xref: /openbmc/linux/kernel/rcu/rcu.h (revision 68198dca)
1 /*
2  * Read-Copy Update definitions shared among RCU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2011
19  *
20  * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
21  */
22 
23 #ifndef __LINUX_RCU_H
24 #define __LINUX_RCU_H
25 
26 #include <trace/events/rcu.h>
27 #ifdef CONFIG_RCU_TRACE
28 #define RCU_TRACE(stmt) stmt
29 #else /* #ifdef CONFIG_RCU_TRACE */
30 #define RCU_TRACE(stmt)
31 #endif /* #else #ifdef CONFIG_RCU_TRACE */
32 
33 /*
34  * Process-level increment to ->dynticks_nesting field.  This allows for
35  * architectures that use half-interrupts and half-exceptions from
36  * process context.
37  *
38  * DYNTICK_TASK_NEST_MASK defines a field of width DYNTICK_TASK_NEST_WIDTH
39  * that counts the number of process-based reasons why RCU cannot
40  * consider the corresponding CPU to be idle, and DYNTICK_TASK_NEST_VALUE
41  * is the value used to increment or decrement this field.
42  *
43  * The rest of the bits could in principle be used to count interrupts,
44  * but this would mean that a negative-one value in the interrupt
45  * field could incorrectly zero out the DYNTICK_TASK_NEST_MASK field.
46  * We therefore provide a two-bit guard field defined by DYNTICK_TASK_MASK
47  * that is set to DYNTICK_TASK_FLAG upon initial exit from idle.
48  * The DYNTICK_TASK_EXIT_IDLE value is thus the combined value used upon
49  * initial exit from idle.
50  */
51 #define DYNTICK_TASK_NEST_WIDTH 7
52 #define DYNTICK_TASK_NEST_VALUE ((LLONG_MAX >> DYNTICK_TASK_NEST_WIDTH) + 1)
53 #define DYNTICK_TASK_NEST_MASK  (LLONG_MAX - DYNTICK_TASK_NEST_VALUE + 1)
54 #define DYNTICK_TASK_FLAG	   ((DYNTICK_TASK_NEST_VALUE / 8) * 2)
55 #define DYNTICK_TASK_MASK	   ((DYNTICK_TASK_NEST_VALUE / 8) * 3)
56 #define DYNTICK_TASK_EXIT_IDLE	   (DYNTICK_TASK_NEST_VALUE + \
57 				    DYNTICK_TASK_FLAG)
58 
59 
60 /*
61  * Grace-period counter management.
62  */
63 
64 #define RCU_SEQ_CTR_SHIFT	2
65 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
66 
67 /*
68  * Return the counter portion of a sequence number previously returned
69  * by rcu_seq_snap() or rcu_seq_current().
70  */
71 static inline unsigned long rcu_seq_ctr(unsigned long s)
72 {
73 	return s >> RCU_SEQ_CTR_SHIFT;
74 }
75 
76 /*
77  * Return the state portion of a sequence number previously returned
78  * by rcu_seq_snap() or rcu_seq_current().
79  */
80 static inline int rcu_seq_state(unsigned long s)
81 {
82 	return s & RCU_SEQ_STATE_MASK;
83 }
84 
85 /*
86  * Set the state portion of the pointed-to sequence number.
87  * The caller is responsible for preventing conflicting updates.
88  */
89 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
90 {
91 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
92 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
93 }
94 
95 /* Adjust sequence number for start of update-side operation. */
96 static inline void rcu_seq_start(unsigned long *sp)
97 {
98 	WRITE_ONCE(*sp, *sp + 1);
99 	smp_mb(); /* Ensure update-side operation after counter increment. */
100 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
101 }
102 
103 /* Adjust sequence number for end of update-side operation. */
104 static inline void rcu_seq_end(unsigned long *sp)
105 {
106 	smp_mb(); /* Ensure update-side operation before counter increment. */
107 	WARN_ON_ONCE(!rcu_seq_state(*sp));
108 	WRITE_ONCE(*sp, (*sp | RCU_SEQ_STATE_MASK) + 1);
109 }
110 
111 /* Take a snapshot of the update side's sequence number. */
112 static inline unsigned long rcu_seq_snap(unsigned long *sp)
113 {
114 	unsigned long s;
115 
116 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
117 	smp_mb(); /* Above access must not bleed into critical section. */
118 	return s;
119 }
120 
121 /* Return the current value the update side's sequence number, no ordering. */
122 static inline unsigned long rcu_seq_current(unsigned long *sp)
123 {
124 	return READ_ONCE(*sp);
125 }
126 
127 /*
128  * Given a snapshot from rcu_seq_snap(), determine whether or not a
129  * full update-side operation has occurred.
130  */
131 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
132 {
133 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
134 }
135 
136 /*
137  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
138  * by call_rcu() and rcu callback execution, and are therefore not part of the
139  * RCU API. Leaving in rcupdate.h because they are used by all RCU flavors.
140  */
141 
142 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
143 # define STATE_RCU_HEAD_READY	0
144 # define STATE_RCU_HEAD_QUEUED	1
145 
146 extern struct debug_obj_descr rcuhead_debug_descr;
147 
148 static inline int debug_rcu_head_queue(struct rcu_head *head)
149 {
150 	int r1;
151 
152 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
153 	debug_object_active_state(head, &rcuhead_debug_descr,
154 				  STATE_RCU_HEAD_READY,
155 				  STATE_RCU_HEAD_QUEUED);
156 	return r1;
157 }
158 
159 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
160 {
161 	debug_object_active_state(head, &rcuhead_debug_descr,
162 				  STATE_RCU_HEAD_QUEUED,
163 				  STATE_RCU_HEAD_READY);
164 	debug_object_deactivate(head, &rcuhead_debug_descr);
165 }
166 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
167 static inline int debug_rcu_head_queue(struct rcu_head *head)
168 {
169 	return 0;
170 }
171 
172 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
173 {
174 }
175 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
176 
177 void kfree(const void *);
178 
179 /*
180  * Reclaim the specified callback, either by invoking it (non-lazy case)
181  * or freeing it directly (lazy case).  Return true if lazy, false otherwise.
182  */
183 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
184 {
185 	unsigned long offset = (unsigned long)head->func;
186 
187 	rcu_lock_acquire(&rcu_callback_map);
188 	if (__is_kfree_rcu_offset(offset)) {
189 		RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
190 		kfree((void *)head - offset);
191 		rcu_lock_release(&rcu_callback_map);
192 		return true;
193 	} else {
194 		RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
195 		head->func(head);
196 		rcu_lock_release(&rcu_callback_map);
197 		return false;
198 	}
199 }
200 
201 #ifdef CONFIG_RCU_STALL_COMMON
202 
203 extern int rcu_cpu_stall_suppress;
204 int rcu_jiffies_till_stall_check(void);
205 
206 #define rcu_ftrace_dump_stall_suppress() \
207 do { \
208 	if (!rcu_cpu_stall_suppress) \
209 		rcu_cpu_stall_suppress = 3; \
210 } while (0)
211 
212 #define rcu_ftrace_dump_stall_unsuppress() \
213 do { \
214 	if (rcu_cpu_stall_suppress == 3) \
215 		rcu_cpu_stall_suppress = 0; \
216 } while (0)
217 
218 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
219 #define rcu_ftrace_dump_stall_suppress()
220 #define rcu_ftrace_dump_stall_unsuppress()
221 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
222 
223 /*
224  * Strings used in tracepoints need to be exported via the
225  * tracing system such that tools like perf and trace-cmd can
226  * translate the string address pointers to actual text.
227  */
228 #define TPS(x)  tracepoint_string(x)
229 
230 /*
231  * Dump the ftrace buffer, but only one time per callsite per boot.
232  */
233 #define rcu_ftrace_dump(oops_dump_mode) \
234 do { \
235 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
236 	\
237 	if (!atomic_read(&___rfd_beenhere) && \
238 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
239 		tracing_off(); \
240 		rcu_ftrace_dump_stall_suppress(); \
241 		ftrace_dump(oops_dump_mode); \
242 		rcu_ftrace_dump_stall_unsuppress(); \
243 	} \
244 } while (0)
245 
246 void rcu_early_boot_tests(void);
247 void rcu_test_sync_prims(void);
248 
249 /*
250  * This function really isn't for public consumption, but RCU is special in
251  * that context switches can allow the state machine to make progress.
252  */
253 extern void resched_cpu(int cpu);
254 
255 #if defined(SRCU) || !defined(TINY_RCU)
256 
257 #include <linux/rcu_node_tree.h>
258 
259 extern int rcu_num_lvls;
260 extern int num_rcu_lvl[];
261 extern int rcu_num_nodes;
262 static bool rcu_fanout_exact;
263 static int rcu_fanout_leaf;
264 
265 /*
266  * Compute the per-level fanout, either using the exact fanout specified
267  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
268  */
269 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
270 {
271 	int i;
272 
273 	if (rcu_fanout_exact) {
274 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
275 		for (i = rcu_num_lvls - 2; i >= 0; i--)
276 			levelspread[i] = RCU_FANOUT;
277 	} else {
278 		int ccur;
279 		int cprv;
280 
281 		cprv = nr_cpu_ids;
282 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
283 			ccur = levelcnt[i];
284 			levelspread[i] = (cprv + ccur - 1) / ccur;
285 			cprv = ccur;
286 		}
287 	}
288 }
289 
290 /*
291  * Do a full breadth-first scan of the rcu_node structures for the
292  * specified rcu_state structure.
293  */
294 #define rcu_for_each_node_breadth_first(rsp, rnp) \
295 	for ((rnp) = &(rsp)->node[0]; \
296 	     (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
297 
298 /*
299  * Do a breadth-first scan of the non-leaf rcu_node structures for the
300  * specified rcu_state structure.  Note that if there is a singleton
301  * rcu_node tree with but one rcu_node structure, this loop is a no-op.
302  */
303 #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
304 	for ((rnp) = &(rsp)->node[0]; \
305 	     (rnp) < (rsp)->level[rcu_num_lvls - 1]; (rnp)++)
306 
307 /*
308  * Scan the leaves of the rcu_node hierarchy for the specified rcu_state
309  * structure.  Note that if there is a singleton rcu_node tree with but
310  * one rcu_node structure, this loop -will- visit the rcu_node structure.
311  * It is still a leaf node, even if it is also the root node.
312  */
313 #define rcu_for_each_leaf_node(rsp, rnp) \
314 	for ((rnp) = (rsp)->level[rcu_num_lvls - 1]; \
315 	     (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
316 
317 /*
318  * Iterate over all possible CPUs in a leaf RCU node.
319  */
320 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
321 	for ((cpu) = cpumask_next(rnp->grplo - 1, cpu_possible_mask); \
322 	     cpu <= rnp->grphi; \
323 	     cpu = cpumask_next((cpu), cpu_possible_mask))
324 
325 /*
326  * Wrappers for the rcu_node::lock acquire and release.
327  *
328  * Because the rcu_nodes form a tree, the tree traversal locking will observe
329  * different lock values, this in turn means that an UNLOCK of one level
330  * followed by a LOCK of another level does not imply a full memory barrier;
331  * and most importantly transitivity is lost.
332  *
333  * In order to restore full ordering between tree levels, augment the regular
334  * lock acquire functions with smp_mb__after_unlock_lock().
335  *
336  * As ->lock of struct rcu_node is a __private field, therefore one should use
337  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
338  */
339 #define raw_spin_lock_rcu_node(p)					\
340 do {									\
341 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
342 	smp_mb__after_unlock_lock();					\
343 } while (0)
344 
345 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
346 
347 #define raw_spin_lock_irq_rcu_node(p)					\
348 do {									\
349 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
350 	smp_mb__after_unlock_lock();					\
351 } while (0)
352 
353 #define raw_spin_unlock_irq_rcu_node(p)					\
354 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
355 
356 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
357 do {									\
358 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
359 	smp_mb__after_unlock_lock();					\
360 } while (0)
361 
362 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
363 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
364 
365 #define raw_spin_trylock_rcu_node(p)					\
366 ({									\
367 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
368 									\
369 	if (___locked)							\
370 		smp_mb__after_unlock_lock();				\
371 	___locked;							\
372 })
373 
374 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
375 
376 #ifdef CONFIG_TINY_RCU
377 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
378 static inline bool rcu_gp_is_normal(void) { return true; }
379 static inline bool rcu_gp_is_expedited(void) { return false; }
380 static inline void rcu_expedite_gp(void) { }
381 static inline void rcu_unexpedite_gp(void) { }
382 #else /* #ifdef CONFIG_TINY_RCU */
383 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
384 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
385 void rcu_expedite_gp(void);
386 void rcu_unexpedite_gp(void);
387 void rcupdate_announce_bootup_oddness(void);
388 #endif /* #else #ifdef CONFIG_TINY_RCU */
389 
390 #define RCU_SCHEDULER_INACTIVE	0
391 #define RCU_SCHEDULER_INIT	1
392 #define RCU_SCHEDULER_RUNNING	2
393 
394 #ifdef CONFIG_TINY_RCU
395 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
396 #else /* #ifdef CONFIG_TINY_RCU */
397 void rcu_request_urgent_qs_task(struct task_struct *t);
398 #endif /* #else #ifdef CONFIG_TINY_RCU */
399 
400 enum rcutorture_type {
401 	RCU_FLAVOR,
402 	RCU_BH_FLAVOR,
403 	RCU_SCHED_FLAVOR,
404 	RCU_TASKS_FLAVOR,
405 	SRCU_FLAVOR,
406 	INVALID_RCU_FLAVOR
407 };
408 
409 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
410 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
411 			    unsigned long *gpnum, unsigned long *completed);
412 void rcutorture_record_test_transition(void);
413 void rcutorture_record_progress(unsigned long vernum);
414 void do_trace_rcu_torture_read(const char *rcutorturename,
415 			       struct rcu_head *rhp,
416 			       unsigned long secs,
417 			       unsigned long c_old,
418 			       unsigned long c);
419 #else
420 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
421 					  int *flags,
422 					  unsigned long *gpnum,
423 					  unsigned long *completed)
424 {
425 	*flags = 0;
426 	*gpnum = 0;
427 	*completed = 0;
428 }
429 static inline void rcutorture_record_test_transition(void) { }
430 static inline void rcutorture_record_progress(unsigned long vernum) { }
431 #ifdef CONFIG_RCU_TRACE
432 void do_trace_rcu_torture_read(const char *rcutorturename,
433 			       struct rcu_head *rhp,
434 			       unsigned long secs,
435 			       unsigned long c_old,
436 			       unsigned long c);
437 #else
438 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
439 	do { } while (0)
440 #endif
441 #endif
442 
443 #ifdef CONFIG_TINY_SRCU
444 
445 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
446 					   struct srcu_struct *sp, int *flags,
447 					   unsigned long *gpnum,
448 					   unsigned long *completed)
449 {
450 	if (test_type != SRCU_FLAVOR)
451 		return;
452 	*flags = 0;
453 	*completed = sp->srcu_idx;
454 	*gpnum = *completed;
455 }
456 
457 #elif defined(CONFIG_TREE_SRCU)
458 
459 void srcutorture_get_gp_data(enum rcutorture_type test_type,
460 			     struct srcu_struct *sp, int *flags,
461 			     unsigned long *gpnum, unsigned long *completed);
462 
463 #endif
464 
465 #ifdef CONFIG_TINY_RCU
466 static inline unsigned long rcu_batches_started(void) { return 0; }
467 static inline unsigned long rcu_batches_started_bh(void) { return 0; }
468 static inline unsigned long rcu_batches_started_sched(void) { return 0; }
469 static inline unsigned long rcu_batches_completed(void) { return 0; }
470 static inline unsigned long rcu_batches_completed_bh(void) { return 0; }
471 static inline unsigned long rcu_batches_completed_sched(void) { return 0; }
472 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
473 static inline unsigned long rcu_exp_batches_completed_sched(void) { return 0; }
474 static inline unsigned long
475 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
476 static inline void rcu_force_quiescent_state(void) { }
477 static inline void rcu_bh_force_quiescent_state(void) { }
478 static inline void rcu_sched_force_quiescent_state(void) { }
479 static inline void show_rcu_gp_kthreads(void) { }
480 #else /* #ifdef CONFIG_TINY_RCU */
481 extern unsigned long rcutorture_testseq;
482 extern unsigned long rcutorture_vernum;
483 unsigned long rcu_batches_started(void);
484 unsigned long rcu_batches_started_bh(void);
485 unsigned long rcu_batches_started_sched(void);
486 unsigned long rcu_batches_completed(void);
487 unsigned long rcu_batches_completed_bh(void);
488 unsigned long rcu_batches_completed_sched(void);
489 unsigned long rcu_exp_batches_completed(void);
490 unsigned long rcu_exp_batches_completed_sched(void);
491 unsigned long srcu_batches_completed(struct srcu_struct *sp);
492 void show_rcu_gp_kthreads(void);
493 void rcu_force_quiescent_state(void);
494 void rcu_bh_force_quiescent_state(void);
495 void rcu_sched_force_quiescent_state(void);
496 #endif /* #else #ifdef CONFIG_TINY_RCU */
497 
498 #ifdef CONFIG_RCU_NOCB_CPU
499 bool rcu_is_nocb_cpu(int cpu);
500 #else
501 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
502 #endif
503 
504 #endif /* __LINUX_RCU_H */
505