xref: /openbmc/linux/kernel/rcu/rcu.h (revision 5d0e4d78)
1 /*
2  * Read-Copy Update definitions shared among RCU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2011
19  *
20  * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
21  */
22 
23 #ifndef __LINUX_RCU_H
24 #define __LINUX_RCU_H
25 
26 #include <trace/events/rcu.h>
27 #ifdef CONFIG_RCU_TRACE
28 #define RCU_TRACE(stmt) stmt
29 #else /* #ifdef CONFIG_RCU_TRACE */
30 #define RCU_TRACE(stmt)
31 #endif /* #else #ifdef CONFIG_RCU_TRACE */
32 
33 /*
34  * Process-level increment to ->dynticks_nesting field.  This allows for
35  * architectures that use half-interrupts and half-exceptions from
36  * process context.
37  *
38  * DYNTICK_TASK_NEST_MASK defines a field of width DYNTICK_TASK_NEST_WIDTH
39  * that counts the number of process-based reasons why RCU cannot
40  * consider the corresponding CPU to be idle, and DYNTICK_TASK_NEST_VALUE
41  * is the value used to increment or decrement this field.
42  *
43  * The rest of the bits could in principle be used to count interrupts,
44  * but this would mean that a negative-one value in the interrupt
45  * field could incorrectly zero out the DYNTICK_TASK_NEST_MASK field.
46  * We therefore provide a two-bit guard field defined by DYNTICK_TASK_MASK
47  * that is set to DYNTICK_TASK_FLAG upon initial exit from idle.
48  * The DYNTICK_TASK_EXIT_IDLE value is thus the combined value used upon
49  * initial exit from idle.
50  */
51 #define DYNTICK_TASK_NEST_WIDTH 7
52 #define DYNTICK_TASK_NEST_VALUE ((LLONG_MAX >> DYNTICK_TASK_NEST_WIDTH) + 1)
53 #define DYNTICK_TASK_NEST_MASK  (LLONG_MAX - DYNTICK_TASK_NEST_VALUE + 1)
54 #define DYNTICK_TASK_FLAG	   ((DYNTICK_TASK_NEST_VALUE / 8) * 2)
55 #define DYNTICK_TASK_MASK	   ((DYNTICK_TASK_NEST_VALUE / 8) * 3)
56 #define DYNTICK_TASK_EXIT_IDLE	   (DYNTICK_TASK_NEST_VALUE + \
57 				    DYNTICK_TASK_FLAG)
58 
59 
60 /*
61  * Grace-period counter management.
62  */
63 
64 #define RCU_SEQ_CTR_SHIFT	2
65 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
66 
67 /*
68  * Return the counter portion of a sequence number previously returned
69  * by rcu_seq_snap() or rcu_seq_current().
70  */
71 static inline unsigned long rcu_seq_ctr(unsigned long s)
72 {
73 	return s >> RCU_SEQ_CTR_SHIFT;
74 }
75 
76 /*
77  * Return the state portion of a sequence number previously returned
78  * by rcu_seq_snap() or rcu_seq_current().
79  */
80 static inline int rcu_seq_state(unsigned long s)
81 {
82 	return s & RCU_SEQ_STATE_MASK;
83 }
84 
85 /*
86  * Set the state portion of the pointed-to sequence number.
87  * The caller is responsible for preventing conflicting updates.
88  */
89 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
90 {
91 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
92 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
93 }
94 
95 /* Adjust sequence number for start of update-side operation. */
96 static inline void rcu_seq_start(unsigned long *sp)
97 {
98 	WRITE_ONCE(*sp, *sp + 1);
99 	smp_mb(); /* Ensure update-side operation after counter increment. */
100 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
101 }
102 
103 /* Adjust sequence number for end of update-side operation. */
104 static inline void rcu_seq_end(unsigned long *sp)
105 {
106 	smp_mb(); /* Ensure update-side operation before counter increment. */
107 	WARN_ON_ONCE(!rcu_seq_state(*sp));
108 	WRITE_ONCE(*sp, (*sp | RCU_SEQ_STATE_MASK) + 1);
109 }
110 
111 /* Take a snapshot of the update side's sequence number. */
112 static inline unsigned long rcu_seq_snap(unsigned long *sp)
113 {
114 	unsigned long s;
115 
116 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
117 	smp_mb(); /* Above access must not bleed into critical section. */
118 	return s;
119 }
120 
121 /* Return the current value the update side's sequence number, no ordering. */
122 static inline unsigned long rcu_seq_current(unsigned long *sp)
123 {
124 	return READ_ONCE(*sp);
125 }
126 
127 /*
128  * Given a snapshot from rcu_seq_snap(), determine whether or not a
129  * full update-side operation has occurred.
130  */
131 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
132 {
133 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
134 }
135 
136 /*
137  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
138  * by call_rcu() and rcu callback execution, and are therefore not part of the
139  * RCU API. Leaving in rcupdate.h because they are used by all RCU flavors.
140  */
141 
142 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
143 # define STATE_RCU_HEAD_READY	0
144 # define STATE_RCU_HEAD_QUEUED	1
145 
146 extern struct debug_obj_descr rcuhead_debug_descr;
147 
148 static inline int debug_rcu_head_queue(struct rcu_head *head)
149 {
150 	int r1;
151 
152 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
153 	debug_object_active_state(head, &rcuhead_debug_descr,
154 				  STATE_RCU_HEAD_READY,
155 				  STATE_RCU_HEAD_QUEUED);
156 	return r1;
157 }
158 
159 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
160 {
161 	debug_object_active_state(head, &rcuhead_debug_descr,
162 				  STATE_RCU_HEAD_QUEUED,
163 				  STATE_RCU_HEAD_READY);
164 	debug_object_deactivate(head, &rcuhead_debug_descr);
165 }
166 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
167 static inline int debug_rcu_head_queue(struct rcu_head *head)
168 {
169 	return 0;
170 }
171 
172 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
173 {
174 }
175 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
176 
177 void kfree(const void *);
178 
179 /*
180  * Reclaim the specified callback, either by invoking it (non-lazy case)
181  * or freeing it directly (lazy case).  Return true if lazy, false otherwise.
182  */
183 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
184 {
185 	unsigned long offset = (unsigned long)head->func;
186 
187 	rcu_lock_acquire(&rcu_callback_map);
188 	if (__is_kfree_rcu_offset(offset)) {
189 		RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
190 		kfree((void *)head - offset);
191 		rcu_lock_release(&rcu_callback_map);
192 		return true;
193 	} else {
194 		RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
195 		head->func(head);
196 		rcu_lock_release(&rcu_callback_map);
197 		return false;
198 	}
199 }
200 
201 #ifdef CONFIG_RCU_STALL_COMMON
202 
203 extern int rcu_cpu_stall_suppress;
204 int rcu_jiffies_till_stall_check(void);
205 
206 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
207 
208 /*
209  * Strings used in tracepoints need to be exported via the
210  * tracing system such that tools like perf and trace-cmd can
211  * translate the string address pointers to actual text.
212  */
213 #define TPS(x)  tracepoint_string(x)
214 
215 /*
216  * Dump the ftrace buffer, but only one time per callsite per boot.
217  */
218 #define rcu_ftrace_dump(oops_dump_mode) \
219 do { \
220 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
221 	\
222 	if (!atomic_read(&___rfd_beenhere) && \
223 	    !atomic_xchg(&___rfd_beenhere, 1)) \
224 		ftrace_dump(oops_dump_mode); \
225 } while (0)
226 
227 void rcu_early_boot_tests(void);
228 void rcu_test_sync_prims(void);
229 
230 /*
231  * This function really isn't for public consumption, but RCU is special in
232  * that context switches can allow the state machine to make progress.
233  */
234 extern void resched_cpu(int cpu);
235 
236 #if defined(SRCU) || !defined(TINY_RCU)
237 
238 #include <linux/rcu_node_tree.h>
239 
240 extern int rcu_num_lvls;
241 extern int num_rcu_lvl[];
242 extern int rcu_num_nodes;
243 static bool rcu_fanout_exact;
244 static int rcu_fanout_leaf;
245 
246 /*
247  * Compute the per-level fanout, either using the exact fanout specified
248  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
249  */
250 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
251 {
252 	int i;
253 
254 	if (rcu_fanout_exact) {
255 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
256 		for (i = rcu_num_lvls - 2; i >= 0; i--)
257 			levelspread[i] = RCU_FANOUT;
258 	} else {
259 		int ccur;
260 		int cprv;
261 
262 		cprv = nr_cpu_ids;
263 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
264 			ccur = levelcnt[i];
265 			levelspread[i] = (cprv + ccur - 1) / ccur;
266 			cprv = ccur;
267 		}
268 	}
269 }
270 
271 /*
272  * Do a full breadth-first scan of the rcu_node structures for the
273  * specified rcu_state structure.
274  */
275 #define rcu_for_each_node_breadth_first(rsp, rnp) \
276 	for ((rnp) = &(rsp)->node[0]; \
277 	     (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
278 
279 /*
280  * Do a breadth-first scan of the non-leaf rcu_node structures for the
281  * specified rcu_state structure.  Note that if there is a singleton
282  * rcu_node tree with but one rcu_node structure, this loop is a no-op.
283  */
284 #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
285 	for ((rnp) = &(rsp)->node[0]; \
286 	     (rnp) < (rsp)->level[rcu_num_lvls - 1]; (rnp)++)
287 
288 /*
289  * Scan the leaves of the rcu_node hierarchy for the specified rcu_state
290  * structure.  Note that if there is a singleton rcu_node tree with but
291  * one rcu_node structure, this loop -will- visit the rcu_node structure.
292  * It is still a leaf node, even if it is also the root node.
293  */
294 #define rcu_for_each_leaf_node(rsp, rnp) \
295 	for ((rnp) = (rsp)->level[rcu_num_lvls - 1]; \
296 	     (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
297 
298 /*
299  * Iterate over all possible CPUs in a leaf RCU node.
300  */
301 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
302 	for ((cpu) = cpumask_next(rnp->grplo - 1, cpu_possible_mask); \
303 	     cpu <= rnp->grphi; \
304 	     cpu = cpumask_next((cpu), cpu_possible_mask))
305 
306 /*
307  * Wrappers for the rcu_node::lock acquire and release.
308  *
309  * Because the rcu_nodes form a tree, the tree traversal locking will observe
310  * different lock values, this in turn means that an UNLOCK of one level
311  * followed by a LOCK of another level does not imply a full memory barrier;
312  * and most importantly transitivity is lost.
313  *
314  * In order to restore full ordering between tree levels, augment the regular
315  * lock acquire functions with smp_mb__after_unlock_lock().
316  *
317  * As ->lock of struct rcu_node is a __private field, therefore one should use
318  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
319  */
320 #define raw_spin_lock_rcu_node(p)					\
321 do {									\
322 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
323 	smp_mb__after_unlock_lock();					\
324 } while (0)
325 
326 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
327 
328 #define raw_spin_lock_irq_rcu_node(p)					\
329 do {									\
330 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
331 	smp_mb__after_unlock_lock();					\
332 } while (0)
333 
334 #define raw_spin_unlock_irq_rcu_node(p)					\
335 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
336 
337 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
338 do {									\
339 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
340 	smp_mb__after_unlock_lock();					\
341 } while (0)
342 
343 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
344 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
345 
346 #define raw_spin_trylock_rcu_node(p)					\
347 ({									\
348 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
349 									\
350 	if (___locked)							\
351 		smp_mb__after_unlock_lock();				\
352 	___locked;							\
353 })
354 
355 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
356 
357 #ifdef CONFIG_TINY_RCU
358 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
359 static inline bool rcu_gp_is_normal(void)  /* Internal RCU use. */
360 {
361 	return true;
362 }
363 static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
364 {
365 	return false;
366 }
367 
368 static inline void rcu_expedite_gp(void)
369 {
370 }
371 
372 static inline void rcu_unexpedite_gp(void)
373 {
374 }
375 #else /* #ifdef CONFIG_TINY_RCU */
376 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
377 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
378 void rcu_expedite_gp(void);
379 void rcu_unexpedite_gp(void);
380 void rcupdate_announce_bootup_oddness(void);
381 #endif /* #else #ifdef CONFIG_TINY_RCU */
382 
383 #define RCU_SCHEDULER_INACTIVE	0
384 #define RCU_SCHEDULER_INIT	1
385 #define RCU_SCHEDULER_RUNNING	2
386 
387 #ifdef CONFIG_TINY_RCU
388 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
389 #else /* #ifdef CONFIG_TINY_RCU */
390 void rcu_request_urgent_qs_task(struct task_struct *t);
391 #endif /* #else #ifdef CONFIG_TINY_RCU */
392 
393 enum rcutorture_type {
394 	RCU_FLAVOR,
395 	RCU_BH_FLAVOR,
396 	RCU_SCHED_FLAVOR,
397 	RCU_TASKS_FLAVOR,
398 	SRCU_FLAVOR,
399 	INVALID_RCU_FLAVOR
400 };
401 
402 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
403 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
404 			    unsigned long *gpnum, unsigned long *completed);
405 void rcutorture_record_test_transition(void);
406 void rcutorture_record_progress(unsigned long vernum);
407 void do_trace_rcu_torture_read(const char *rcutorturename,
408 			       struct rcu_head *rhp,
409 			       unsigned long secs,
410 			       unsigned long c_old,
411 			       unsigned long c);
412 #else
413 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
414 					  int *flags,
415 					  unsigned long *gpnum,
416 					  unsigned long *completed)
417 {
418 	*flags = 0;
419 	*gpnum = 0;
420 	*completed = 0;
421 }
422 static inline void rcutorture_record_test_transition(void)
423 {
424 }
425 static inline void rcutorture_record_progress(unsigned long vernum)
426 {
427 }
428 #ifdef CONFIG_RCU_TRACE
429 void do_trace_rcu_torture_read(const char *rcutorturename,
430 			       struct rcu_head *rhp,
431 			       unsigned long secs,
432 			       unsigned long c_old,
433 			       unsigned long c);
434 #else
435 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
436 	do { } while (0)
437 #endif
438 #endif
439 
440 #ifdef CONFIG_TINY_SRCU
441 
442 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
443 					   struct srcu_struct *sp, int *flags,
444 					   unsigned long *gpnum,
445 					   unsigned long *completed)
446 {
447 	if (test_type != SRCU_FLAVOR)
448 		return;
449 	*flags = 0;
450 	*completed = sp->srcu_idx;
451 	*gpnum = *completed;
452 }
453 
454 #elif defined(CONFIG_TREE_SRCU)
455 
456 void srcutorture_get_gp_data(enum rcutorture_type test_type,
457 			     struct srcu_struct *sp, int *flags,
458 			     unsigned long *gpnum, unsigned long *completed);
459 
460 #endif
461 
462 #ifdef CONFIG_TINY_RCU
463 
464 /*
465  * Return the number of grace periods started.
466  */
467 static inline unsigned long rcu_batches_started(void)
468 {
469 	return 0;
470 }
471 
472 /*
473  * Return the number of bottom-half grace periods started.
474  */
475 static inline unsigned long rcu_batches_started_bh(void)
476 {
477 	return 0;
478 }
479 
480 /*
481  * Return the number of sched grace periods started.
482  */
483 static inline unsigned long rcu_batches_started_sched(void)
484 {
485 	return 0;
486 }
487 
488 /*
489  * Return the number of grace periods completed.
490  */
491 static inline unsigned long rcu_batches_completed(void)
492 {
493 	return 0;
494 }
495 
496 /*
497  * Return the number of bottom-half grace periods completed.
498  */
499 static inline unsigned long rcu_batches_completed_bh(void)
500 {
501 	return 0;
502 }
503 
504 /*
505  * Return the number of sched grace periods completed.
506  */
507 static inline unsigned long rcu_batches_completed_sched(void)
508 {
509 	return 0;
510 }
511 
512 /*
513  * Return the number of expedited grace periods completed.
514  */
515 static inline unsigned long rcu_exp_batches_completed(void)
516 {
517 	return 0;
518 }
519 
520 /*
521  * Return the number of expedited sched grace periods completed.
522  */
523 static inline unsigned long rcu_exp_batches_completed_sched(void)
524 {
525 	return 0;
526 }
527 
528 static inline unsigned long srcu_batches_completed(struct srcu_struct *sp)
529 {
530 	return 0;
531 }
532 
533 static inline void rcu_force_quiescent_state(void)
534 {
535 }
536 
537 static inline void rcu_bh_force_quiescent_state(void)
538 {
539 }
540 
541 static inline void rcu_sched_force_quiescent_state(void)
542 {
543 }
544 
545 static inline void show_rcu_gp_kthreads(void)
546 {
547 }
548 
549 #else /* #ifdef CONFIG_TINY_RCU */
550 extern unsigned long rcutorture_testseq;
551 extern unsigned long rcutorture_vernum;
552 unsigned long rcu_batches_started(void);
553 unsigned long rcu_batches_started_bh(void);
554 unsigned long rcu_batches_started_sched(void);
555 unsigned long rcu_batches_completed(void);
556 unsigned long rcu_batches_completed_bh(void);
557 unsigned long rcu_batches_completed_sched(void);
558 unsigned long rcu_exp_batches_completed(void);
559 unsigned long rcu_exp_batches_completed_sched(void);
560 unsigned long srcu_batches_completed(struct srcu_struct *sp);
561 void show_rcu_gp_kthreads(void);
562 void rcu_force_quiescent_state(void);
563 void rcu_bh_force_quiescent_state(void);
564 void rcu_sched_force_quiescent_state(void);
565 #endif /* #else #ifdef CONFIG_TINY_RCU */
566 
567 #ifdef CONFIG_RCU_NOCB_CPU
568 bool rcu_is_nocb_cpu(int cpu);
569 #else
570 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
571 #endif
572 
573 #endif /* __LINUX_RCU_H */
574