xref: /openbmc/linux/kernel/ptrace.c (revision ccb01374)
1 /*
2  * linux/kernel/ptrace.c
3  *
4  * (C) Copyright 1999 Linus Torvalds
5  *
6  * Common interfaces for "ptrace()" which we do not want
7  * to continually duplicate across every architecture.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/coredump.h>
15 #include <linux/sched/task.h>
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/pagemap.h>
20 #include <linux/ptrace.h>
21 #include <linux/security.h>
22 #include <linux/signal.h>
23 #include <linux/uio.h>
24 #include <linux/audit.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/syscalls.h>
27 #include <linux/uaccess.h>
28 #include <linux/regset.h>
29 #include <linux/hw_breakpoint.h>
30 #include <linux/cn_proc.h>
31 #include <linux/compat.h>
32 
33 /*
34  * Access another process' address space via ptrace.
35  * Source/target buffer must be kernel space,
36  * Do not walk the page table directly, use get_user_pages
37  */
38 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
39 		     void *buf, int len, unsigned int gup_flags)
40 {
41 	struct mm_struct *mm;
42 	int ret;
43 
44 	mm = get_task_mm(tsk);
45 	if (!mm)
46 		return 0;
47 
48 	if (!tsk->ptrace ||
49 	    (current != tsk->parent) ||
50 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
51 	     !ptracer_capable(tsk, mm->user_ns))) {
52 		mmput(mm);
53 		return 0;
54 	}
55 
56 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
57 	mmput(mm);
58 
59 	return ret;
60 }
61 
62 
63 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent,
64 		   const struct cred *ptracer_cred)
65 {
66 	BUG_ON(!list_empty(&child->ptrace_entry));
67 	list_add(&child->ptrace_entry, &new_parent->ptraced);
68 	child->parent = new_parent;
69 	child->ptracer_cred = get_cred(ptracer_cred);
70 }
71 
72 /*
73  * ptrace a task: make the debugger its new parent and
74  * move it to the ptrace list.
75  *
76  * Must be called with the tasklist lock write-held.
77  */
78 static void ptrace_link(struct task_struct *child, struct task_struct *new_parent)
79 {
80 	rcu_read_lock();
81 	__ptrace_link(child, new_parent, __task_cred(new_parent));
82 	rcu_read_unlock();
83 }
84 
85 /**
86  * __ptrace_unlink - unlink ptracee and restore its execution state
87  * @child: ptracee to be unlinked
88  *
89  * Remove @child from the ptrace list, move it back to the original parent,
90  * and restore the execution state so that it conforms to the group stop
91  * state.
92  *
93  * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
94  * exiting.  For PTRACE_DETACH, unless the ptracee has been killed between
95  * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
96  * If the ptracer is exiting, the ptracee can be in any state.
97  *
98  * After detach, the ptracee should be in a state which conforms to the
99  * group stop.  If the group is stopped or in the process of stopping, the
100  * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
101  * up from TASK_TRACED.
102  *
103  * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
104  * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
105  * to but in the opposite direction of what happens while attaching to a
106  * stopped task.  However, in this direction, the intermediate RUNNING
107  * state is not hidden even from the current ptracer and if it immediately
108  * re-attaches and performs a WNOHANG wait(2), it may fail.
109  *
110  * CONTEXT:
111  * write_lock_irq(tasklist_lock)
112  */
113 void __ptrace_unlink(struct task_struct *child)
114 {
115 	const struct cred *old_cred;
116 	BUG_ON(!child->ptrace);
117 
118 	clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
119 
120 	child->parent = child->real_parent;
121 	list_del_init(&child->ptrace_entry);
122 	old_cred = child->ptracer_cred;
123 	child->ptracer_cred = NULL;
124 	put_cred(old_cred);
125 
126 	spin_lock(&child->sighand->siglock);
127 	child->ptrace = 0;
128 	/*
129 	 * Clear all pending traps and TRAPPING.  TRAPPING should be
130 	 * cleared regardless of JOBCTL_STOP_PENDING.  Do it explicitly.
131 	 */
132 	task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
133 	task_clear_jobctl_trapping(child);
134 
135 	/*
136 	 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
137 	 * @child isn't dead.
138 	 */
139 	if (!(child->flags & PF_EXITING) &&
140 	    (child->signal->flags & SIGNAL_STOP_STOPPED ||
141 	     child->signal->group_stop_count)) {
142 		child->jobctl |= JOBCTL_STOP_PENDING;
143 
144 		/*
145 		 * This is only possible if this thread was cloned by the
146 		 * traced task running in the stopped group, set the signal
147 		 * for the future reports.
148 		 * FIXME: we should change ptrace_init_task() to handle this
149 		 * case.
150 		 */
151 		if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
152 			child->jobctl |= SIGSTOP;
153 	}
154 
155 	/*
156 	 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
157 	 * @child in the butt.  Note that @resume should be used iff @child
158 	 * is in TASK_TRACED; otherwise, we might unduly disrupt
159 	 * TASK_KILLABLE sleeps.
160 	 */
161 	if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
162 		ptrace_signal_wake_up(child, true);
163 
164 	spin_unlock(&child->sighand->siglock);
165 }
166 
167 /* Ensure that nothing can wake it up, even SIGKILL */
168 static bool ptrace_freeze_traced(struct task_struct *task)
169 {
170 	bool ret = false;
171 
172 	/* Lockless, nobody but us can set this flag */
173 	if (task->jobctl & JOBCTL_LISTENING)
174 		return ret;
175 
176 	spin_lock_irq(&task->sighand->siglock);
177 	if (task_is_traced(task) && !__fatal_signal_pending(task)) {
178 		task->state = __TASK_TRACED;
179 		ret = true;
180 	}
181 	spin_unlock_irq(&task->sighand->siglock);
182 
183 	return ret;
184 }
185 
186 static void ptrace_unfreeze_traced(struct task_struct *task)
187 {
188 	if (task->state != __TASK_TRACED)
189 		return;
190 
191 	WARN_ON(!task->ptrace || task->parent != current);
192 
193 	/*
194 	 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely.
195 	 * Recheck state under the lock to close this race.
196 	 */
197 	spin_lock_irq(&task->sighand->siglock);
198 	if (task->state == __TASK_TRACED) {
199 		if (__fatal_signal_pending(task))
200 			wake_up_state(task, __TASK_TRACED);
201 		else
202 			task->state = TASK_TRACED;
203 	}
204 	spin_unlock_irq(&task->sighand->siglock);
205 }
206 
207 /**
208  * ptrace_check_attach - check whether ptracee is ready for ptrace operation
209  * @child: ptracee to check for
210  * @ignore_state: don't check whether @child is currently %TASK_TRACED
211  *
212  * Check whether @child is being ptraced by %current and ready for further
213  * ptrace operations.  If @ignore_state is %false, @child also should be in
214  * %TASK_TRACED state and on return the child is guaranteed to be traced
215  * and not executing.  If @ignore_state is %true, @child can be in any
216  * state.
217  *
218  * CONTEXT:
219  * Grabs and releases tasklist_lock and @child->sighand->siglock.
220  *
221  * RETURNS:
222  * 0 on success, -ESRCH if %child is not ready.
223  */
224 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
225 {
226 	int ret = -ESRCH;
227 
228 	/*
229 	 * We take the read lock around doing both checks to close a
230 	 * possible race where someone else was tracing our child and
231 	 * detached between these two checks.  After this locked check,
232 	 * we are sure that this is our traced child and that can only
233 	 * be changed by us so it's not changing right after this.
234 	 */
235 	read_lock(&tasklist_lock);
236 	if (child->ptrace && child->parent == current) {
237 		WARN_ON(child->state == __TASK_TRACED);
238 		/*
239 		 * child->sighand can't be NULL, release_task()
240 		 * does ptrace_unlink() before __exit_signal().
241 		 */
242 		if (ignore_state || ptrace_freeze_traced(child))
243 			ret = 0;
244 	}
245 	read_unlock(&tasklist_lock);
246 
247 	if (!ret && !ignore_state) {
248 		if (!wait_task_inactive(child, __TASK_TRACED)) {
249 			/*
250 			 * This can only happen if may_ptrace_stop() fails and
251 			 * ptrace_stop() changes ->state back to TASK_RUNNING,
252 			 * so we should not worry about leaking __TASK_TRACED.
253 			 */
254 			WARN_ON(child->state == __TASK_TRACED);
255 			ret = -ESRCH;
256 		}
257 	}
258 
259 	return ret;
260 }
261 
262 static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
263 {
264 	if (mode & PTRACE_MODE_NOAUDIT)
265 		return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE);
266 	else
267 		return has_ns_capability(current, ns, CAP_SYS_PTRACE);
268 }
269 
270 /* Returns 0 on success, -errno on denial. */
271 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
272 {
273 	const struct cred *cred = current_cred(), *tcred;
274 	struct mm_struct *mm;
275 	kuid_t caller_uid;
276 	kgid_t caller_gid;
277 
278 	if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
279 		WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
280 		return -EPERM;
281 	}
282 
283 	/* May we inspect the given task?
284 	 * This check is used both for attaching with ptrace
285 	 * and for allowing access to sensitive information in /proc.
286 	 *
287 	 * ptrace_attach denies several cases that /proc allows
288 	 * because setting up the necessary parent/child relationship
289 	 * or halting the specified task is impossible.
290 	 */
291 
292 	/* Don't let security modules deny introspection */
293 	if (same_thread_group(task, current))
294 		return 0;
295 	rcu_read_lock();
296 	if (mode & PTRACE_MODE_FSCREDS) {
297 		caller_uid = cred->fsuid;
298 		caller_gid = cred->fsgid;
299 	} else {
300 		/*
301 		 * Using the euid would make more sense here, but something
302 		 * in userland might rely on the old behavior, and this
303 		 * shouldn't be a security problem since
304 		 * PTRACE_MODE_REALCREDS implies that the caller explicitly
305 		 * used a syscall that requests access to another process
306 		 * (and not a filesystem syscall to procfs).
307 		 */
308 		caller_uid = cred->uid;
309 		caller_gid = cred->gid;
310 	}
311 	tcred = __task_cred(task);
312 	if (uid_eq(caller_uid, tcred->euid) &&
313 	    uid_eq(caller_uid, tcred->suid) &&
314 	    uid_eq(caller_uid, tcred->uid)  &&
315 	    gid_eq(caller_gid, tcred->egid) &&
316 	    gid_eq(caller_gid, tcred->sgid) &&
317 	    gid_eq(caller_gid, tcred->gid))
318 		goto ok;
319 	if (ptrace_has_cap(tcred->user_ns, mode))
320 		goto ok;
321 	rcu_read_unlock();
322 	return -EPERM;
323 ok:
324 	rcu_read_unlock();
325 	mm = task->mm;
326 	if (mm &&
327 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
328 	     !ptrace_has_cap(mm->user_ns, mode)))
329 	    return -EPERM;
330 
331 	return security_ptrace_access_check(task, mode);
332 }
333 
334 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
335 {
336 	int err;
337 	task_lock(task);
338 	err = __ptrace_may_access(task, mode);
339 	task_unlock(task);
340 	return !err;
341 }
342 
343 static int ptrace_attach(struct task_struct *task, long request,
344 			 unsigned long addr,
345 			 unsigned long flags)
346 {
347 	bool seize = (request == PTRACE_SEIZE);
348 	int retval;
349 
350 	retval = -EIO;
351 	if (seize) {
352 		if (addr != 0)
353 			goto out;
354 		if (flags & ~(unsigned long)PTRACE_O_MASK)
355 			goto out;
356 		flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
357 	} else {
358 		flags = PT_PTRACED;
359 	}
360 
361 	audit_ptrace(task);
362 
363 	retval = -EPERM;
364 	if (unlikely(task->flags & PF_KTHREAD))
365 		goto out;
366 	if (same_thread_group(task, current))
367 		goto out;
368 
369 	/*
370 	 * Protect exec's credential calculations against our interference;
371 	 * SUID, SGID and LSM creds get determined differently
372 	 * under ptrace.
373 	 */
374 	retval = -ERESTARTNOINTR;
375 	if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
376 		goto out;
377 
378 	task_lock(task);
379 	retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
380 	task_unlock(task);
381 	if (retval)
382 		goto unlock_creds;
383 
384 	write_lock_irq(&tasklist_lock);
385 	retval = -EPERM;
386 	if (unlikely(task->exit_state))
387 		goto unlock_tasklist;
388 	if (task->ptrace)
389 		goto unlock_tasklist;
390 
391 	if (seize)
392 		flags |= PT_SEIZED;
393 	task->ptrace = flags;
394 
395 	ptrace_link(task, current);
396 
397 	/* SEIZE doesn't trap tracee on attach */
398 	if (!seize)
399 		send_sig_info(SIGSTOP, SEND_SIG_PRIV, task);
400 
401 	spin_lock(&task->sighand->siglock);
402 
403 	/*
404 	 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
405 	 * TRAPPING, and kick it so that it transits to TRACED.  TRAPPING
406 	 * will be cleared if the child completes the transition or any
407 	 * event which clears the group stop states happens.  We'll wait
408 	 * for the transition to complete before returning from this
409 	 * function.
410 	 *
411 	 * This hides STOPPED -> RUNNING -> TRACED transition from the
412 	 * attaching thread but a different thread in the same group can
413 	 * still observe the transient RUNNING state.  IOW, if another
414 	 * thread's WNOHANG wait(2) on the stopped tracee races against
415 	 * ATTACH, the wait(2) may fail due to the transient RUNNING.
416 	 *
417 	 * The following task_is_stopped() test is safe as both transitions
418 	 * in and out of STOPPED are protected by siglock.
419 	 */
420 	if (task_is_stopped(task) &&
421 	    task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
422 		signal_wake_up_state(task, __TASK_STOPPED);
423 
424 	spin_unlock(&task->sighand->siglock);
425 
426 	retval = 0;
427 unlock_tasklist:
428 	write_unlock_irq(&tasklist_lock);
429 unlock_creds:
430 	mutex_unlock(&task->signal->cred_guard_mutex);
431 out:
432 	if (!retval) {
433 		/*
434 		 * We do not bother to change retval or clear JOBCTL_TRAPPING
435 		 * if wait_on_bit() was interrupted by SIGKILL. The tracer will
436 		 * not return to user-mode, it will exit and clear this bit in
437 		 * __ptrace_unlink() if it wasn't already cleared by the tracee;
438 		 * and until then nobody can ptrace this task.
439 		 */
440 		wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
441 		proc_ptrace_connector(task, PTRACE_ATTACH);
442 	}
443 
444 	return retval;
445 }
446 
447 /**
448  * ptrace_traceme  --  helper for PTRACE_TRACEME
449  *
450  * Performs checks and sets PT_PTRACED.
451  * Should be used by all ptrace implementations for PTRACE_TRACEME.
452  */
453 static int ptrace_traceme(void)
454 {
455 	int ret = -EPERM;
456 
457 	write_lock_irq(&tasklist_lock);
458 	/* Are we already being traced? */
459 	if (!current->ptrace) {
460 		ret = security_ptrace_traceme(current->parent);
461 		/*
462 		 * Check PF_EXITING to ensure ->real_parent has not passed
463 		 * exit_ptrace(). Otherwise we don't report the error but
464 		 * pretend ->real_parent untraces us right after return.
465 		 */
466 		if (!ret && !(current->real_parent->flags & PF_EXITING)) {
467 			current->ptrace = PT_PTRACED;
468 			ptrace_link(current, current->real_parent);
469 		}
470 	}
471 	write_unlock_irq(&tasklist_lock);
472 
473 	return ret;
474 }
475 
476 /*
477  * Called with irqs disabled, returns true if childs should reap themselves.
478  */
479 static int ignoring_children(struct sighand_struct *sigh)
480 {
481 	int ret;
482 	spin_lock(&sigh->siglock);
483 	ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
484 	      (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
485 	spin_unlock(&sigh->siglock);
486 	return ret;
487 }
488 
489 /*
490  * Called with tasklist_lock held for writing.
491  * Unlink a traced task, and clean it up if it was a traced zombie.
492  * Return true if it needs to be reaped with release_task().
493  * (We can't call release_task() here because we already hold tasklist_lock.)
494  *
495  * If it's a zombie, our attachedness prevented normal parent notification
496  * or self-reaping.  Do notification now if it would have happened earlier.
497  * If it should reap itself, return true.
498  *
499  * If it's our own child, there is no notification to do. But if our normal
500  * children self-reap, then this child was prevented by ptrace and we must
501  * reap it now, in that case we must also wake up sub-threads sleeping in
502  * do_wait().
503  */
504 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
505 {
506 	bool dead;
507 
508 	__ptrace_unlink(p);
509 
510 	if (p->exit_state != EXIT_ZOMBIE)
511 		return false;
512 
513 	dead = !thread_group_leader(p);
514 
515 	if (!dead && thread_group_empty(p)) {
516 		if (!same_thread_group(p->real_parent, tracer))
517 			dead = do_notify_parent(p, p->exit_signal);
518 		else if (ignoring_children(tracer->sighand)) {
519 			__wake_up_parent(p, tracer);
520 			dead = true;
521 		}
522 	}
523 	/* Mark it as in the process of being reaped. */
524 	if (dead)
525 		p->exit_state = EXIT_DEAD;
526 	return dead;
527 }
528 
529 static int ptrace_detach(struct task_struct *child, unsigned int data)
530 {
531 	if (!valid_signal(data))
532 		return -EIO;
533 
534 	/* Architecture-specific hardware disable .. */
535 	ptrace_disable(child);
536 
537 	write_lock_irq(&tasklist_lock);
538 	/*
539 	 * We rely on ptrace_freeze_traced(). It can't be killed and
540 	 * untraced by another thread, it can't be a zombie.
541 	 */
542 	WARN_ON(!child->ptrace || child->exit_state);
543 	/*
544 	 * tasklist_lock avoids the race with wait_task_stopped(), see
545 	 * the comment in ptrace_resume().
546 	 */
547 	child->exit_code = data;
548 	__ptrace_detach(current, child);
549 	write_unlock_irq(&tasklist_lock);
550 
551 	proc_ptrace_connector(child, PTRACE_DETACH);
552 
553 	return 0;
554 }
555 
556 /*
557  * Detach all tasks we were using ptrace on. Called with tasklist held
558  * for writing.
559  */
560 void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
561 {
562 	struct task_struct *p, *n;
563 
564 	list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
565 		if (unlikely(p->ptrace & PT_EXITKILL))
566 			send_sig_info(SIGKILL, SEND_SIG_PRIV, p);
567 
568 		if (__ptrace_detach(tracer, p))
569 			list_add(&p->ptrace_entry, dead);
570 	}
571 }
572 
573 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
574 {
575 	int copied = 0;
576 
577 	while (len > 0) {
578 		char buf[128];
579 		int this_len, retval;
580 
581 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
582 		retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
583 
584 		if (!retval) {
585 			if (copied)
586 				break;
587 			return -EIO;
588 		}
589 		if (copy_to_user(dst, buf, retval))
590 			return -EFAULT;
591 		copied += retval;
592 		src += retval;
593 		dst += retval;
594 		len -= retval;
595 	}
596 	return copied;
597 }
598 
599 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
600 {
601 	int copied = 0;
602 
603 	while (len > 0) {
604 		char buf[128];
605 		int this_len, retval;
606 
607 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
608 		if (copy_from_user(buf, src, this_len))
609 			return -EFAULT;
610 		retval = ptrace_access_vm(tsk, dst, buf, this_len,
611 				FOLL_FORCE | FOLL_WRITE);
612 		if (!retval) {
613 			if (copied)
614 				break;
615 			return -EIO;
616 		}
617 		copied += retval;
618 		src += retval;
619 		dst += retval;
620 		len -= retval;
621 	}
622 	return copied;
623 }
624 
625 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
626 {
627 	unsigned flags;
628 
629 	if (data & ~(unsigned long)PTRACE_O_MASK)
630 		return -EINVAL;
631 
632 	if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
633 		if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
634 		    !IS_ENABLED(CONFIG_SECCOMP))
635 			return -EINVAL;
636 
637 		if (!capable(CAP_SYS_ADMIN))
638 			return -EPERM;
639 
640 		if (seccomp_mode(&current->seccomp) != SECCOMP_MODE_DISABLED ||
641 		    current->ptrace & PT_SUSPEND_SECCOMP)
642 			return -EPERM;
643 	}
644 
645 	/* Avoid intermediate state when all opts are cleared */
646 	flags = child->ptrace;
647 	flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
648 	flags |= (data << PT_OPT_FLAG_SHIFT);
649 	child->ptrace = flags;
650 
651 	return 0;
652 }
653 
654 static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info)
655 {
656 	unsigned long flags;
657 	int error = -ESRCH;
658 
659 	if (lock_task_sighand(child, &flags)) {
660 		error = -EINVAL;
661 		if (likely(child->last_siginfo != NULL)) {
662 			copy_siginfo(info, child->last_siginfo);
663 			error = 0;
664 		}
665 		unlock_task_sighand(child, &flags);
666 	}
667 	return error;
668 }
669 
670 static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info)
671 {
672 	unsigned long flags;
673 	int error = -ESRCH;
674 
675 	if (lock_task_sighand(child, &flags)) {
676 		error = -EINVAL;
677 		if (likely(child->last_siginfo != NULL)) {
678 			copy_siginfo(child->last_siginfo, info);
679 			error = 0;
680 		}
681 		unlock_task_sighand(child, &flags);
682 	}
683 	return error;
684 }
685 
686 static int ptrace_peek_siginfo(struct task_struct *child,
687 				unsigned long addr,
688 				unsigned long data)
689 {
690 	struct ptrace_peeksiginfo_args arg;
691 	struct sigpending *pending;
692 	struct sigqueue *q;
693 	int ret, i;
694 
695 	ret = copy_from_user(&arg, (void __user *) addr,
696 				sizeof(struct ptrace_peeksiginfo_args));
697 	if (ret)
698 		return -EFAULT;
699 
700 	if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
701 		return -EINVAL; /* unknown flags */
702 
703 	if (arg.nr < 0)
704 		return -EINVAL;
705 
706 	if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
707 		pending = &child->signal->shared_pending;
708 	else
709 		pending = &child->pending;
710 
711 	for (i = 0; i < arg.nr; ) {
712 		kernel_siginfo_t info;
713 		s32 off = arg.off + i;
714 
715 		spin_lock_irq(&child->sighand->siglock);
716 		list_for_each_entry(q, &pending->list, list) {
717 			if (!off--) {
718 				copy_siginfo(&info, &q->info);
719 				break;
720 			}
721 		}
722 		spin_unlock_irq(&child->sighand->siglock);
723 
724 		if (off >= 0) /* beyond the end of the list */
725 			break;
726 
727 #ifdef CONFIG_COMPAT
728 		if (unlikely(in_compat_syscall())) {
729 			compat_siginfo_t __user *uinfo = compat_ptr(data);
730 
731 			if (copy_siginfo_to_user32(uinfo, &info)) {
732 				ret = -EFAULT;
733 				break;
734 			}
735 
736 		} else
737 #endif
738 		{
739 			siginfo_t __user *uinfo = (siginfo_t __user *) data;
740 
741 			if (copy_siginfo_to_user(uinfo, &info)) {
742 				ret = -EFAULT;
743 				break;
744 			}
745 		}
746 
747 		data += sizeof(siginfo_t);
748 		i++;
749 
750 		if (signal_pending(current))
751 			break;
752 
753 		cond_resched();
754 	}
755 
756 	if (i > 0)
757 		return i;
758 
759 	return ret;
760 }
761 
762 #ifdef PTRACE_SINGLESTEP
763 #define is_singlestep(request)		((request) == PTRACE_SINGLESTEP)
764 #else
765 #define is_singlestep(request)		0
766 #endif
767 
768 #ifdef PTRACE_SINGLEBLOCK
769 #define is_singleblock(request)		((request) == PTRACE_SINGLEBLOCK)
770 #else
771 #define is_singleblock(request)		0
772 #endif
773 
774 #ifdef PTRACE_SYSEMU
775 #define is_sysemu_singlestep(request)	((request) == PTRACE_SYSEMU_SINGLESTEP)
776 #else
777 #define is_sysemu_singlestep(request)	0
778 #endif
779 
780 static int ptrace_resume(struct task_struct *child, long request,
781 			 unsigned long data)
782 {
783 	bool need_siglock;
784 
785 	if (!valid_signal(data))
786 		return -EIO;
787 
788 	if (request == PTRACE_SYSCALL)
789 		set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
790 	else
791 		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
792 
793 #ifdef TIF_SYSCALL_EMU
794 	if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
795 		set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
796 	else
797 		clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
798 #endif
799 
800 	if (is_singleblock(request)) {
801 		if (unlikely(!arch_has_block_step()))
802 			return -EIO;
803 		user_enable_block_step(child);
804 	} else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
805 		if (unlikely(!arch_has_single_step()))
806 			return -EIO;
807 		user_enable_single_step(child);
808 	} else {
809 		user_disable_single_step(child);
810 	}
811 
812 	/*
813 	 * Change ->exit_code and ->state under siglock to avoid the race
814 	 * with wait_task_stopped() in between; a non-zero ->exit_code will
815 	 * wrongly look like another report from tracee.
816 	 *
817 	 * Note that we need siglock even if ->exit_code == data and/or this
818 	 * status was not reported yet, the new status must not be cleared by
819 	 * wait_task_stopped() after resume.
820 	 *
821 	 * If data == 0 we do not care if wait_task_stopped() reports the old
822 	 * status and clears the code too; this can't race with the tracee, it
823 	 * takes siglock after resume.
824 	 */
825 	need_siglock = data && !thread_group_empty(current);
826 	if (need_siglock)
827 		spin_lock_irq(&child->sighand->siglock);
828 	child->exit_code = data;
829 	wake_up_state(child, __TASK_TRACED);
830 	if (need_siglock)
831 		spin_unlock_irq(&child->sighand->siglock);
832 
833 	return 0;
834 }
835 
836 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
837 
838 static const struct user_regset *
839 find_regset(const struct user_regset_view *view, unsigned int type)
840 {
841 	const struct user_regset *regset;
842 	int n;
843 
844 	for (n = 0; n < view->n; ++n) {
845 		regset = view->regsets + n;
846 		if (regset->core_note_type == type)
847 			return regset;
848 	}
849 
850 	return NULL;
851 }
852 
853 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
854 			 struct iovec *kiov)
855 {
856 	const struct user_regset_view *view = task_user_regset_view(task);
857 	const struct user_regset *regset = find_regset(view, type);
858 	int regset_no;
859 
860 	if (!regset || (kiov->iov_len % regset->size) != 0)
861 		return -EINVAL;
862 
863 	regset_no = regset - view->regsets;
864 	kiov->iov_len = min(kiov->iov_len,
865 			    (__kernel_size_t) (regset->n * regset->size));
866 
867 	if (req == PTRACE_GETREGSET)
868 		return copy_regset_to_user(task, view, regset_no, 0,
869 					   kiov->iov_len, kiov->iov_base);
870 	else
871 		return copy_regset_from_user(task, view, regset_no, 0,
872 					     kiov->iov_len, kiov->iov_base);
873 }
874 
875 /*
876  * This is declared in linux/regset.h and defined in machine-dependent
877  * code.  We put the export here, near the primary machine-neutral use,
878  * to ensure no machine forgets it.
879  */
880 EXPORT_SYMBOL_GPL(task_user_regset_view);
881 #endif
882 
883 int ptrace_request(struct task_struct *child, long request,
884 		   unsigned long addr, unsigned long data)
885 {
886 	bool seized = child->ptrace & PT_SEIZED;
887 	int ret = -EIO;
888 	kernel_siginfo_t siginfo, *si;
889 	void __user *datavp = (void __user *) data;
890 	unsigned long __user *datalp = datavp;
891 	unsigned long flags;
892 
893 	switch (request) {
894 	case PTRACE_PEEKTEXT:
895 	case PTRACE_PEEKDATA:
896 		return generic_ptrace_peekdata(child, addr, data);
897 	case PTRACE_POKETEXT:
898 	case PTRACE_POKEDATA:
899 		return generic_ptrace_pokedata(child, addr, data);
900 
901 #ifdef PTRACE_OLDSETOPTIONS
902 	case PTRACE_OLDSETOPTIONS:
903 #endif
904 	case PTRACE_SETOPTIONS:
905 		ret = ptrace_setoptions(child, data);
906 		break;
907 	case PTRACE_GETEVENTMSG:
908 		ret = put_user(child->ptrace_message, datalp);
909 		break;
910 
911 	case PTRACE_PEEKSIGINFO:
912 		ret = ptrace_peek_siginfo(child, addr, data);
913 		break;
914 
915 	case PTRACE_GETSIGINFO:
916 		ret = ptrace_getsiginfo(child, &siginfo);
917 		if (!ret)
918 			ret = copy_siginfo_to_user(datavp, &siginfo);
919 		break;
920 
921 	case PTRACE_SETSIGINFO:
922 		ret = copy_siginfo_from_user(&siginfo, datavp);
923 		if (!ret)
924 			ret = ptrace_setsiginfo(child, &siginfo);
925 		break;
926 
927 	case PTRACE_GETSIGMASK:
928 		if (addr != sizeof(sigset_t)) {
929 			ret = -EINVAL;
930 			break;
931 		}
932 
933 		if (copy_to_user(datavp, &child->blocked, sizeof(sigset_t)))
934 			ret = -EFAULT;
935 		else
936 			ret = 0;
937 
938 		break;
939 
940 	case PTRACE_SETSIGMASK: {
941 		sigset_t new_set;
942 
943 		if (addr != sizeof(sigset_t)) {
944 			ret = -EINVAL;
945 			break;
946 		}
947 
948 		if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
949 			ret = -EFAULT;
950 			break;
951 		}
952 
953 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
954 
955 		/*
956 		 * Every thread does recalc_sigpending() after resume, so
957 		 * retarget_shared_pending() and recalc_sigpending() are not
958 		 * called here.
959 		 */
960 		spin_lock_irq(&child->sighand->siglock);
961 		child->blocked = new_set;
962 		spin_unlock_irq(&child->sighand->siglock);
963 
964 		ret = 0;
965 		break;
966 	}
967 
968 	case PTRACE_INTERRUPT:
969 		/*
970 		 * Stop tracee without any side-effect on signal or job
971 		 * control.  At least one trap is guaranteed to happen
972 		 * after this request.  If @child is already trapped, the
973 		 * current trap is not disturbed and another trap will
974 		 * happen after the current trap is ended with PTRACE_CONT.
975 		 *
976 		 * The actual trap might not be PTRACE_EVENT_STOP trap but
977 		 * the pending condition is cleared regardless.
978 		 */
979 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
980 			break;
981 
982 		/*
983 		 * INTERRUPT doesn't disturb existing trap sans one
984 		 * exception.  If ptracer issued LISTEN for the current
985 		 * STOP, this INTERRUPT should clear LISTEN and re-trap
986 		 * tracee into STOP.
987 		 */
988 		if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
989 			ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
990 
991 		unlock_task_sighand(child, &flags);
992 		ret = 0;
993 		break;
994 
995 	case PTRACE_LISTEN:
996 		/*
997 		 * Listen for events.  Tracee must be in STOP.  It's not
998 		 * resumed per-se but is not considered to be in TRACED by
999 		 * wait(2) or ptrace(2).  If an async event (e.g. group
1000 		 * stop state change) happens, tracee will enter STOP trap
1001 		 * again.  Alternatively, ptracer can issue INTERRUPT to
1002 		 * finish listening and re-trap tracee into STOP.
1003 		 */
1004 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1005 			break;
1006 
1007 		si = child->last_siginfo;
1008 		if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
1009 			child->jobctl |= JOBCTL_LISTENING;
1010 			/*
1011 			 * If NOTIFY is set, it means event happened between
1012 			 * start of this trap and now.  Trigger re-trap.
1013 			 */
1014 			if (child->jobctl & JOBCTL_TRAP_NOTIFY)
1015 				ptrace_signal_wake_up(child, true);
1016 			ret = 0;
1017 		}
1018 		unlock_task_sighand(child, &flags);
1019 		break;
1020 
1021 	case PTRACE_DETACH:	 /* detach a process that was attached. */
1022 		ret = ptrace_detach(child, data);
1023 		break;
1024 
1025 #ifdef CONFIG_BINFMT_ELF_FDPIC
1026 	case PTRACE_GETFDPIC: {
1027 		struct mm_struct *mm = get_task_mm(child);
1028 		unsigned long tmp = 0;
1029 
1030 		ret = -ESRCH;
1031 		if (!mm)
1032 			break;
1033 
1034 		switch (addr) {
1035 		case PTRACE_GETFDPIC_EXEC:
1036 			tmp = mm->context.exec_fdpic_loadmap;
1037 			break;
1038 		case PTRACE_GETFDPIC_INTERP:
1039 			tmp = mm->context.interp_fdpic_loadmap;
1040 			break;
1041 		default:
1042 			break;
1043 		}
1044 		mmput(mm);
1045 
1046 		ret = put_user(tmp, datalp);
1047 		break;
1048 	}
1049 #endif
1050 
1051 #ifdef PTRACE_SINGLESTEP
1052 	case PTRACE_SINGLESTEP:
1053 #endif
1054 #ifdef PTRACE_SINGLEBLOCK
1055 	case PTRACE_SINGLEBLOCK:
1056 #endif
1057 #ifdef PTRACE_SYSEMU
1058 	case PTRACE_SYSEMU:
1059 	case PTRACE_SYSEMU_SINGLESTEP:
1060 #endif
1061 	case PTRACE_SYSCALL:
1062 	case PTRACE_CONT:
1063 		return ptrace_resume(child, request, data);
1064 
1065 	case PTRACE_KILL:
1066 		if (child->exit_state)	/* already dead */
1067 			return 0;
1068 		return ptrace_resume(child, request, SIGKILL);
1069 
1070 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1071 	case PTRACE_GETREGSET:
1072 	case PTRACE_SETREGSET: {
1073 		struct iovec kiov;
1074 		struct iovec __user *uiov = datavp;
1075 
1076 		if (!access_ok(uiov, sizeof(*uiov)))
1077 			return -EFAULT;
1078 
1079 		if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1080 		    __get_user(kiov.iov_len, &uiov->iov_len))
1081 			return -EFAULT;
1082 
1083 		ret = ptrace_regset(child, request, addr, &kiov);
1084 		if (!ret)
1085 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1086 		break;
1087 	}
1088 #endif
1089 
1090 	case PTRACE_SECCOMP_GET_FILTER:
1091 		ret = seccomp_get_filter(child, addr, datavp);
1092 		break;
1093 
1094 	case PTRACE_SECCOMP_GET_METADATA:
1095 		ret = seccomp_get_metadata(child, addr, datavp);
1096 		break;
1097 
1098 	default:
1099 		break;
1100 	}
1101 
1102 	return ret;
1103 }
1104 
1105 #ifndef arch_ptrace_attach
1106 #define arch_ptrace_attach(child)	do { } while (0)
1107 #endif
1108 
1109 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1110 		unsigned long, data)
1111 {
1112 	struct task_struct *child;
1113 	long ret;
1114 
1115 	if (request == PTRACE_TRACEME) {
1116 		ret = ptrace_traceme();
1117 		if (!ret)
1118 			arch_ptrace_attach(current);
1119 		goto out;
1120 	}
1121 
1122 	child = find_get_task_by_vpid(pid);
1123 	if (!child) {
1124 		ret = -ESRCH;
1125 		goto out;
1126 	}
1127 
1128 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1129 		ret = ptrace_attach(child, request, addr, data);
1130 		/*
1131 		 * Some architectures need to do book-keeping after
1132 		 * a ptrace attach.
1133 		 */
1134 		if (!ret)
1135 			arch_ptrace_attach(child);
1136 		goto out_put_task_struct;
1137 	}
1138 
1139 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1140 				  request == PTRACE_INTERRUPT);
1141 	if (ret < 0)
1142 		goto out_put_task_struct;
1143 
1144 	ret = arch_ptrace(child, request, addr, data);
1145 	if (ret || request != PTRACE_DETACH)
1146 		ptrace_unfreeze_traced(child);
1147 
1148  out_put_task_struct:
1149 	put_task_struct(child);
1150  out:
1151 	return ret;
1152 }
1153 
1154 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1155 			    unsigned long data)
1156 {
1157 	unsigned long tmp;
1158 	int copied;
1159 
1160 	copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
1161 	if (copied != sizeof(tmp))
1162 		return -EIO;
1163 	return put_user(tmp, (unsigned long __user *)data);
1164 }
1165 
1166 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1167 			    unsigned long data)
1168 {
1169 	int copied;
1170 
1171 	copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
1172 			FOLL_FORCE | FOLL_WRITE);
1173 	return (copied == sizeof(data)) ? 0 : -EIO;
1174 }
1175 
1176 #if defined CONFIG_COMPAT
1177 
1178 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1179 			  compat_ulong_t addr, compat_ulong_t data)
1180 {
1181 	compat_ulong_t __user *datap = compat_ptr(data);
1182 	compat_ulong_t word;
1183 	kernel_siginfo_t siginfo;
1184 	int ret;
1185 
1186 	switch (request) {
1187 	case PTRACE_PEEKTEXT:
1188 	case PTRACE_PEEKDATA:
1189 		ret = ptrace_access_vm(child, addr, &word, sizeof(word),
1190 				FOLL_FORCE);
1191 		if (ret != sizeof(word))
1192 			ret = -EIO;
1193 		else
1194 			ret = put_user(word, datap);
1195 		break;
1196 
1197 	case PTRACE_POKETEXT:
1198 	case PTRACE_POKEDATA:
1199 		ret = ptrace_access_vm(child, addr, &data, sizeof(data),
1200 				FOLL_FORCE | FOLL_WRITE);
1201 		ret = (ret != sizeof(data) ? -EIO : 0);
1202 		break;
1203 
1204 	case PTRACE_GETEVENTMSG:
1205 		ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1206 		break;
1207 
1208 	case PTRACE_GETSIGINFO:
1209 		ret = ptrace_getsiginfo(child, &siginfo);
1210 		if (!ret)
1211 			ret = copy_siginfo_to_user32(
1212 				(struct compat_siginfo __user *) datap,
1213 				&siginfo);
1214 		break;
1215 
1216 	case PTRACE_SETSIGINFO:
1217 		ret = copy_siginfo_from_user32(
1218 			&siginfo, (struct compat_siginfo __user *) datap);
1219 		if (!ret)
1220 			ret = ptrace_setsiginfo(child, &siginfo);
1221 		break;
1222 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1223 	case PTRACE_GETREGSET:
1224 	case PTRACE_SETREGSET:
1225 	{
1226 		struct iovec kiov;
1227 		struct compat_iovec __user *uiov =
1228 			(struct compat_iovec __user *) datap;
1229 		compat_uptr_t ptr;
1230 		compat_size_t len;
1231 
1232 		if (!access_ok(uiov, sizeof(*uiov)))
1233 			return -EFAULT;
1234 
1235 		if (__get_user(ptr, &uiov->iov_base) ||
1236 		    __get_user(len, &uiov->iov_len))
1237 			return -EFAULT;
1238 
1239 		kiov.iov_base = compat_ptr(ptr);
1240 		kiov.iov_len = len;
1241 
1242 		ret = ptrace_regset(child, request, addr, &kiov);
1243 		if (!ret)
1244 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1245 		break;
1246 	}
1247 #endif
1248 
1249 	default:
1250 		ret = ptrace_request(child, request, addr, data);
1251 	}
1252 
1253 	return ret;
1254 }
1255 
1256 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1257 		       compat_long_t, addr, compat_long_t, data)
1258 {
1259 	struct task_struct *child;
1260 	long ret;
1261 
1262 	if (request == PTRACE_TRACEME) {
1263 		ret = ptrace_traceme();
1264 		goto out;
1265 	}
1266 
1267 	child = find_get_task_by_vpid(pid);
1268 	if (!child) {
1269 		ret = -ESRCH;
1270 		goto out;
1271 	}
1272 
1273 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1274 		ret = ptrace_attach(child, request, addr, data);
1275 		/*
1276 		 * Some architectures need to do book-keeping after
1277 		 * a ptrace attach.
1278 		 */
1279 		if (!ret)
1280 			arch_ptrace_attach(child);
1281 		goto out_put_task_struct;
1282 	}
1283 
1284 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1285 				  request == PTRACE_INTERRUPT);
1286 	if (!ret) {
1287 		ret = compat_arch_ptrace(child, request, addr, data);
1288 		if (ret || request != PTRACE_DETACH)
1289 			ptrace_unfreeze_traced(child);
1290 	}
1291 
1292  out_put_task_struct:
1293 	put_task_struct(child);
1294  out:
1295 	return ret;
1296 }
1297 #endif	/* CONFIG_COMPAT */
1298