xref: /openbmc/linux/kernel/rcu/rcu.h (revision 0be3ff0c)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12 
13 #include <trace/events/rcu.h>
14 
15 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
16 #define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
17 
18 
19 /*
20  * Grace-period counter management.
21  */
22 
23 #define RCU_SEQ_CTR_SHIFT	2
24 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
25 
26 /*
27  * Return the counter portion of a sequence number previously returned
28  * by rcu_seq_snap() or rcu_seq_current().
29  */
30 static inline unsigned long rcu_seq_ctr(unsigned long s)
31 {
32 	return s >> RCU_SEQ_CTR_SHIFT;
33 }
34 
35 /*
36  * Return the state portion of a sequence number previously returned
37  * by rcu_seq_snap() or rcu_seq_current().
38  */
39 static inline int rcu_seq_state(unsigned long s)
40 {
41 	return s & RCU_SEQ_STATE_MASK;
42 }
43 
44 /*
45  * Set the state portion of the pointed-to sequence number.
46  * The caller is responsible for preventing conflicting updates.
47  */
48 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
49 {
50 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
51 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
52 }
53 
54 /* Adjust sequence number for start of update-side operation. */
55 static inline void rcu_seq_start(unsigned long *sp)
56 {
57 	WRITE_ONCE(*sp, *sp + 1);
58 	smp_mb(); /* Ensure update-side operation after counter increment. */
59 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
60 }
61 
62 /* Compute the end-of-grace-period value for the specified sequence number. */
63 static inline unsigned long rcu_seq_endval(unsigned long *sp)
64 {
65 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
66 }
67 
68 /* Adjust sequence number for end of update-side operation. */
69 static inline void rcu_seq_end(unsigned long *sp)
70 {
71 	smp_mb(); /* Ensure update-side operation before counter increment. */
72 	WARN_ON_ONCE(!rcu_seq_state(*sp));
73 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
74 }
75 
76 /*
77  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
78  *
79  * This function returns the earliest value of the grace-period sequence number
80  * that will indicate that a full grace period has elapsed since the current
81  * time.  Once the grace-period sequence number has reached this value, it will
82  * be safe to invoke all callbacks that have been registered prior to the
83  * current time. This value is the current grace-period number plus two to the
84  * power of the number of low-order bits reserved for state, then rounded up to
85  * the next value in which the state bits are all zero.
86  */
87 static inline unsigned long rcu_seq_snap(unsigned long *sp)
88 {
89 	unsigned long s;
90 
91 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
92 	smp_mb(); /* Above access must not bleed into critical section. */
93 	return s;
94 }
95 
96 /* Return the current value the update side's sequence number, no ordering. */
97 static inline unsigned long rcu_seq_current(unsigned long *sp)
98 {
99 	return READ_ONCE(*sp);
100 }
101 
102 /*
103  * Given a snapshot from rcu_seq_snap(), determine whether or not the
104  * corresponding update-side operation has started.
105  */
106 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
107 {
108 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
109 }
110 
111 /*
112  * Given a snapshot from rcu_seq_snap(), determine whether or not a
113  * full update-side operation has occurred.
114  */
115 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
116 {
117 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
118 }
119 
120 /*
121  * Has a grace period completed since the time the old gp_seq was collected?
122  */
123 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
124 {
125 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
126 }
127 
128 /*
129  * Has a grace period started since the time the old gp_seq was collected?
130  */
131 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
132 {
133 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
134 			    new);
135 }
136 
137 /*
138  * Roughly how many full grace periods have elapsed between the collection
139  * of the two specified grace periods?
140  */
141 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
142 {
143 	unsigned long rnd_diff;
144 
145 	if (old == new)
146 		return 0;
147 	/*
148 	 * Compute the number of grace periods (still shifted up), plus
149 	 * one if either of new and old is not an exact grace period.
150 	 */
151 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
152 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
153 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
154 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
155 		return 1; /* Definitely no grace period has elapsed. */
156 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
157 }
158 
159 /*
160  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
161  * by call_rcu() and rcu callback execution, and are therefore not part
162  * of the RCU API. These are in rcupdate.h because they are used by all
163  * RCU implementations.
164  */
165 
166 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
167 # define STATE_RCU_HEAD_READY	0
168 # define STATE_RCU_HEAD_QUEUED	1
169 
170 extern const struct debug_obj_descr rcuhead_debug_descr;
171 
172 static inline int debug_rcu_head_queue(struct rcu_head *head)
173 {
174 	int r1;
175 
176 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
177 	debug_object_active_state(head, &rcuhead_debug_descr,
178 				  STATE_RCU_HEAD_READY,
179 				  STATE_RCU_HEAD_QUEUED);
180 	return r1;
181 }
182 
183 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
184 {
185 	debug_object_active_state(head, &rcuhead_debug_descr,
186 				  STATE_RCU_HEAD_QUEUED,
187 				  STATE_RCU_HEAD_READY);
188 	debug_object_deactivate(head, &rcuhead_debug_descr);
189 }
190 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
191 static inline int debug_rcu_head_queue(struct rcu_head *head)
192 {
193 	return 0;
194 }
195 
196 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
197 {
198 }
199 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
200 
201 extern int rcu_cpu_stall_suppress_at_boot;
202 
203 static inline bool rcu_stall_is_suppressed_at_boot(void)
204 {
205 	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
206 }
207 
208 #ifdef CONFIG_RCU_STALL_COMMON
209 
210 extern int rcu_cpu_stall_ftrace_dump;
211 extern int rcu_cpu_stall_suppress;
212 extern int rcu_cpu_stall_timeout;
213 extern int rcu_exp_cpu_stall_timeout;
214 int rcu_jiffies_till_stall_check(void);
215 int rcu_exp_jiffies_till_stall_check(void);
216 
217 static inline bool rcu_stall_is_suppressed(void)
218 {
219 	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
220 }
221 
222 #define rcu_ftrace_dump_stall_suppress() \
223 do { \
224 	if (!rcu_cpu_stall_suppress) \
225 		rcu_cpu_stall_suppress = 3; \
226 } while (0)
227 
228 #define rcu_ftrace_dump_stall_unsuppress() \
229 do { \
230 	if (rcu_cpu_stall_suppress == 3) \
231 		rcu_cpu_stall_suppress = 0; \
232 } while (0)
233 
234 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
235 
236 static inline bool rcu_stall_is_suppressed(void)
237 {
238 	return rcu_stall_is_suppressed_at_boot();
239 }
240 #define rcu_ftrace_dump_stall_suppress()
241 #define rcu_ftrace_dump_stall_unsuppress()
242 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
243 
244 /*
245  * Strings used in tracepoints need to be exported via the
246  * tracing system such that tools like perf and trace-cmd can
247  * translate the string address pointers to actual text.
248  */
249 #define TPS(x)  tracepoint_string(x)
250 
251 /*
252  * Dump the ftrace buffer, but only one time per callsite per boot.
253  */
254 #define rcu_ftrace_dump(oops_dump_mode) \
255 do { \
256 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
257 	\
258 	if (!atomic_read(&___rfd_beenhere) && \
259 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
260 		tracing_off(); \
261 		rcu_ftrace_dump_stall_suppress(); \
262 		ftrace_dump(oops_dump_mode); \
263 		rcu_ftrace_dump_stall_unsuppress(); \
264 	} \
265 } while (0)
266 
267 void rcu_early_boot_tests(void);
268 void rcu_test_sync_prims(void);
269 
270 /*
271  * This function really isn't for public consumption, but RCU is special in
272  * that context switches can allow the state machine to make progress.
273  */
274 extern void resched_cpu(int cpu);
275 
276 #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU)
277 
278 #include <linux/rcu_node_tree.h>
279 
280 extern int rcu_num_lvls;
281 extern int num_rcu_lvl[];
282 extern int rcu_num_nodes;
283 static bool rcu_fanout_exact;
284 static int rcu_fanout_leaf;
285 
286 /*
287  * Compute the per-level fanout, either using the exact fanout specified
288  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
289  */
290 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
291 {
292 	int i;
293 
294 	for (i = 0; i < RCU_NUM_LVLS; i++)
295 		levelspread[i] = INT_MIN;
296 	if (rcu_fanout_exact) {
297 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
298 		for (i = rcu_num_lvls - 2; i >= 0; i--)
299 			levelspread[i] = RCU_FANOUT;
300 	} else {
301 		int ccur;
302 		int cprv;
303 
304 		cprv = nr_cpu_ids;
305 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
306 			ccur = levelcnt[i];
307 			levelspread[i] = (cprv + ccur - 1) / ccur;
308 			cprv = ccur;
309 		}
310 	}
311 }
312 
313 extern void rcu_init_geometry(void);
314 
315 /* Returns a pointer to the first leaf rcu_node structure. */
316 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
317 
318 /* Is this rcu_node a leaf? */
319 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
320 
321 /* Is this rcu_node the last leaf? */
322 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
323 
324 /*
325  * Do a full breadth-first scan of the {s,}rcu_node structures for the
326  * specified state structure (for SRCU) or the only rcu_state structure
327  * (for RCU).
328  */
329 #define srcu_for_each_node_breadth_first(sp, rnp) \
330 	for ((rnp) = &(sp)->node[0]; \
331 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
332 #define rcu_for_each_node_breadth_first(rnp) \
333 	srcu_for_each_node_breadth_first(&rcu_state, rnp)
334 
335 /*
336  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
337  * Note that if there is a singleton rcu_node tree with but one rcu_node
338  * structure, this loop -will- visit the rcu_node structure.  It is still
339  * a leaf node, even if it is also the root node.
340  */
341 #define rcu_for_each_leaf_node(rnp) \
342 	for ((rnp) = rcu_first_leaf_node(); \
343 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
344 
345 /*
346  * Iterate over all possible CPUs in a leaf RCU node.
347  */
348 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
349 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
350 	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
351 	     (cpu) <= rnp->grphi; \
352 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
353 
354 /*
355  * Iterate over all CPUs in a leaf RCU node's specified mask.
356  */
357 #define rcu_find_next_bit(rnp, cpu, mask) \
358 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
359 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
360 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
361 	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
362 	     (cpu) <= rnp->grphi; \
363 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
364 
365 /*
366  * Wrappers for the rcu_node::lock acquire and release.
367  *
368  * Because the rcu_nodes form a tree, the tree traversal locking will observe
369  * different lock values, this in turn means that an UNLOCK of one level
370  * followed by a LOCK of another level does not imply a full memory barrier;
371  * and most importantly transitivity is lost.
372  *
373  * In order to restore full ordering between tree levels, augment the regular
374  * lock acquire functions with smp_mb__after_unlock_lock().
375  *
376  * As ->lock of struct rcu_node is a __private field, therefore one should use
377  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
378  */
379 #define raw_spin_lock_rcu_node(p)					\
380 do {									\
381 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
382 	smp_mb__after_unlock_lock();					\
383 } while (0)
384 
385 #define raw_spin_unlock_rcu_node(p)					\
386 do {									\
387 	lockdep_assert_irqs_disabled();					\
388 	raw_spin_unlock(&ACCESS_PRIVATE(p, lock));			\
389 } while (0)
390 
391 #define raw_spin_lock_irq_rcu_node(p)					\
392 do {									\
393 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
394 	smp_mb__after_unlock_lock();					\
395 } while (0)
396 
397 #define raw_spin_unlock_irq_rcu_node(p)					\
398 do {									\
399 	lockdep_assert_irqs_disabled();					\
400 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock));			\
401 } while (0)
402 
403 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
404 do {									\
405 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
406 	smp_mb__after_unlock_lock();					\
407 } while (0)
408 
409 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
410 do {									\
411 	lockdep_assert_irqs_disabled();					\
412 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags);	\
413 } while (0)
414 
415 #define raw_spin_trylock_rcu_node(p)					\
416 ({									\
417 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
418 									\
419 	if (___locked)							\
420 		smp_mb__after_unlock_lock();				\
421 	___locked;							\
422 })
423 
424 #define raw_lockdep_assert_held_rcu_node(p)				\
425 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
426 
427 #endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */
428 
429 #ifdef CONFIG_TINY_RCU
430 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
431 static inline bool rcu_gp_is_normal(void) { return true; }
432 static inline bool rcu_gp_is_expedited(void) { return false; }
433 static inline void rcu_expedite_gp(void) { }
434 static inline void rcu_unexpedite_gp(void) { }
435 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
436 #else /* #ifdef CONFIG_TINY_RCU */
437 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
438 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
439 void rcu_expedite_gp(void);
440 void rcu_unexpedite_gp(void);
441 void rcupdate_announce_bootup_oddness(void);
442 #ifdef CONFIG_TASKS_RCU_GENERIC
443 void show_rcu_tasks_gp_kthreads(void);
444 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
445 static inline void show_rcu_tasks_gp_kthreads(void) {}
446 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
447 void rcu_request_urgent_qs_task(struct task_struct *t);
448 #endif /* #else #ifdef CONFIG_TINY_RCU */
449 
450 #define RCU_SCHEDULER_INACTIVE	0
451 #define RCU_SCHEDULER_INIT	1
452 #define RCU_SCHEDULER_RUNNING	2
453 
454 enum rcutorture_type {
455 	RCU_FLAVOR,
456 	RCU_TASKS_FLAVOR,
457 	RCU_TASKS_RUDE_FLAVOR,
458 	RCU_TASKS_TRACING_FLAVOR,
459 	RCU_TRIVIAL_FLAVOR,
460 	SRCU_FLAVOR,
461 	INVALID_RCU_FLAVOR
462 };
463 
464 #if defined(CONFIG_TREE_RCU)
465 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
466 			    unsigned long *gp_seq);
467 void do_trace_rcu_torture_read(const char *rcutorturename,
468 			       struct rcu_head *rhp,
469 			       unsigned long secs,
470 			       unsigned long c_old,
471 			       unsigned long c);
472 void rcu_gp_set_torture_wait(int duration);
473 #else
474 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
475 					  int *flags, unsigned long *gp_seq)
476 {
477 	*flags = 0;
478 	*gp_seq = 0;
479 }
480 #ifdef CONFIG_RCU_TRACE
481 void do_trace_rcu_torture_read(const char *rcutorturename,
482 			       struct rcu_head *rhp,
483 			       unsigned long secs,
484 			       unsigned long c_old,
485 			       unsigned long c);
486 #else
487 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
488 	do { } while (0)
489 #endif
490 static inline void rcu_gp_set_torture_wait(int duration) { }
491 #endif
492 
493 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
494 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
495 #endif
496 
497 #ifdef CONFIG_TINY_SRCU
498 
499 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
500 					   struct srcu_struct *sp, int *flags,
501 					   unsigned long *gp_seq)
502 {
503 	if (test_type != SRCU_FLAVOR)
504 		return;
505 	*flags = 0;
506 	*gp_seq = sp->srcu_idx;
507 }
508 
509 #elif defined(CONFIG_TREE_SRCU)
510 
511 void srcutorture_get_gp_data(enum rcutorture_type test_type,
512 			     struct srcu_struct *sp, int *flags,
513 			     unsigned long *gp_seq);
514 
515 #endif
516 
517 #ifdef CONFIG_TINY_RCU
518 static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
519 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
520 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
521 static inline unsigned long
522 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
523 static inline void rcu_force_quiescent_state(void) { }
524 static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
525 static inline void show_rcu_gp_kthreads(void) { }
526 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
527 static inline void rcu_fwd_progress_check(unsigned long j) { }
528 static inline void rcu_gp_slow_register(atomic_t *rgssp) { }
529 static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { }
530 #else /* #ifdef CONFIG_TINY_RCU */
531 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
532 unsigned long rcu_get_gp_seq(void);
533 unsigned long rcu_exp_batches_completed(void);
534 unsigned long srcu_batches_completed(struct srcu_struct *sp);
535 bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
536 void show_rcu_gp_kthreads(void);
537 int rcu_get_gp_kthreads_prio(void);
538 void rcu_fwd_progress_check(unsigned long j);
539 void rcu_force_quiescent_state(void);
540 extern struct workqueue_struct *rcu_gp_wq;
541 #ifdef CONFIG_RCU_EXP_KTHREAD
542 extern struct kthread_worker *rcu_exp_gp_kworker;
543 extern struct kthread_worker *rcu_exp_par_gp_kworker;
544 #else /* !CONFIG_RCU_EXP_KTHREAD */
545 extern struct workqueue_struct *rcu_par_gp_wq;
546 #endif /* CONFIG_RCU_EXP_KTHREAD */
547 void rcu_gp_slow_register(atomic_t *rgssp);
548 void rcu_gp_slow_unregister(atomic_t *rgssp);
549 #endif /* #else #ifdef CONFIG_TINY_RCU */
550 
551 #ifdef CONFIG_RCU_NOCB_CPU
552 void rcu_bind_current_to_nocb(void);
553 #else
554 static inline void rcu_bind_current_to_nocb(void) { }
555 #endif
556 
557 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
558 void show_rcu_tasks_classic_gp_kthread(void);
559 #else
560 static inline void show_rcu_tasks_classic_gp_kthread(void) {}
561 #endif
562 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
563 void show_rcu_tasks_rude_gp_kthread(void);
564 #else
565 static inline void show_rcu_tasks_rude_gp_kthread(void) {}
566 #endif
567 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
568 void show_rcu_tasks_trace_gp_kthread(void);
569 #else
570 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
571 #endif
572 
573 #endif /* __LINUX_RCU_H */
574