU_H */
537