xref: /openbmc/linux/kernel/rcu/rcu.h (revision 1cac4f26)
1 /*
2  * Read-Copy Update definitions shared among RCU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2011
19  *
20  * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
21  */
22 
23 #ifndef __LINUX_RCU_H
24 #define __LINUX_RCU_H
25 
26 #include <trace/events/rcu.h>
27 #ifdef CONFIG_RCU_TRACE
28 #define RCU_TRACE(stmt) stmt
29 #else /* #ifdef CONFIG_RCU_TRACE */
30 #define RCU_TRACE(stmt)
31 #endif /* #else #ifdef CONFIG_RCU_TRACE */
32 
33 /* Offset to allow for unmatched rcu_irq_{enter,exit}(). */
34 #define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
35 
36 
37 /*
38  * Grace-period counter management.
39  */
40 
41 #define RCU_SEQ_CTR_SHIFT	2
42 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
43 
44 /*
45  * Return the counter portion of a sequence number previously returned
46  * by rcu_seq_snap() or rcu_seq_current().
47  */
48 static inline unsigned long rcu_seq_ctr(unsigned long s)
49 {
50 	return s >> RCU_SEQ_CTR_SHIFT;
51 }
52 
53 /*
54  * Return the state portion of a sequence number previously returned
55  * by rcu_seq_snap() or rcu_seq_current().
56  */
57 static inline int rcu_seq_state(unsigned long s)
58 {
59 	return s & RCU_SEQ_STATE_MASK;
60 }
61 
62 /*
63  * Set the state portion of the pointed-to sequence number.
64  * The caller is responsible for preventing conflicting updates.
65  */
66 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
67 {
68 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
69 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
70 }
71 
72 /* Adjust sequence number for start of update-side operation. */
73 static inline void rcu_seq_start(unsigned long *sp)
74 {
75 	WRITE_ONCE(*sp, *sp + 1);
76 	smp_mb(); /* Ensure update-side operation after counter increment. */
77 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
78 }
79 
80 /* Compute the end-of-grace-period value for the specified sequence number. */
81 static inline unsigned long rcu_seq_endval(unsigned long *sp)
82 {
83 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
84 }
85 
86 /* Adjust sequence number for end of update-side operation. */
87 static inline void rcu_seq_end(unsigned long *sp)
88 {
89 	smp_mb(); /* Ensure update-side operation before counter increment. */
90 	WARN_ON_ONCE(!rcu_seq_state(*sp));
91 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
92 }
93 
94 /*
95  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
96  *
97  * This function returns the earliest value of the grace-period sequence number
98  * that will indicate that a full grace period has elapsed since the current
99  * time.  Once the grace-period sequence number has reached this value, it will
100  * be safe to invoke all callbacks that have been registered prior to the
101  * current time. This value is the current grace-period number plus two to the
102  * power of the number of low-order bits reserved for state, then rounded up to
103  * the next value in which the state bits are all zero.
104  */
105 static inline unsigned long rcu_seq_snap(unsigned long *sp)
106 {
107 	unsigned long s;
108 
109 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
110 	smp_mb(); /* Above access must not bleed into critical section. */
111 	return s;
112 }
113 
114 /* Return the current value the update side's sequence number, no ordering. */
115 static inline unsigned long rcu_seq_current(unsigned long *sp)
116 {
117 	return READ_ONCE(*sp);
118 }
119 
120 /*
121  * Given a snapshot from rcu_seq_snap(), determine whether or not the
122  * corresponding update-side operation has started.
123  */
124 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
125 {
126 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
127 }
128 
129 /*
130  * Given a snapshot from rcu_seq_snap(), determine whether or not a
131  * full update-side operation has occurred.
132  */
133 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
134 {
135 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
136 }
137 
138 /*
139  * Has a grace period completed since the time the old gp_seq was collected?
140  */
141 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
142 {
143 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
144 }
145 
146 /*
147  * Has a grace period started since the time the old gp_seq was collected?
148  */
149 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
150 {
151 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
152 			    new);
153 }
154 
155 /*
156  * Roughly how many full grace periods have elapsed between the collection
157  * of the two specified grace periods?
158  */
159 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
160 {
161 	unsigned long rnd_diff;
162 
163 	if (old == new)
164 		return 0;
165 	/*
166 	 * Compute the number of grace periods (still shifted up), plus
167 	 * one if either of new and old is not an exact grace period.
168 	 */
169 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
170 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
171 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
172 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
173 		return 1; /* Definitely no grace period has elapsed. */
174 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
175 }
176 
177 /*
178  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
179  * by call_rcu() and rcu callback execution, and are therefore not part
180  * of the RCU API. These are in rcupdate.h because they are used by all
181  * RCU implementations.
182  */
183 
184 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
185 # define STATE_RCU_HEAD_READY	0
186 # define STATE_RCU_HEAD_QUEUED	1
187 
188 extern struct debug_obj_descr rcuhead_debug_descr;
189 
190 static inline int debug_rcu_head_queue(struct rcu_head *head)
191 {
192 	int r1;
193 
194 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
195 	debug_object_active_state(head, &rcuhead_debug_descr,
196 				  STATE_RCU_HEAD_READY,
197 				  STATE_RCU_HEAD_QUEUED);
198 	return r1;
199 }
200 
201 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
202 {
203 	debug_object_active_state(head, &rcuhead_debug_descr,
204 				  STATE_RCU_HEAD_QUEUED,
205 				  STATE_RCU_HEAD_READY);
206 	debug_object_deactivate(head, &rcuhead_debug_descr);
207 }
208 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
209 static inline int debug_rcu_head_queue(struct rcu_head *head)
210 {
211 	return 0;
212 }
213 
214 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
215 {
216 }
217 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
218 
219 void kfree(const void *);
220 
221 /*
222  * Reclaim the specified callback, either by invoking it (non-lazy case)
223  * or freeing it directly (lazy case).  Return true if lazy, false otherwise.
224  */
225 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
226 {
227 	rcu_callback_t f;
228 	unsigned long offset = (unsigned long)head->func;
229 
230 	rcu_lock_acquire(&rcu_callback_map);
231 	if (__is_kfree_rcu_offset(offset)) {
232 		RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
233 		kfree((void *)head - offset);
234 		rcu_lock_release(&rcu_callback_map);
235 		return true;
236 	} else {
237 		RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
238 		f = head->func;
239 		WRITE_ONCE(head->func, (rcu_callback_t)0L);
240 		f(head);
241 		rcu_lock_release(&rcu_callback_map);
242 		return false;
243 	}
244 }
245 
246 #ifdef CONFIG_RCU_STALL_COMMON
247 
248 extern int rcu_cpu_stall_suppress;
249 int rcu_jiffies_till_stall_check(void);
250 
251 #define rcu_ftrace_dump_stall_suppress() \
252 do { \
253 	if (!rcu_cpu_stall_suppress) \
254 		rcu_cpu_stall_suppress = 3; \
255 } while (0)
256 
257 #define rcu_ftrace_dump_stall_unsuppress() \
258 do { \
259 	if (rcu_cpu_stall_suppress == 3) \
260 		rcu_cpu_stall_suppress = 0; \
261 } while (0)
262 
263 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
264 #define rcu_ftrace_dump_stall_suppress()
265 #define rcu_ftrace_dump_stall_unsuppress()
266 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
267 
268 /*
269  * Strings used in tracepoints need to be exported via the
270  * tracing system such that tools like perf and trace-cmd can
271  * translate the string address pointers to actual text.
272  */
273 #define TPS(x)  tracepoint_string(x)
274 
275 /*
276  * Dump the ftrace buffer, but only one time per callsite per boot.
277  */
278 #define rcu_ftrace_dump(oops_dump_mode) \
279 do { \
280 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
281 	\
282 	if (!atomic_read(&___rfd_beenhere) && \
283 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
284 		tracing_off(); \
285 		rcu_ftrace_dump_stall_suppress(); \
286 		ftrace_dump(oops_dump_mode); \
287 		rcu_ftrace_dump_stall_unsuppress(); \
288 	} \
289 } while (0)
290 
291 void rcu_early_boot_tests(void);
292 void rcu_test_sync_prims(void);
293 
294 /*
295  * This function really isn't for public consumption, but RCU is special in
296  * that context switches can allow the state machine to make progress.
297  */
298 extern void resched_cpu(int cpu);
299 
300 #if defined(SRCU) || !defined(TINY_RCU)
301 
302 #include <linux/rcu_node_tree.h>
303 
304 extern int rcu_num_lvls;
305 extern int num_rcu_lvl[];
306 extern int rcu_num_nodes;
307 static bool rcu_fanout_exact;
308 static int rcu_fanout_leaf;
309 
310 /*
311  * Compute the per-level fanout, either using the exact fanout specified
312  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
313  */
314 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
315 {
316 	int i;
317 
318 	if (rcu_fanout_exact) {
319 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
320 		for (i = rcu_num_lvls - 2; i >= 0; i--)
321 			levelspread[i] = RCU_FANOUT;
322 	} else {
323 		int ccur;
324 		int cprv;
325 
326 		cprv = nr_cpu_ids;
327 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
328 			ccur = levelcnt[i];
329 			levelspread[i] = (cprv + ccur - 1) / ccur;
330 			cprv = ccur;
331 		}
332 	}
333 }
334 
335 /* Returns a pointer to the first leaf rcu_node structure. */
336 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
337 
338 /* Is this rcu_node a leaf? */
339 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
340 
341 /* Is this rcu_node the last leaf? */
342 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
343 
344 /*
345  * Do a full breadth-first scan of the {s,}rcu_node structures for the
346  * specified state structure (for SRCU) or the only rcu_state structure
347  * (for RCU).
348  */
349 #define srcu_for_each_node_breadth_first(sp, rnp) \
350 	for ((rnp) = &(sp)->node[0]; \
351 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
352 #define rcu_for_each_node_breadth_first(rnp) \
353 	srcu_for_each_node_breadth_first(&rcu_state, rnp)
354 
355 /*
356  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
357  * Note that if there is a singleton rcu_node tree with but one rcu_node
358  * structure, this loop -will- visit the rcu_node structure.  It is still
359  * a leaf node, even if it is also the root node.
360  */
361 #define rcu_for_each_leaf_node(rnp) \
362 	for ((rnp) = rcu_first_leaf_node(); \
363 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
364 
365 /*
366  * Iterate over all possible CPUs in a leaf RCU node.
367  */
368 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
369 	for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
370 	     (cpu) <= rnp->grphi; \
371 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
372 
373 /*
374  * Iterate over all CPUs in a leaf RCU node's specified mask.
375  */
376 #define rcu_find_next_bit(rnp, cpu, mask) \
377 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
378 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
379 	for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
380 	     (cpu) <= rnp->grphi; \
381 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
382 
383 /*
384  * Wrappers for the rcu_node::lock acquire and release.
385  *
386  * Because the rcu_nodes form a tree, the tree traversal locking will observe
387  * different lock values, this in turn means that an UNLOCK of one level
388  * followed by a LOCK of another level does not imply a full memory barrier;
389  * and most importantly transitivity is lost.
390  *
391  * In order to restore full ordering between tree levels, augment the regular
392  * lock acquire functions with smp_mb__after_unlock_lock().
393  *
394  * As ->lock of struct rcu_node is a __private field, therefore one should use
395  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
396  */
397 #define raw_spin_lock_rcu_node(p)					\
398 do {									\
399 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
400 	smp_mb__after_unlock_lock();					\
401 } while (0)
402 
403 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
404 
405 #define raw_spin_lock_irq_rcu_node(p)					\
406 do {									\
407 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
408 	smp_mb__after_unlock_lock();					\
409 } while (0)
410 
411 #define raw_spin_unlock_irq_rcu_node(p)					\
412 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
413 
414 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
415 do {									\
416 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
417 	smp_mb__after_unlock_lock();					\
418 } while (0)
419 
420 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
421 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
422 
423 #define raw_spin_trylock_rcu_node(p)					\
424 ({									\
425 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
426 									\
427 	if (___locked)							\
428 		smp_mb__after_unlock_lock();				\
429 	___locked;							\
430 })
431 
432 #define raw_lockdep_assert_held_rcu_node(p)				\
433 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
434 
435 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
436 
437 #ifdef CONFIG_SRCU
438 void srcu_init(void);
439 #else /* #ifdef CONFIG_SRCU */
440 static inline void srcu_init(void) { }
441 #endif /* #else #ifdef CONFIG_SRCU */
442 
443 #ifdef CONFIG_TINY_RCU
444 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
445 static inline bool rcu_gp_is_normal(void) { return true; }
446 static inline bool rcu_gp_is_expedited(void) { return false; }
447 static inline void rcu_expedite_gp(void) { }
448 static inline void rcu_unexpedite_gp(void) { }
449 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
450 #else /* #ifdef CONFIG_TINY_RCU */
451 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
452 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
453 void rcu_expedite_gp(void);
454 void rcu_unexpedite_gp(void);
455 void rcupdate_announce_bootup_oddness(void);
456 void rcu_request_urgent_qs_task(struct task_struct *t);
457 #endif /* #else #ifdef CONFIG_TINY_RCU */
458 
459 #define RCU_SCHEDULER_INACTIVE	0
460 #define RCU_SCHEDULER_INIT	1
461 #define RCU_SCHEDULER_RUNNING	2
462 
463 enum rcutorture_type {
464 	RCU_FLAVOR,
465 	RCU_BH_FLAVOR,
466 	RCU_SCHED_FLAVOR,
467 	RCU_TASKS_FLAVOR,
468 	SRCU_FLAVOR,
469 	INVALID_RCU_FLAVOR
470 };
471 
472 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
473 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
474 			    unsigned long *gp_seq);
475 void rcutorture_record_progress(unsigned long vernum);
476 void do_trace_rcu_torture_read(const char *rcutorturename,
477 			       struct rcu_head *rhp,
478 			       unsigned long secs,
479 			       unsigned long c_old,
480 			       unsigned long c);
481 #else
482 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
483 					  int *flags, unsigned long *gp_seq)
484 {
485 	*flags = 0;
486 	*gp_seq = 0;
487 }
488 static inline void rcutorture_record_progress(unsigned long vernum) { }
489 #ifdef CONFIG_RCU_TRACE
490 void do_trace_rcu_torture_read(const char *rcutorturename,
491 			       struct rcu_head *rhp,
492 			       unsigned long secs,
493 			       unsigned long c_old,
494 			       unsigned long c);
495 #else
496 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
497 	do { } while (0)
498 #endif
499 #endif
500 
501 #ifdef CONFIG_TINY_SRCU
502 
503 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
504 					   struct srcu_struct *sp, int *flags,
505 					   unsigned long *gp_seq)
506 {
507 	if (test_type != SRCU_FLAVOR)
508 		return;
509 	*flags = 0;
510 	*gp_seq = sp->srcu_idx;
511 }
512 
513 #elif defined(CONFIG_TREE_SRCU)
514 
515 void srcutorture_get_gp_data(enum rcutorture_type test_type,
516 			     struct srcu_struct *sp, int *flags,
517 			     unsigned long *gp_seq);
518 
519 #endif
520 
521 #ifdef CONFIG_TINY_RCU
522 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
523 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
524 static inline unsigned long
525 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
526 static inline void rcu_force_quiescent_state(void) { }
527 static inline void show_rcu_gp_kthreads(void) { }
528 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
529 static inline void rcu_fwd_progress_check(unsigned long j) { }
530 #else /* #ifdef CONFIG_TINY_RCU */
531 unsigned long rcu_get_gp_seq(void);
532 unsigned long rcu_exp_batches_completed(void);
533 unsigned long srcu_batches_completed(struct srcu_struct *sp);
534 void show_rcu_gp_kthreads(void);
535 int rcu_get_gp_kthreads_prio(void);
536 void rcu_fwd_progress_check(unsigned long j);
537 void rcu_force_quiescent_state(void);
538 extern struct workqueue_struct *rcu_gp_wq;
539 extern struct workqueue_struct *rcu_par_gp_wq;
540 #endif /* #else #ifdef CONFIG_TINY_RCU */
541 
542 #ifdef CONFIG_RCU_NOCB_CPU
543 bool rcu_is_nocb_cpu(int cpu);
544 void rcu_bind_current_to_nocb(void);
545 #else
546 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
547 static inline void rcu_bind_current_to_nocb(void) { }
548 #endif
549 
550 #endif /* __LINUX_RCU_H */
551