1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update definitions shared among RCU implementations. 4 * 5 * Copyright IBM Corporation, 2011 6 * 7 * Author: Paul E. McKenney <paulmck@linux.ibm.com> 8 */ 9 10 #ifndef __LINUX_RCU_H 11 #define __LINUX_RCU_H 12 13 #include <trace/events/rcu.h> 14 #ifdef CONFIG_RCU_TRACE 15 #define RCU_TRACE(stmt) stmt 16 #else /* #ifdef CONFIG_RCU_TRACE */ 17 #define RCU_TRACE(stmt) 18 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 19 20 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */ 21 #define DYNTICK_IRQ_NONIDLE ((LONG_MAX / 2) + 1) 22 23 24 /* 25 * Grace-period counter management. 26 */ 27 28 #define RCU_SEQ_CTR_SHIFT 2 29 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1) 30 31 /* 32 * Return the counter portion of a sequence number previously returned 33 * by rcu_seq_snap() or rcu_seq_current(). 34 */ 35 static inline unsigned long rcu_seq_ctr(unsigned long s) 36 { 37 return s >> RCU_SEQ_CTR_SHIFT; 38 } 39 40 /* 41 * Return the state portion of a sequence number previously returned 42 * by rcu_seq_snap() or rcu_seq_current(). 43 */ 44 static inline int rcu_seq_state(unsigned long s) 45 { 46 return s & RCU_SEQ_STATE_MASK; 47 } 48 49 /* 50 * Set the state portion of the pointed-to sequence number. 51 * The caller is responsible for preventing conflicting updates. 52 */ 53 static inline void rcu_seq_set_state(unsigned long *sp, int newstate) 54 { 55 WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK); 56 WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate); 57 } 58 59 /* Adjust sequence number for start of update-side operation. */ 60 static inline void rcu_seq_start(unsigned long *sp) 61 { 62 WRITE_ONCE(*sp, *sp + 1); 63 smp_mb(); /* Ensure update-side operation after counter increment. */ 64 WARN_ON_ONCE(rcu_seq_state(*sp) != 1); 65 } 66 67 /* Compute the end-of-grace-period value for the specified sequence number. */ 68 static inline unsigned long rcu_seq_endval(unsigned long *sp) 69 { 70 return (*sp | RCU_SEQ_STATE_MASK) + 1; 71 } 72 73 /* Adjust sequence number for end of update-side operation. */ 74 static inline void rcu_seq_end(unsigned long *sp) 75 { 76 smp_mb(); /* Ensure update-side operation before counter increment. */ 77 WARN_ON_ONCE(!rcu_seq_state(*sp)); 78 WRITE_ONCE(*sp, rcu_seq_endval(sp)); 79 } 80 81 /* 82 * rcu_seq_snap - Take a snapshot of the update side's sequence number. 83 * 84 * This function returns the earliest value of the grace-period sequence number 85 * that will indicate that a full grace period has elapsed since the current 86 * time. Once the grace-period sequence number has reached this value, it will 87 * be safe to invoke all callbacks that have been registered prior to the 88 * current time. This value is the current grace-period number plus two to the 89 * power of the number of low-order bits reserved for state, then rounded up to 90 * the next value in which the state bits are all zero. 91 */ 92 static inline unsigned long rcu_seq_snap(unsigned long *sp) 93 { 94 unsigned long s; 95 96 s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK; 97 smp_mb(); /* Above access must not bleed into critical section. */ 98 return s; 99 } 100 101 /* Return the current value the update side's sequence number, no ordering. */ 102 static inline unsigned long rcu_seq_current(unsigned long *sp) 103 { 104 return READ_ONCE(*sp); 105 } 106 107 /* 108 * Given a snapshot from rcu_seq_snap(), determine whether or not the 109 * corresponding update-side operation has started. 110 */ 111 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s) 112 { 113 return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp)); 114 } 115 116 /* 117 * Given a snapshot from rcu_seq_snap(), determine whether or not a 118 * full update-side operation has occurred. 119 */ 120 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s) 121 { 122 return ULONG_CMP_GE(READ_ONCE(*sp), s); 123 } 124 125 /* 126 * Has a grace period completed since the time the old gp_seq was collected? 127 */ 128 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new) 129 { 130 return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK); 131 } 132 133 /* 134 * Has a grace period started since the time the old gp_seq was collected? 135 */ 136 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new) 137 { 138 return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK, 139 new); 140 } 141 142 /* 143 * Roughly how many full grace periods have elapsed between the collection 144 * of the two specified grace periods? 145 */ 146 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old) 147 { 148 unsigned long rnd_diff; 149 150 if (old == new) 151 return 0; 152 /* 153 * Compute the number of grace periods (still shifted up), plus 154 * one if either of new and old is not an exact grace period. 155 */ 156 rnd_diff = (new & ~RCU_SEQ_STATE_MASK) - 157 ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) + 158 ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK)); 159 if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff)) 160 return 1; /* Definitely no grace period has elapsed. */ 161 return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2; 162 } 163 164 /* 165 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally 166 * by call_rcu() and rcu callback execution, and are therefore not part 167 * of the RCU API. These are in rcupdate.h because they are used by all 168 * RCU implementations. 169 */ 170 171 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 172 # define STATE_RCU_HEAD_READY 0 173 # define STATE_RCU_HEAD_QUEUED 1 174 175 extern struct debug_obj_descr rcuhead_debug_descr; 176 177 static inline int debug_rcu_head_queue(struct rcu_head *head) 178 { 179 int r1; 180 181 r1 = debug_object_activate(head, &rcuhead_debug_descr); 182 debug_object_active_state(head, &rcuhead_debug_descr, 183 STATE_RCU_HEAD_READY, 184 STATE_RCU_HEAD_QUEUED); 185 return r1; 186 } 187 188 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 189 { 190 debug_object_active_state(head, &rcuhead_debug_descr, 191 STATE_RCU_HEAD_QUEUED, 192 STATE_RCU_HEAD_READY); 193 debug_object_deactivate(head, &rcuhead_debug_descr); 194 } 195 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 196 static inline int debug_rcu_head_queue(struct rcu_head *head) 197 { 198 return 0; 199 } 200 201 static inline void debug_rcu_head_unqueue(struct rcu_head *head) 202 { 203 } 204 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 205 206 void kfree(const void *); 207 208 /* 209 * Reclaim the specified callback, either by invoking it (non-lazy case) 210 * or freeing it directly (lazy case). Return true if lazy, false otherwise. 211 */ 212 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head) 213 { 214 rcu_callback_t f; 215 unsigned long offset = (unsigned long)head->func; 216 217 rcu_lock_acquire(&rcu_callback_map); 218 if (__is_kfree_rcu_offset(offset)) { 219 RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);) 220 kfree((void *)head - offset); 221 rcu_lock_release(&rcu_callback_map); 222 return true; 223 } else { 224 RCU_TRACE(trace_rcu_invoke_callback(rn, head);) 225 f = head->func; 226 WRITE_ONCE(head->func, (rcu_callback_t)0L); 227 f(head); 228 rcu_lock_release(&rcu_callback_map); 229 return false; 230 } 231 } 232 233 #ifdef CONFIG_RCU_STALL_COMMON 234 235 extern int rcu_cpu_stall_suppress; 236 extern int rcu_cpu_stall_timeout; 237 int rcu_jiffies_till_stall_check(void); 238 239 #define rcu_ftrace_dump_stall_suppress() \ 240 do { \ 241 if (!rcu_cpu_stall_suppress) \ 242 rcu_cpu_stall_suppress = 3; \ 243 } while (0) 244 245 #define rcu_ftrace_dump_stall_unsuppress() \ 246 do { \ 247 if (rcu_cpu_stall_suppress == 3) \ 248 rcu_cpu_stall_suppress = 0; \ 249 } while (0) 250 251 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */ 252 #define rcu_ftrace_dump_stall_suppress() 253 #define rcu_ftrace_dump_stall_unsuppress() 254 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 255 256 /* 257 * Strings used in tracepoints need to be exported via the 258 * tracing system such that tools like perf and trace-cmd can 259 * translate the string address pointers to actual text. 260 */ 261 #define TPS(x) tracepoint_string(x) 262 263 /* 264 * Dump the ftrace buffer, but only one time per callsite per boot. 265 */ 266 #define rcu_ftrace_dump(oops_dump_mode) \ 267 do { \ 268 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \ 269 \ 270 if (!atomic_read(&___rfd_beenhere) && \ 271 !atomic_xchg(&___rfd_beenhere, 1)) { \ 272 tracing_off(); \ 273 rcu_ftrace_dump_stall_suppress(); \ 274 ftrace_dump(oops_dump_mode); \ 275 rcu_ftrace_dump_stall_unsuppress(); \ 276 } \ 277 } while (0) 278 279 void rcu_early_boot_tests(void); 280 void rcu_test_sync_prims(void); 281 282 /* 283 * This function really isn't for public consumption, but RCU is special in 284 * that context switches can allow the state machine to make progress. 285 */ 286 extern void resched_cpu(int cpu); 287 288 #if defined(SRCU) || !defined(TINY_RCU) 289 290 #include <linux/rcu_node_tree.h> 291 292 extern int rcu_num_lvls; 293 extern int num_rcu_lvl[]; 294 extern int rcu_num_nodes; 295 static bool rcu_fanout_exact; 296 static int rcu_fanout_leaf; 297 298 /* 299 * Compute the per-level fanout, either using the exact fanout specified 300 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 301 */ 302 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt) 303 { 304 int i; 305 306 if (rcu_fanout_exact) { 307 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 308 for (i = rcu_num_lvls - 2; i >= 0; i--) 309 levelspread[i] = RCU_FANOUT; 310 } else { 311 int ccur; 312 int cprv; 313 314 cprv = nr_cpu_ids; 315 for (i = rcu_num_lvls - 1; i >= 0; i--) { 316 ccur = levelcnt[i]; 317 levelspread[i] = (cprv + ccur - 1) / ccur; 318 cprv = ccur; 319 } 320 } 321 } 322 323 /* Returns a pointer to the first leaf rcu_node structure. */ 324 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1]) 325 326 /* Is this rcu_node a leaf? */ 327 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1) 328 329 /* Is this rcu_node the last leaf? */ 330 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1]) 331 332 /* 333 * Do a full breadth-first scan of the {s,}rcu_node structures for the 334 * specified state structure (for SRCU) or the only rcu_state structure 335 * (for RCU). 336 */ 337 #define srcu_for_each_node_breadth_first(sp, rnp) \ 338 for ((rnp) = &(sp)->node[0]; \ 339 (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++) 340 #define rcu_for_each_node_breadth_first(rnp) \ 341 srcu_for_each_node_breadth_first(&rcu_state, rnp) 342 343 /* 344 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure. 345 * Note that if there is a singleton rcu_node tree with but one rcu_node 346 * structure, this loop -will- visit the rcu_node structure. It is still 347 * a leaf node, even if it is also the root node. 348 */ 349 #define rcu_for_each_leaf_node(rnp) \ 350 for ((rnp) = rcu_first_leaf_node(); \ 351 (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++) 352 353 /* 354 * Iterate over all possible CPUs in a leaf RCU node. 355 */ 356 #define for_each_leaf_node_possible_cpu(rnp, cpu) \ 357 for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \ 358 (cpu) <= rnp->grphi; \ 359 (cpu) = cpumask_next((cpu), cpu_possible_mask)) 360 361 /* 362 * Iterate over all CPUs in a leaf RCU node's specified mask. 363 */ 364 #define rcu_find_next_bit(rnp, cpu, mask) \ 365 ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu))) 366 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \ 367 for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \ 368 (cpu) <= rnp->grphi; \ 369 (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask))) 370 371 /* 372 * Wrappers for the rcu_node::lock acquire and release. 373 * 374 * Because the rcu_nodes form a tree, the tree traversal locking will observe 375 * different lock values, this in turn means that an UNLOCK of one level 376 * followed by a LOCK of another level does not imply a full memory barrier; 377 * and most importantly transitivity is lost. 378 * 379 * In order to restore full ordering between tree levels, augment the regular 380 * lock acquire functions with smp_mb__after_unlock_lock(). 381 * 382 * As ->lock of struct rcu_node is a __private field, therefore one should use 383 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock. 384 */ 385 #define raw_spin_lock_rcu_node(p) \ 386 do { \ 387 raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \ 388 smp_mb__after_unlock_lock(); \ 389 } while (0) 390 391 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock)) 392 393 #define raw_spin_lock_irq_rcu_node(p) \ 394 do { \ 395 raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 396 smp_mb__after_unlock_lock(); \ 397 } while (0) 398 399 #define raw_spin_unlock_irq_rcu_node(p) \ 400 raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 401 402 #define raw_spin_lock_irqsave_rcu_node(p, flags) \ 403 do { \ 404 raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 405 smp_mb__after_unlock_lock(); \ 406 } while (0) 407 408 #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \ 409 raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) 410 411 #define raw_spin_trylock_rcu_node(p) \ 412 ({ \ 413 bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \ 414 \ 415 if (___locked) \ 416 smp_mb__after_unlock_lock(); \ 417 ___locked; \ 418 }) 419 420 #define raw_lockdep_assert_held_rcu_node(p) \ 421 lockdep_assert_held(&ACCESS_PRIVATE(p, lock)) 422 423 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */ 424 425 #ifdef CONFIG_SRCU 426 void srcu_init(void); 427 #else /* #ifdef CONFIG_SRCU */ 428 static inline void srcu_init(void) { } 429 #endif /* #else #ifdef CONFIG_SRCU */ 430 431 #ifdef CONFIG_TINY_RCU 432 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 433 static inline bool rcu_gp_is_normal(void) { return true; } 434 static inline bool rcu_gp_is_expedited(void) { return false; } 435 static inline void rcu_expedite_gp(void) { } 436 static inline void rcu_unexpedite_gp(void) { } 437 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { } 438 #else /* #ifdef CONFIG_TINY_RCU */ 439 bool rcu_gp_is_normal(void); /* Internal RCU use. */ 440 bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 441 void rcu_expedite_gp(void); 442 void rcu_unexpedite_gp(void); 443 void rcupdate_announce_bootup_oddness(void); 444 void rcu_request_urgent_qs_task(struct task_struct *t); 445 #endif /* #else #ifdef CONFIG_TINY_RCU */ 446 447 #define RCU_SCHEDULER_INACTIVE 0 448 #define RCU_SCHEDULER_INIT 1 449 #define RCU_SCHEDULER_RUNNING 2 450 451 enum rcutorture_type { 452 RCU_FLAVOR, 453 RCU_TASKS_FLAVOR, 454 SRCU_FLAVOR, 455 INVALID_RCU_FLAVOR 456 }; 457 458 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 459 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 460 unsigned long *gp_seq); 461 void rcutorture_record_progress(unsigned long vernum); 462 void do_trace_rcu_torture_read(const char *rcutorturename, 463 struct rcu_head *rhp, 464 unsigned long secs, 465 unsigned long c_old, 466 unsigned long c); 467 #else 468 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 469 int *flags, unsigned long *gp_seq) 470 { 471 *flags = 0; 472 *gp_seq = 0; 473 } 474 static inline void rcutorture_record_progress(unsigned long vernum) { } 475 #ifdef CONFIG_RCU_TRACE 476 void do_trace_rcu_torture_read(const char *rcutorturename, 477 struct rcu_head *rhp, 478 unsigned long secs, 479 unsigned long c_old, 480 unsigned long c); 481 #else 482 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 483 do { } while (0) 484 #endif 485 #endif 486 487 #ifdef CONFIG_TINY_SRCU 488 489 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type, 490 struct srcu_struct *sp, int *flags, 491 unsigned long *gp_seq) 492 { 493 if (test_type != SRCU_FLAVOR) 494 return; 495 *flags = 0; 496 *gp_seq = sp->srcu_idx; 497 } 498 499 #elif defined(CONFIG_TREE_SRCU) 500 501 void srcutorture_get_gp_data(enum rcutorture_type test_type, 502 struct srcu_struct *sp, int *flags, 503 unsigned long *gp_seq); 504 505 #endif 506 507 #ifdef CONFIG_TINY_RCU 508 static inline unsigned long rcu_get_gp_seq(void) { return 0; } 509 static inline unsigned long rcu_exp_batches_completed(void) { return 0; } 510 static inline unsigned long 511 srcu_batches_completed(struct srcu_struct *sp) { return 0; } 512 static inline void rcu_force_quiescent_state(void) { } 513 static inline void show_rcu_gp_kthreads(void) { } 514 static inline int rcu_get_gp_kthreads_prio(void) { return 0; } 515 static inline void rcu_fwd_progress_check(unsigned long j) { } 516 #else /* #ifdef CONFIG_TINY_RCU */ 517 unsigned long rcu_get_gp_seq(void); 518 unsigned long rcu_exp_batches_completed(void); 519 unsigned long srcu_batches_completed(struct srcu_struct *sp); 520 void show_rcu_gp_kthreads(void); 521 int rcu_get_gp_kthreads_prio(void); 522 void rcu_fwd_progress_check(unsigned long j); 523 void rcu_force_quiescent_state(void); 524 extern struct workqueue_struct *rcu_gp_wq; 525 extern struct workqueue_struct *rcu_par_gp_wq; 526 #endif /* #else #ifdef CONFIG_TINY_RCU */ 527 528 #ifdef CONFIG_RCU_NOCB_CPU 529 bool rcu_is_nocb_cpu(int cpu); 530 void rcu_bind_current_to_nocb(void); 531 #else 532 static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 533 static inline void rcu_bind_current_to_nocb(void) { } 534 #endif 535 536 #endif /* __LINUX_RCU_H */ 537