1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/ptrace.c 4 * 5 * (C) Copyright 1999 Linus Torvalds 6 * 7 * Common interfaces for "ptrace()" which we do not want 8 * to continually duplicate across every architecture. 9 */ 10 11 #include <linux/capability.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/coredump.h> 16 #include <linux/sched/task.h> 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/pagemap.h> 21 #include <linux/ptrace.h> 22 #include <linux/security.h> 23 #include <linux/signal.h> 24 #include <linux/uio.h> 25 #include <linux/audit.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/syscalls.h> 28 #include <linux/uaccess.h> 29 #include <linux/regset.h> 30 #include <linux/hw_breakpoint.h> 31 #include <linux/cn_proc.h> 32 #include <linux/compat.h> 33 #include <linux/sched/signal.h> 34 35 /* 36 * Access another process' address space via ptrace. 37 * Source/target buffer must be kernel space, 38 * Do not walk the page table directly, use get_user_pages 39 */ 40 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, 41 void *buf, int len, unsigned int gup_flags) 42 { 43 struct mm_struct *mm; 44 int ret; 45 46 mm = get_task_mm(tsk); 47 if (!mm) 48 return 0; 49 50 if (!tsk->ptrace || 51 (current != tsk->parent) || 52 ((get_dumpable(mm) != SUID_DUMP_USER) && 53 !ptracer_capable(tsk, mm->user_ns))) { 54 mmput(mm); 55 return 0; 56 } 57 58 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 59 mmput(mm); 60 61 return ret; 62 } 63 64 65 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent, 66 const struct cred *ptracer_cred) 67 { 68 BUG_ON(!list_empty(&child->ptrace_entry)); 69 list_add(&child->ptrace_entry, &new_parent->ptraced); 70 child->parent = new_parent; 71 child->ptracer_cred = get_cred(ptracer_cred); 72 } 73 74 /* 75 * ptrace a task: make the debugger its new parent and 76 * move it to the ptrace list. 77 * 78 * Must be called with the tasklist lock write-held. 79 */ 80 static void ptrace_link(struct task_struct *child, struct task_struct *new_parent) 81 { 82 rcu_read_lock(); 83 __ptrace_link(child, new_parent, __task_cred(new_parent)); 84 rcu_read_unlock(); 85 } 86 87 /** 88 * __ptrace_unlink - unlink ptracee and restore its execution state 89 * @child: ptracee to be unlinked 90 * 91 * Remove @child from the ptrace list, move it back to the original parent, 92 * and restore the execution state so that it conforms to the group stop 93 * state. 94 * 95 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer 96 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between 97 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED. 98 * If the ptracer is exiting, the ptracee can be in any state. 99 * 100 * After detach, the ptracee should be in a state which conforms to the 101 * group stop. If the group is stopped or in the process of stopping, the 102 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken 103 * up from TASK_TRACED. 104 * 105 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED, 106 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar 107 * to but in the opposite direction of what happens while attaching to a 108 * stopped task. However, in this direction, the intermediate RUNNING 109 * state is not hidden even from the current ptracer and if it immediately 110 * re-attaches and performs a WNOHANG wait(2), it may fail. 111 * 112 * CONTEXT: 113 * write_lock_irq(tasklist_lock) 114 */ 115 void __ptrace_unlink(struct task_struct *child) 116 { 117 const struct cred *old_cred; 118 BUG_ON(!child->ptrace); 119 120 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 121 122 child->parent = child->real_parent; 123 list_del_init(&child->ptrace_entry); 124 old_cred = child->ptracer_cred; 125 child->ptracer_cred = NULL; 126 put_cred(old_cred); 127 128 spin_lock(&child->sighand->siglock); 129 child->ptrace = 0; 130 /* 131 * Clear all pending traps and TRAPPING. TRAPPING should be 132 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly. 133 */ 134 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK); 135 task_clear_jobctl_trapping(child); 136 137 /* 138 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and 139 * @child isn't dead. 140 */ 141 if (!(child->flags & PF_EXITING) && 142 (child->signal->flags & SIGNAL_STOP_STOPPED || 143 child->signal->group_stop_count)) { 144 child->jobctl |= JOBCTL_STOP_PENDING; 145 146 /* 147 * This is only possible if this thread was cloned by the 148 * traced task running in the stopped group, set the signal 149 * for the future reports. 150 * FIXME: we should change ptrace_init_task() to handle this 151 * case. 152 */ 153 if (!(child->jobctl & JOBCTL_STOP_SIGMASK)) 154 child->jobctl |= SIGSTOP; 155 } 156 157 /* 158 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick 159 * @child in the butt. Note that @resume should be used iff @child 160 * is in TASK_TRACED; otherwise, we might unduly disrupt 161 * TASK_KILLABLE sleeps. 162 */ 163 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child)) 164 ptrace_signal_wake_up(child, true); 165 166 spin_unlock(&child->sighand->siglock); 167 } 168 169 /* Ensure that nothing can wake it up, even SIGKILL */ 170 static bool ptrace_freeze_traced(struct task_struct *task) 171 { 172 bool ret = false; 173 174 /* Lockless, nobody but us can set this flag */ 175 if (task->jobctl & JOBCTL_LISTENING) 176 return ret; 177 178 spin_lock_irq(&task->sighand->siglock); 179 if (task_is_traced(task) && !__fatal_signal_pending(task)) { 180 task->state = __TASK_TRACED; 181 ret = true; 182 } 183 spin_unlock_irq(&task->sighand->siglock); 184 185 return ret; 186 } 187 188 static void ptrace_unfreeze_traced(struct task_struct *task) 189 { 190 if (task->state != __TASK_TRACED) 191 return; 192 193 WARN_ON(!task->ptrace || task->parent != current); 194 195 /* 196 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely. 197 * Recheck state under the lock to close this race. 198 */ 199 spin_lock_irq(&task->sighand->siglock); 200 if (task->state == __TASK_TRACED) { 201 if (__fatal_signal_pending(task)) 202 wake_up_state(task, __TASK_TRACED); 203 else 204 task->state = TASK_TRACED; 205 } 206 spin_unlock_irq(&task->sighand->siglock); 207 } 208 209 /** 210 * ptrace_check_attach - check whether ptracee is ready for ptrace operation 211 * @child: ptracee to check for 212 * @ignore_state: don't check whether @child is currently %TASK_TRACED 213 * 214 * Check whether @child is being ptraced by %current and ready for further 215 * ptrace operations. If @ignore_state is %false, @child also should be in 216 * %TASK_TRACED state and on return the child is guaranteed to be traced 217 * and not executing. If @ignore_state is %true, @child can be in any 218 * state. 219 * 220 * CONTEXT: 221 * Grabs and releases tasklist_lock and @child->sighand->siglock. 222 * 223 * RETURNS: 224 * 0 on success, -ESRCH if %child is not ready. 225 */ 226 static int ptrace_check_attach(struct task_struct *child, bool ignore_state) 227 { 228 int ret = -ESRCH; 229 230 /* 231 * We take the read lock around doing both checks to close a 232 * possible race where someone else was tracing our child and 233 * detached between these two checks. After this locked check, 234 * we are sure that this is our traced child and that can only 235 * be changed by us so it's not changing right after this. 236 */ 237 read_lock(&tasklist_lock); 238 if (child->ptrace && child->parent == current) { 239 WARN_ON(child->state == __TASK_TRACED); 240 /* 241 * child->sighand can't be NULL, release_task() 242 * does ptrace_unlink() before __exit_signal(). 243 */ 244 if (ignore_state || ptrace_freeze_traced(child)) 245 ret = 0; 246 } 247 read_unlock(&tasklist_lock); 248 249 if (!ret && !ignore_state) { 250 if (!wait_task_inactive(child, __TASK_TRACED)) { 251 /* 252 * This can only happen if may_ptrace_stop() fails and 253 * ptrace_stop() changes ->state back to TASK_RUNNING, 254 * so we should not worry about leaking __TASK_TRACED. 255 */ 256 WARN_ON(child->state == __TASK_TRACED); 257 ret = -ESRCH; 258 } 259 } 260 261 return ret; 262 } 263 264 static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode) 265 { 266 if (mode & PTRACE_MODE_NOAUDIT) 267 return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE); 268 else 269 return has_ns_capability(current, ns, CAP_SYS_PTRACE); 270 } 271 272 /* Returns 0 on success, -errno on denial. */ 273 static int __ptrace_may_access(struct task_struct *task, unsigned int mode) 274 { 275 const struct cred *cred = current_cred(), *tcred; 276 struct mm_struct *mm; 277 kuid_t caller_uid; 278 kgid_t caller_gid; 279 280 if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) { 281 WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n"); 282 return -EPERM; 283 } 284 285 /* May we inspect the given task? 286 * This check is used both for attaching with ptrace 287 * and for allowing access to sensitive information in /proc. 288 * 289 * ptrace_attach denies several cases that /proc allows 290 * because setting up the necessary parent/child relationship 291 * or halting the specified task is impossible. 292 */ 293 294 /* Don't let security modules deny introspection */ 295 if (same_thread_group(task, current)) 296 return 0; 297 rcu_read_lock(); 298 if (mode & PTRACE_MODE_FSCREDS) { 299 caller_uid = cred->fsuid; 300 caller_gid = cred->fsgid; 301 } else { 302 /* 303 * Using the euid would make more sense here, but something 304 * in userland might rely on the old behavior, and this 305 * shouldn't be a security problem since 306 * PTRACE_MODE_REALCREDS implies that the caller explicitly 307 * used a syscall that requests access to another process 308 * (and not a filesystem syscall to procfs). 309 */ 310 caller_uid = cred->uid; 311 caller_gid = cred->gid; 312 } 313 tcred = __task_cred(task); 314 if (uid_eq(caller_uid, tcred->euid) && 315 uid_eq(caller_uid, tcred->suid) && 316 uid_eq(caller_uid, tcred->uid) && 317 gid_eq(caller_gid, tcred->egid) && 318 gid_eq(caller_gid, tcred->sgid) && 319 gid_eq(caller_gid, tcred->gid)) 320 goto ok; 321 if (ptrace_has_cap(tcred->user_ns, mode)) 322 goto ok; 323 rcu_read_unlock(); 324 return -EPERM; 325 ok: 326 rcu_read_unlock(); 327 mm = task->mm; 328 if (mm && 329 ((get_dumpable(mm) != SUID_DUMP_USER) && 330 !ptrace_has_cap(mm->user_ns, mode))) 331 return -EPERM; 332 333 return security_ptrace_access_check(task, mode); 334 } 335 336 bool ptrace_may_access(struct task_struct *task, unsigned int mode) 337 { 338 int err; 339 task_lock(task); 340 err = __ptrace_may_access(task, mode); 341 task_unlock(task); 342 return !err; 343 } 344 345 static int ptrace_attach(struct task_struct *task, long request, 346 unsigned long addr, 347 unsigned long flags) 348 { 349 bool seize = (request == PTRACE_SEIZE); 350 int retval; 351 352 retval = -EIO; 353 if (seize) { 354 if (addr != 0) 355 goto out; 356 if (flags & ~(unsigned long)PTRACE_O_MASK) 357 goto out; 358 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT); 359 } else { 360 flags = PT_PTRACED; 361 } 362 363 audit_ptrace(task); 364 365 retval = -EPERM; 366 if (unlikely(task->flags & PF_KTHREAD)) 367 goto out; 368 if (same_thread_group(task, current)) 369 goto out; 370 371 /* 372 * Protect exec's credential calculations against our interference; 373 * SUID, SGID and LSM creds get determined differently 374 * under ptrace. 375 */ 376 retval = -ERESTARTNOINTR; 377 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex)) 378 goto out; 379 380 task_lock(task); 381 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS); 382 task_unlock(task); 383 if (retval) 384 goto unlock_creds; 385 386 write_lock_irq(&tasklist_lock); 387 retval = -EPERM; 388 if (unlikely(task->exit_state)) 389 goto unlock_tasklist; 390 if (task->ptrace) 391 goto unlock_tasklist; 392 393 if (seize) 394 flags |= PT_SEIZED; 395 task->ptrace = flags; 396 397 ptrace_link(task, current); 398 399 /* SEIZE doesn't trap tracee on attach */ 400 if (!seize) 401 send_sig_info(SIGSTOP, SEND_SIG_PRIV, task); 402 403 spin_lock(&task->sighand->siglock); 404 405 /* 406 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and 407 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING 408 * will be cleared if the child completes the transition or any 409 * event which clears the group stop states happens. We'll wait 410 * for the transition to complete before returning from this 411 * function. 412 * 413 * This hides STOPPED -> RUNNING -> TRACED transition from the 414 * attaching thread but a different thread in the same group can 415 * still observe the transient RUNNING state. IOW, if another 416 * thread's WNOHANG wait(2) on the stopped tracee races against 417 * ATTACH, the wait(2) may fail due to the transient RUNNING. 418 * 419 * The following task_is_stopped() test is safe as both transitions 420 * in and out of STOPPED are protected by siglock. 421 */ 422 if (task_is_stopped(task) && 423 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING)) 424 signal_wake_up_state(task, __TASK_STOPPED); 425 426 spin_unlock(&task->sighand->siglock); 427 428 retval = 0; 429 unlock_tasklist: 430 write_unlock_irq(&tasklist_lock); 431 unlock_creds: 432 mutex_unlock(&task->signal->cred_guard_mutex); 433 out: 434 if (!retval) { 435 /* 436 * We do not bother to change retval or clear JOBCTL_TRAPPING 437 * if wait_on_bit() was interrupted by SIGKILL. The tracer will 438 * not return to user-mode, it will exit and clear this bit in 439 * __ptrace_unlink() if it wasn't already cleared by the tracee; 440 * and until then nobody can ptrace this task. 441 */ 442 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE); 443 proc_ptrace_connector(task, PTRACE_ATTACH); 444 } 445 446 return retval; 447 } 448 449 /** 450 * ptrace_traceme -- helper for PTRACE_TRACEME 451 * 452 * Performs checks and sets PT_PTRACED. 453 * Should be used by all ptrace implementations for PTRACE_TRACEME. 454 */ 455 static int ptrace_traceme(void) 456 { 457 int ret = -EPERM; 458 459 write_lock_irq(&tasklist_lock); 460 /* Are we already being traced? */ 461 if (!current->ptrace) { 462 ret = security_ptrace_traceme(current->parent); 463 /* 464 * Check PF_EXITING to ensure ->real_parent has not passed 465 * exit_ptrace(). Otherwise we don't report the error but 466 * pretend ->real_parent untraces us right after return. 467 */ 468 if (!ret && !(current->real_parent->flags & PF_EXITING)) { 469 current->ptrace = PT_PTRACED; 470 ptrace_link(current, current->real_parent); 471 } 472 } 473 write_unlock_irq(&tasklist_lock); 474 475 return ret; 476 } 477 478 /* 479 * Called with irqs disabled, returns true if childs should reap themselves. 480 */ 481 static int ignoring_children(struct sighand_struct *sigh) 482 { 483 int ret; 484 spin_lock(&sigh->siglock); 485 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) || 486 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT); 487 spin_unlock(&sigh->siglock); 488 return ret; 489 } 490 491 /* 492 * Called with tasklist_lock held for writing. 493 * Unlink a traced task, and clean it up if it was a traced zombie. 494 * Return true if it needs to be reaped with release_task(). 495 * (We can't call release_task() here because we already hold tasklist_lock.) 496 * 497 * If it's a zombie, our attachedness prevented normal parent notification 498 * or self-reaping. Do notification now if it would have happened earlier. 499 * If it should reap itself, return true. 500 * 501 * If it's our own child, there is no notification to do. But if our normal 502 * children self-reap, then this child was prevented by ptrace and we must 503 * reap it now, in that case we must also wake up sub-threads sleeping in 504 * do_wait(). 505 */ 506 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) 507 { 508 bool dead; 509 510 __ptrace_unlink(p); 511 512 if (p->exit_state != EXIT_ZOMBIE) 513 return false; 514 515 dead = !thread_group_leader(p); 516 517 if (!dead && thread_group_empty(p)) { 518 if (!same_thread_group(p->real_parent, tracer)) 519 dead = do_notify_parent(p, p->exit_signal); 520 else if (ignoring_children(tracer->sighand)) { 521 __wake_up_parent(p, tracer); 522 dead = true; 523 } 524 } 525 /* Mark it as in the process of being reaped. */ 526 if (dead) 527 p->exit_state = EXIT_DEAD; 528 return dead; 529 } 530 531 static int ptrace_detach(struct task_struct *child, unsigned int data) 532 { 533 if (!valid_signal(data)) 534 return -EIO; 535 536 /* Architecture-specific hardware disable .. */ 537 ptrace_disable(child); 538 539 write_lock_irq(&tasklist_lock); 540 /* 541 * We rely on ptrace_freeze_traced(). It can't be killed and 542 * untraced by another thread, it can't be a zombie. 543 */ 544 WARN_ON(!child->ptrace || child->exit_state); 545 /* 546 * tasklist_lock avoids the race with wait_task_stopped(), see 547 * the comment in ptrace_resume(). 548 */ 549 child->exit_code = data; 550 __ptrace_detach(current, child); 551 write_unlock_irq(&tasklist_lock); 552 553 proc_ptrace_connector(child, PTRACE_DETACH); 554 555 return 0; 556 } 557 558 /* 559 * Detach all tasks we were using ptrace on. Called with tasklist held 560 * for writing. 561 */ 562 void exit_ptrace(struct task_struct *tracer, struct list_head *dead) 563 { 564 struct task_struct *p, *n; 565 566 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) { 567 if (unlikely(p->ptrace & PT_EXITKILL)) 568 send_sig_info(SIGKILL, SEND_SIG_PRIV, p); 569 570 if (__ptrace_detach(tracer, p)) 571 list_add(&p->ptrace_entry, dead); 572 } 573 } 574 575 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len) 576 { 577 int copied = 0; 578 579 while (len > 0) { 580 char buf[128]; 581 int this_len, retval; 582 583 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 584 retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE); 585 586 if (!retval) { 587 if (copied) 588 break; 589 return -EIO; 590 } 591 if (copy_to_user(dst, buf, retval)) 592 return -EFAULT; 593 copied += retval; 594 src += retval; 595 dst += retval; 596 len -= retval; 597 } 598 return copied; 599 } 600 601 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len) 602 { 603 int copied = 0; 604 605 while (len > 0) { 606 char buf[128]; 607 int this_len, retval; 608 609 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 610 if (copy_from_user(buf, src, this_len)) 611 return -EFAULT; 612 retval = ptrace_access_vm(tsk, dst, buf, this_len, 613 FOLL_FORCE | FOLL_WRITE); 614 if (!retval) { 615 if (copied) 616 break; 617 return -EIO; 618 } 619 copied += retval; 620 src += retval; 621 dst += retval; 622 len -= retval; 623 } 624 return copied; 625 } 626 627 static int ptrace_setoptions(struct task_struct *child, unsigned long data) 628 { 629 unsigned flags; 630 631 if (data & ~(unsigned long)PTRACE_O_MASK) 632 return -EINVAL; 633 634 if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) { 635 if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) || 636 !IS_ENABLED(CONFIG_SECCOMP)) 637 return -EINVAL; 638 639 if (!capable(CAP_SYS_ADMIN)) 640 return -EPERM; 641 642 if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED || 643 current->ptrace & PT_SUSPEND_SECCOMP) 644 return -EPERM; 645 } 646 647 /* Avoid intermediate state when all opts are cleared */ 648 flags = child->ptrace; 649 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT); 650 flags |= (data << PT_OPT_FLAG_SHIFT); 651 child->ptrace = flags; 652 653 return 0; 654 } 655 656 static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info) 657 { 658 unsigned long flags; 659 int error = -ESRCH; 660 661 if (lock_task_sighand(child, &flags)) { 662 error = -EINVAL; 663 if (likely(child->last_siginfo != NULL)) { 664 copy_siginfo(info, child->last_siginfo); 665 error = 0; 666 } 667 unlock_task_sighand(child, &flags); 668 } 669 return error; 670 } 671 672 static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info) 673 { 674 unsigned long flags; 675 int error = -ESRCH; 676 677 if (lock_task_sighand(child, &flags)) { 678 error = -EINVAL; 679 if (likely(child->last_siginfo != NULL)) { 680 copy_siginfo(child->last_siginfo, info); 681 error = 0; 682 } 683 unlock_task_sighand(child, &flags); 684 } 685 return error; 686 } 687 688 static int ptrace_peek_siginfo(struct task_struct *child, 689 unsigned long addr, 690 unsigned long data) 691 { 692 struct ptrace_peeksiginfo_args arg; 693 struct sigpending *pending; 694 struct sigqueue *q; 695 int ret, i; 696 697 ret = copy_from_user(&arg, (void __user *) addr, 698 sizeof(struct ptrace_peeksiginfo_args)); 699 if (ret) 700 return -EFAULT; 701 702 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED) 703 return -EINVAL; /* unknown flags */ 704 705 if (arg.nr < 0) 706 return -EINVAL; 707 708 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED) 709 pending = &child->signal->shared_pending; 710 else 711 pending = &child->pending; 712 713 for (i = 0; i < arg.nr; ) { 714 kernel_siginfo_t info; 715 s32 off = arg.off + i; 716 717 spin_lock_irq(&child->sighand->siglock); 718 list_for_each_entry(q, &pending->list, list) { 719 if (!off--) { 720 copy_siginfo(&info, &q->info); 721 break; 722 } 723 } 724 spin_unlock_irq(&child->sighand->siglock); 725 726 if (off >= 0) /* beyond the end of the list */ 727 break; 728 729 #ifdef CONFIG_COMPAT 730 if (unlikely(in_compat_syscall())) { 731 compat_siginfo_t __user *uinfo = compat_ptr(data); 732 733 if (copy_siginfo_to_user32(uinfo, &info)) { 734 ret = -EFAULT; 735 break; 736 } 737 738 } else 739 #endif 740 { 741 siginfo_t __user *uinfo = (siginfo_t __user *) data; 742 743 if (copy_siginfo_to_user(uinfo, &info)) { 744 ret = -EFAULT; 745 break; 746 } 747 } 748 749 data += sizeof(siginfo_t); 750 i++; 751 752 if (signal_pending(current)) 753 break; 754 755 cond_resched(); 756 } 757 758 if (i > 0) 759 return i; 760 761 return ret; 762 } 763 764 #ifdef PTRACE_SINGLESTEP 765 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP) 766 #else 767 #define is_singlestep(request) 0 768 #endif 769 770 #ifdef PTRACE_SINGLEBLOCK 771 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK) 772 #else 773 #define is_singleblock(request) 0 774 #endif 775 776 #ifdef PTRACE_SYSEMU 777 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP) 778 #else 779 #define is_sysemu_singlestep(request) 0 780 #endif 781 782 static int ptrace_resume(struct task_struct *child, long request, 783 unsigned long data) 784 { 785 bool need_siglock; 786 787 if (!valid_signal(data)) 788 return -EIO; 789 790 if (request == PTRACE_SYSCALL) 791 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 792 else 793 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 794 795 #ifdef TIF_SYSCALL_EMU 796 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP) 797 set_tsk_thread_flag(child, TIF_SYSCALL_EMU); 798 else 799 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU); 800 #endif 801 802 if (is_singleblock(request)) { 803 if (unlikely(!arch_has_block_step())) 804 return -EIO; 805 user_enable_block_step(child); 806 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) { 807 if (unlikely(!arch_has_single_step())) 808 return -EIO; 809 user_enable_single_step(child); 810 } else { 811 user_disable_single_step(child); 812 } 813 814 /* 815 * Change ->exit_code and ->state under siglock to avoid the race 816 * with wait_task_stopped() in between; a non-zero ->exit_code will 817 * wrongly look like another report from tracee. 818 * 819 * Note that we need siglock even if ->exit_code == data and/or this 820 * status was not reported yet, the new status must not be cleared by 821 * wait_task_stopped() after resume. 822 * 823 * If data == 0 we do not care if wait_task_stopped() reports the old 824 * status and clears the code too; this can't race with the tracee, it 825 * takes siglock after resume. 826 */ 827 need_siglock = data && !thread_group_empty(current); 828 if (need_siglock) 829 spin_lock_irq(&child->sighand->siglock); 830 child->exit_code = data; 831 wake_up_state(child, __TASK_TRACED); 832 if (need_siglock) 833 spin_unlock_irq(&child->sighand->siglock); 834 835 return 0; 836 } 837 838 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 839 840 static const struct user_regset * 841 find_regset(const struct user_regset_view *view, unsigned int type) 842 { 843 const struct user_regset *regset; 844 int n; 845 846 for (n = 0; n < view->n; ++n) { 847 regset = view->regsets + n; 848 if (regset->core_note_type == type) 849 return regset; 850 } 851 852 return NULL; 853 } 854 855 static int ptrace_regset(struct task_struct *task, int req, unsigned int type, 856 struct iovec *kiov) 857 { 858 const struct user_regset_view *view = task_user_regset_view(task); 859 const struct user_regset *regset = find_regset(view, type); 860 int regset_no; 861 862 if (!regset || (kiov->iov_len % regset->size) != 0) 863 return -EINVAL; 864 865 regset_no = regset - view->regsets; 866 kiov->iov_len = min(kiov->iov_len, 867 (__kernel_size_t) (regset->n * regset->size)); 868 869 if (req == PTRACE_GETREGSET) 870 return copy_regset_to_user(task, view, regset_no, 0, 871 kiov->iov_len, kiov->iov_base); 872 else 873 return copy_regset_from_user(task, view, regset_no, 0, 874 kiov->iov_len, kiov->iov_base); 875 } 876 877 /* 878 * This is declared in linux/regset.h and defined in machine-dependent 879 * code. We put the export here, near the primary machine-neutral use, 880 * to ensure no machine forgets it. 881 */ 882 EXPORT_SYMBOL_GPL(task_user_regset_view); 883 #endif 884 885 int ptrace_request(struct task_struct *child, long request, 886 unsigned long addr, unsigned long data) 887 { 888 bool seized = child->ptrace & PT_SEIZED; 889 int ret = -EIO; 890 kernel_siginfo_t siginfo, *si; 891 void __user *datavp = (void __user *) data; 892 unsigned long __user *datalp = datavp; 893 unsigned long flags; 894 895 switch (request) { 896 case PTRACE_PEEKTEXT: 897 case PTRACE_PEEKDATA: 898 return generic_ptrace_peekdata(child, addr, data); 899 case PTRACE_POKETEXT: 900 case PTRACE_POKEDATA: 901 return generic_ptrace_pokedata(child, addr, data); 902 903 #ifdef PTRACE_OLDSETOPTIONS 904 case PTRACE_OLDSETOPTIONS: 905 #endif 906 case PTRACE_SETOPTIONS: 907 ret = ptrace_setoptions(child, data); 908 break; 909 case PTRACE_GETEVENTMSG: 910 ret = put_user(child->ptrace_message, datalp); 911 break; 912 913 case PTRACE_PEEKSIGINFO: 914 ret = ptrace_peek_siginfo(child, addr, data); 915 break; 916 917 case PTRACE_GETSIGINFO: 918 ret = ptrace_getsiginfo(child, &siginfo); 919 if (!ret) 920 ret = copy_siginfo_to_user(datavp, &siginfo); 921 break; 922 923 case PTRACE_SETSIGINFO: 924 ret = copy_siginfo_from_user(&siginfo, datavp); 925 if (!ret) 926 ret = ptrace_setsiginfo(child, &siginfo); 927 break; 928 929 case PTRACE_GETSIGMASK: { 930 sigset_t *mask; 931 932 if (addr != sizeof(sigset_t)) { 933 ret = -EINVAL; 934 break; 935 } 936 937 if (test_tsk_restore_sigmask(child)) 938 mask = &child->saved_sigmask; 939 else 940 mask = &child->blocked; 941 942 if (copy_to_user(datavp, mask, sizeof(sigset_t))) 943 ret = -EFAULT; 944 else 945 ret = 0; 946 947 break; 948 } 949 950 case PTRACE_SETSIGMASK: { 951 sigset_t new_set; 952 953 if (addr != sizeof(sigset_t)) { 954 ret = -EINVAL; 955 break; 956 } 957 958 if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) { 959 ret = -EFAULT; 960 break; 961 } 962 963 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 964 965 /* 966 * Every thread does recalc_sigpending() after resume, so 967 * retarget_shared_pending() and recalc_sigpending() are not 968 * called here. 969 */ 970 spin_lock_irq(&child->sighand->siglock); 971 child->blocked = new_set; 972 spin_unlock_irq(&child->sighand->siglock); 973 974 clear_tsk_restore_sigmask(child); 975 976 ret = 0; 977 break; 978 } 979 980 case PTRACE_INTERRUPT: 981 /* 982 * Stop tracee without any side-effect on signal or job 983 * control. At least one trap is guaranteed to happen 984 * after this request. If @child is already trapped, the 985 * current trap is not disturbed and another trap will 986 * happen after the current trap is ended with PTRACE_CONT. 987 * 988 * The actual trap might not be PTRACE_EVENT_STOP trap but 989 * the pending condition is cleared regardless. 990 */ 991 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 992 break; 993 994 /* 995 * INTERRUPT doesn't disturb existing trap sans one 996 * exception. If ptracer issued LISTEN for the current 997 * STOP, this INTERRUPT should clear LISTEN and re-trap 998 * tracee into STOP. 999 */ 1000 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP))) 1001 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING); 1002 1003 unlock_task_sighand(child, &flags); 1004 ret = 0; 1005 break; 1006 1007 case PTRACE_LISTEN: 1008 /* 1009 * Listen for events. Tracee must be in STOP. It's not 1010 * resumed per-se but is not considered to be in TRACED by 1011 * wait(2) or ptrace(2). If an async event (e.g. group 1012 * stop state change) happens, tracee will enter STOP trap 1013 * again. Alternatively, ptracer can issue INTERRUPT to 1014 * finish listening and re-trap tracee into STOP. 1015 */ 1016 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 1017 break; 1018 1019 si = child->last_siginfo; 1020 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) { 1021 child->jobctl |= JOBCTL_LISTENING; 1022 /* 1023 * If NOTIFY is set, it means event happened between 1024 * start of this trap and now. Trigger re-trap. 1025 */ 1026 if (child->jobctl & JOBCTL_TRAP_NOTIFY) 1027 ptrace_signal_wake_up(child, true); 1028 ret = 0; 1029 } 1030 unlock_task_sighand(child, &flags); 1031 break; 1032 1033 case PTRACE_DETACH: /* detach a process that was attached. */ 1034 ret = ptrace_detach(child, data); 1035 break; 1036 1037 #ifdef CONFIG_BINFMT_ELF_FDPIC 1038 case PTRACE_GETFDPIC: { 1039 struct mm_struct *mm = get_task_mm(child); 1040 unsigned long tmp = 0; 1041 1042 ret = -ESRCH; 1043 if (!mm) 1044 break; 1045 1046 switch (addr) { 1047 case PTRACE_GETFDPIC_EXEC: 1048 tmp = mm->context.exec_fdpic_loadmap; 1049 break; 1050 case PTRACE_GETFDPIC_INTERP: 1051 tmp = mm->context.interp_fdpic_loadmap; 1052 break; 1053 default: 1054 break; 1055 } 1056 mmput(mm); 1057 1058 ret = put_user(tmp, datalp); 1059 break; 1060 } 1061 #endif 1062 1063 #ifdef PTRACE_SINGLESTEP 1064 case PTRACE_SINGLESTEP: 1065 #endif 1066 #ifdef PTRACE_SINGLEBLOCK 1067 case PTRACE_SINGLEBLOCK: 1068 #endif 1069 #ifdef PTRACE_SYSEMU 1070 case PTRACE_SYSEMU: 1071 case PTRACE_SYSEMU_SINGLESTEP: 1072 #endif 1073 case PTRACE_SYSCALL: 1074 case PTRACE_CONT: 1075 return ptrace_resume(child, request, data); 1076 1077 case PTRACE_KILL: 1078 if (child->exit_state) /* already dead */ 1079 return 0; 1080 return ptrace_resume(child, request, SIGKILL); 1081 1082 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 1083 case PTRACE_GETREGSET: 1084 case PTRACE_SETREGSET: { 1085 struct iovec kiov; 1086 struct iovec __user *uiov = datavp; 1087 1088 if (!access_ok(uiov, sizeof(*uiov))) 1089 return -EFAULT; 1090 1091 if (__get_user(kiov.iov_base, &uiov->iov_base) || 1092 __get_user(kiov.iov_len, &uiov->iov_len)) 1093 return -EFAULT; 1094 1095 ret = ptrace_regset(child, request, addr, &kiov); 1096 if (!ret) 1097 ret = __put_user(kiov.iov_len, &uiov->iov_len); 1098 break; 1099 } 1100 #endif 1101 1102 case PTRACE_SECCOMP_GET_FILTER: 1103 ret = seccomp_get_filter(child, addr, datavp); 1104 break; 1105 1106 case PTRACE_SECCOMP_GET_METADATA: 1107 ret = seccomp_get_metadata(child, addr, datavp); 1108 break; 1109 1110 default: 1111 break; 1112 } 1113 1114 return ret; 1115 } 1116 1117 #ifndef arch_ptrace_attach 1118 #define arch_ptrace_attach(child) do { } while (0) 1119 #endif 1120 1121 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr, 1122 unsigned long, data) 1123 { 1124 struct task_struct *child; 1125 long ret; 1126 1127 if (request == PTRACE_TRACEME) { 1128 ret = ptrace_traceme(); 1129 if (!ret) 1130 arch_ptrace_attach(current); 1131 goto out; 1132 } 1133 1134 child = find_get_task_by_vpid(pid); 1135 if (!child) { 1136 ret = -ESRCH; 1137 goto out; 1138 } 1139 1140 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 1141 ret = ptrace_attach(child, request, addr, data); 1142 /* 1143 * Some architectures need to do book-keeping after 1144 * a ptrace attach. 1145 */ 1146 if (!ret) 1147 arch_ptrace_attach(child); 1148 goto out_put_task_struct; 1149 } 1150 1151 ret = ptrace_check_attach(child, request == PTRACE_KILL || 1152 request == PTRACE_INTERRUPT); 1153 if (ret < 0) 1154 goto out_put_task_struct; 1155 1156 ret = arch_ptrace(child, request, addr, data); 1157 if (ret || request != PTRACE_DETACH) 1158 ptrace_unfreeze_traced(child); 1159 1160 out_put_task_struct: 1161 put_task_struct(child); 1162 out: 1163 return ret; 1164 } 1165 1166 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 1167 unsigned long data) 1168 { 1169 unsigned long tmp; 1170 int copied; 1171 1172 copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE); 1173 if (copied != sizeof(tmp)) 1174 return -EIO; 1175 return put_user(tmp, (unsigned long __user *)data); 1176 } 1177 1178 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 1179 unsigned long data) 1180 { 1181 int copied; 1182 1183 copied = ptrace_access_vm(tsk, addr, &data, sizeof(data), 1184 FOLL_FORCE | FOLL_WRITE); 1185 return (copied == sizeof(data)) ? 0 : -EIO; 1186 } 1187 1188 #if defined CONFIG_COMPAT 1189 1190 int compat_ptrace_request(struct task_struct *child, compat_long_t request, 1191 compat_ulong_t addr, compat_ulong_t data) 1192 { 1193 compat_ulong_t __user *datap = compat_ptr(data); 1194 compat_ulong_t word; 1195 kernel_siginfo_t siginfo; 1196 int ret; 1197 1198 switch (request) { 1199 case PTRACE_PEEKTEXT: 1200 case PTRACE_PEEKDATA: 1201 ret = ptrace_access_vm(child, addr, &word, sizeof(word), 1202 FOLL_FORCE); 1203 if (ret != sizeof(word)) 1204 ret = -EIO; 1205 else 1206 ret = put_user(word, datap); 1207 break; 1208 1209 case PTRACE_POKETEXT: 1210 case PTRACE_POKEDATA: 1211 ret = ptrace_access_vm(child, addr, &data, sizeof(data), 1212 FOLL_FORCE | FOLL_WRITE); 1213 ret = (ret != sizeof(data) ? -EIO : 0); 1214 break; 1215 1216 case PTRACE_GETEVENTMSG: 1217 ret = put_user((compat_ulong_t) child->ptrace_message, datap); 1218 break; 1219 1220 case PTRACE_GETSIGINFO: 1221 ret = ptrace_getsiginfo(child, &siginfo); 1222 if (!ret) 1223 ret = copy_siginfo_to_user32( 1224 (struct compat_siginfo __user *) datap, 1225 &siginfo); 1226 break; 1227 1228 case PTRACE_SETSIGINFO: 1229 ret = copy_siginfo_from_user32( 1230 &siginfo, (struct compat_siginfo __user *) datap); 1231 if (!ret) 1232 ret = ptrace_setsiginfo(child, &siginfo); 1233 break; 1234 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 1235 case PTRACE_GETREGSET: 1236 case PTRACE_SETREGSET: 1237 { 1238 struct iovec kiov; 1239 struct compat_iovec __user *uiov = 1240 (struct compat_iovec __user *) datap; 1241 compat_uptr_t ptr; 1242 compat_size_t len; 1243 1244 if (!access_ok(uiov, sizeof(*uiov))) 1245 return -EFAULT; 1246 1247 if (__get_user(ptr, &uiov->iov_base) || 1248 __get_user(len, &uiov->iov_len)) 1249 return -EFAULT; 1250 1251 kiov.iov_base = compat_ptr(ptr); 1252 kiov.iov_len = len; 1253 1254 ret = ptrace_regset(child, request, addr, &kiov); 1255 if (!ret) 1256 ret = __put_user(kiov.iov_len, &uiov->iov_len); 1257 break; 1258 } 1259 #endif 1260 1261 default: 1262 ret = ptrace_request(child, request, addr, data); 1263 } 1264 1265 return ret; 1266 } 1267 1268 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid, 1269 compat_long_t, addr, compat_long_t, data) 1270 { 1271 struct task_struct *child; 1272 long ret; 1273 1274 if (request == PTRACE_TRACEME) { 1275 ret = ptrace_traceme(); 1276 goto out; 1277 } 1278 1279 child = find_get_task_by_vpid(pid); 1280 if (!child) { 1281 ret = -ESRCH; 1282 goto out; 1283 } 1284 1285 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 1286 ret = ptrace_attach(child, request, addr, data); 1287 /* 1288 * Some architectures need to do book-keeping after 1289 * a ptrace attach. 1290 */ 1291 if (!ret) 1292 arch_ptrace_attach(child); 1293 goto out_put_task_struct; 1294 } 1295 1296 ret = ptrace_check_attach(child, request == PTRACE_KILL || 1297 request == PTRACE_INTERRUPT); 1298 if (!ret) { 1299 ret = compat_arch_ptrace(child, request, addr, data); 1300 if (ret || request != PTRACE_DETACH) 1301 ptrace_unfreeze_traced(child); 1302 } 1303 1304 out_put_task_struct: 1305 put_task_struct(child); 1306 out: 1307 return ret; 1308 } 1309 #endif /* CONFIG_COMPAT */ 1310