xref: /openbmc/linux/kernel/ptrace.c (revision 53809828)
1 /*
2  * linux/kernel/ptrace.c
3  *
4  * (C) Copyright 1999 Linus Torvalds
5  *
6  * Common interfaces for "ptrace()" which we do not want
7  * to continually duplicate across every architecture.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/coredump.h>
15 #include <linux/sched/task.h>
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/pagemap.h>
20 #include <linux/ptrace.h>
21 #include <linux/security.h>
22 #include <linux/signal.h>
23 #include <linux/uio.h>
24 #include <linux/audit.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/syscalls.h>
27 #include <linux/uaccess.h>
28 #include <linux/regset.h>
29 #include <linux/hw_breakpoint.h>
30 #include <linux/cn_proc.h>
31 #include <linux/compat.h>
32 
33 /*
34  * Access another process' address space via ptrace.
35  * Source/target buffer must be kernel space,
36  * Do not walk the page table directly, use get_user_pages
37  */
38 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
39 		     void *buf, int len, unsigned int gup_flags)
40 {
41 	struct mm_struct *mm;
42 	int ret;
43 
44 	mm = get_task_mm(tsk);
45 	if (!mm)
46 		return 0;
47 
48 	if (!tsk->ptrace ||
49 	    (current != tsk->parent) ||
50 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
51 	     !ptracer_capable(tsk, mm->user_ns))) {
52 		mmput(mm);
53 		return 0;
54 	}
55 
56 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
57 	mmput(mm);
58 
59 	return ret;
60 }
61 
62 
63 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent,
64 		   const struct cred *ptracer_cred)
65 {
66 	BUG_ON(!list_empty(&child->ptrace_entry));
67 	list_add(&child->ptrace_entry, &new_parent->ptraced);
68 	child->parent = new_parent;
69 	child->ptracer_cred = get_cred(ptracer_cred);
70 }
71 
72 /*
73  * ptrace a task: make the debugger its new parent and
74  * move it to the ptrace list.
75  *
76  * Must be called with the tasklist lock write-held.
77  */
78 static void ptrace_link(struct task_struct *child, struct task_struct *new_parent)
79 {
80 	rcu_read_lock();
81 	__ptrace_link(child, new_parent, __task_cred(new_parent));
82 	rcu_read_unlock();
83 }
84 
85 /**
86  * __ptrace_unlink - unlink ptracee and restore its execution state
87  * @child: ptracee to be unlinked
88  *
89  * Remove @child from the ptrace list, move it back to the original parent,
90  * and restore the execution state so that it conforms to the group stop
91  * state.
92  *
93  * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
94  * exiting.  For PTRACE_DETACH, unless the ptracee has been killed between
95  * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
96  * If the ptracer is exiting, the ptracee can be in any state.
97  *
98  * After detach, the ptracee should be in a state which conforms to the
99  * group stop.  If the group is stopped or in the process of stopping, the
100  * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
101  * up from TASK_TRACED.
102  *
103  * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
104  * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
105  * to but in the opposite direction of what happens while attaching to a
106  * stopped task.  However, in this direction, the intermediate RUNNING
107  * state is not hidden even from the current ptracer and if it immediately
108  * re-attaches and performs a WNOHANG wait(2), it may fail.
109  *
110  * CONTEXT:
111  * write_lock_irq(tasklist_lock)
112  */
113 void __ptrace_unlink(struct task_struct *child)
114 {
115 	const struct cred *old_cred;
116 	BUG_ON(!child->ptrace);
117 
118 	clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
119 
120 	child->parent = child->real_parent;
121 	list_del_init(&child->ptrace_entry);
122 	old_cred = child->ptracer_cred;
123 	child->ptracer_cred = NULL;
124 	put_cred(old_cred);
125 
126 	spin_lock(&child->sighand->siglock);
127 	child->ptrace = 0;
128 	/*
129 	 * Clear all pending traps and TRAPPING.  TRAPPING should be
130 	 * cleared regardless of JOBCTL_STOP_PENDING.  Do it explicitly.
131 	 */
132 	task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
133 	task_clear_jobctl_trapping(child);
134 
135 	/*
136 	 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
137 	 * @child isn't dead.
138 	 */
139 	if (!(child->flags & PF_EXITING) &&
140 	    (child->signal->flags & SIGNAL_STOP_STOPPED ||
141 	     child->signal->group_stop_count)) {
142 		child->jobctl |= JOBCTL_STOP_PENDING;
143 
144 		/*
145 		 * This is only possible if this thread was cloned by the
146 		 * traced task running in the stopped group, set the signal
147 		 * for the future reports.
148 		 * FIXME: we should change ptrace_init_task() to handle this
149 		 * case.
150 		 */
151 		if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
152 			child->jobctl |= SIGSTOP;
153 	}
154 
155 	/*
156 	 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
157 	 * @child in the butt.  Note that @resume should be used iff @child
158 	 * is in TASK_TRACED; otherwise, we might unduly disrupt
159 	 * TASK_KILLABLE sleeps.
160 	 */
161 	if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
162 		ptrace_signal_wake_up(child, true);
163 
164 	spin_unlock(&child->sighand->siglock);
165 }
166 
167 /* Ensure that nothing can wake it up, even SIGKILL */
168 static bool ptrace_freeze_traced(struct task_struct *task)
169 {
170 	bool ret = false;
171 
172 	/* Lockless, nobody but us can set this flag */
173 	if (task->jobctl & JOBCTL_LISTENING)
174 		return ret;
175 
176 	spin_lock_irq(&task->sighand->siglock);
177 	if (task_is_traced(task) && !__fatal_signal_pending(task)) {
178 		task->state = __TASK_TRACED;
179 		ret = true;
180 	}
181 	spin_unlock_irq(&task->sighand->siglock);
182 
183 	return ret;
184 }
185 
186 static void ptrace_unfreeze_traced(struct task_struct *task)
187 {
188 	if (task->state != __TASK_TRACED)
189 		return;
190 
191 	WARN_ON(!task->ptrace || task->parent != current);
192 
193 	/*
194 	 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely.
195 	 * Recheck state under the lock to close this race.
196 	 */
197 	spin_lock_irq(&task->sighand->siglock);
198 	if (task->state == __TASK_TRACED) {
199 		if (__fatal_signal_pending(task))
200 			wake_up_state(task, __TASK_TRACED);
201 		else
202 			task->state = TASK_TRACED;
203 	}
204 	spin_unlock_irq(&task->sighand->siglock);
205 }
206 
207 /**
208  * ptrace_check_attach - check whether ptracee is ready for ptrace operation
209  * @child: ptracee to check for
210  * @ignore_state: don't check whether @child is currently %TASK_TRACED
211  *
212  * Check whether @child is being ptraced by %current and ready for further
213  * ptrace operations.  If @ignore_state is %false, @child also should be in
214  * %TASK_TRACED state and on return the child is guaranteed to be traced
215  * and not executing.  If @ignore_state is %true, @child can be in any
216  * state.
217  *
218  * CONTEXT:
219  * Grabs and releases tasklist_lock and @child->sighand->siglock.
220  *
221  * RETURNS:
222  * 0 on success, -ESRCH if %child is not ready.
223  */
224 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
225 {
226 	int ret = -ESRCH;
227 
228 	/*
229 	 * We take the read lock around doing both checks to close a
230 	 * possible race where someone else was tracing our child and
231 	 * detached between these two checks.  After this locked check,
232 	 * we are sure that this is our traced child and that can only
233 	 * be changed by us so it's not changing right after this.
234 	 */
235 	read_lock(&tasklist_lock);
236 	if (child->ptrace && child->parent == current) {
237 		WARN_ON(child->state == __TASK_TRACED);
238 		/*
239 		 * child->sighand can't be NULL, release_task()
240 		 * does ptrace_unlink() before __exit_signal().
241 		 */
242 		if (ignore_state || ptrace_freeze_traced(child))
243 			ret = 0;
244 	}
245 	read_unlock(&tasklist_lock);
246 
247 	if (!ret && !ignore_state) {
248 		if (!wait_task_inactive(child, __TASK_TRACED)) {
249 			/*
250 			 * This can only happen if may_ptrace_stop() fails and
251 			 * ptrace_stop() changes ->state back to TASK_RUNNING,
252 			 * so we should not worry about leaking __TASK_TRACED.
253 			 */
254 			WARN_ON(child->state == __TASK_TRACED);
255 			ret = -ESRCH;
256 		}
257 	}
258 
259 	return ret;
260 }
261 
262 static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
263 {
264 	if (mode & PTRACE_MODE_SCHED)
265 		return false;
266 
267 	if (mode & PTRACE_MODE_NOAUDIT)
268 		return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE);
269 	else
270 		return has_ns_capability(current, ns, CAP_SYS_PTRACE);
271 }
272 
273 /* Returns 0 on success, -errno on denial. */
274 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
275 {
276 	const struct cred *cred = current_cred(), *tcred;
277 	struct mm_struct *mm;
278 	kuid_t caller_uid;
279 	kgid_t caller_gid;
280 
281 	if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
282 		WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
283 		return -EPERM;
284 	}
285 
286 	/* May we inspect the given task?
287 	 * This check is used both for attaching with ptrace
288 	 * and for allowing access to sensitive information in /proc.
289 	 *
290 	 * ptrace_attach denies several cases that /proc allows
291 	 * because setting up the necessary parent/child relationship
292 	 * or halting the specified task is impossible.
293 	 */
294 
295 	/* Don't let security modules deny introspection */
296 	if (same_thread_group(task, current))
297 		return 0;
298 	rcu_read_lock();
299 	if (mode & PTRACE_MODE_FSCREDS) {
300 		caller_uid = cred->fsuid;
301 		caller_gid = cred->fsgid;
302 	} else {
303 		/*
304 		 * Using the euid would make more sense here, but something
305 		 * in userland might rely on the old behavior, and this
306 		 * shouldn't be a security problem since
307 		 * PTRACE_MODE_REALCREDS implies that the caller explicitly
308 		 * used a syscall that requests access to another process
309 		 * (and not a filesystem syscall to procfs).
310 		 */
311 		caller_uid = cred->uid;
312 		caller_gid = cred->gid;
313 	}
314 	tcred = __task_cred(task);
315 	if (uid_eq(caller_uid, tcred->euid) &&
316 	    uid_eq(caller_uid, tcred->suid) &&
317 	    uid_eq(caller_uid, tcred->uid)  &&
318 	    gid_eq(caller_gid, tcred->egid) &&
319 	    gid_eq(caller_gid, tcred->sgid) &&
320 	    gid_eq(caller_gid, tcred->gid))
321 		goto ok;
322 	if (ptrace_has_cap(tcred->user_ns, mode))
323 		goto ok;
324 	rcu_read_unlock();
325 	return -EPERM;
326 ok:
327 	rcu_read_unlock();
328 	mm = task->mm;
329 	if (mm &&
330 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
331 	     !ptrace_has_cap(mm->user_ns, mode)))
332 	    return -EPERM;
333 
334 	if (mode & PTRACE_MODE_SCHED)
335 		return 0;
336 	return security_ptrace_access_check(task, mode);
337 }
338 
339 bool ptrace_may_access_sched(struct task_struct *task, unsigned int mode)
340 {
341 	return __ptrace_may_access(task, mode | PTRACE_MODE_SCHED);
342 }
343 
344 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
345 {
346 	int err;
347 	task_lock(task);
348 	err = __ptrace_may_access(task, mode);
349 	task_unlock(task);
350 	return !err;
351 }
352 
353 static int ptrace_attach(struct task_struct *task, long request,
354 			 unsigned long addr,
355 			 unsigned long flags)
356 {
357 	bool seize = (request == PTRACE_SEIZE);
358 	int retval;
359 
360 	retval = -EIO;
361 	if (seize) {
362 		if (addr != 0)
363 			goto out;
364 		if (flags & ~(unsigned long)PTRACE_O_MASK)
365 			goto out;
366 		flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
367 	} else {
368 		flags = PT_PTRACED;
369 	}
370 
371 	audit_ptrace(task);
372 
373 	retval = -EPERM;
374 	if (unlikely(task->flags & PF_KTHREAD))
375 		goto out;
376 	if (same_thread_group(task, current))
377 		goto out;
378 
379 	/*
380 	 * Protect exec's credential calculations against our interference;
381 	 * SUID, SGID and LSM creds get determined differently
382 	 * under ptrace.
383 	 */
384 	retval = -ERESTARTNOINTR;
385 	if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
386 		goto out;
387 
388 	task_lock(task);
389 	retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
390 	task_unlock(task);
391 	if (retval)
392 		goto unlock_creds;
393 
394 	write_lock_irq(&tasklist_lock);
395 	retval = -EPERM;
396 	if (unlikely(task->exit_state))
397 		goto unlock_tasklist;
398 	if (task->ptrace)
399 		goto unlock_tasklist;
400 
401 	if (seize)
402 		flags |= PT_SEIZED;
403 	task->ptrace = flags;
404 
405 	ptrace_link(task, current);
406 
407 	/* SEIZE doesn't trap tracee on attach */
408 	if (!seize)
409 		send_sig_info(SIGSTOP, SEND_SIG_PRIV, task);
410 
411 	spin_lock(&task->sighand->siglock);
412 
413 	/*
414 	 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
415 	 * TRAPPING, and kick it so that it transits to TRACED.  TRAPPING
416 	 * will be cleared if the child completes the transition or any
417 	 * event which clears the group stop states happens.  We'll wait
418 	 * for the transition to complete before returning from this
419 	 * function.
420 	 *
421 	 * This hides STOPPED -> RUNNING -> TRACED transition from the
422 	 * attaching thread but a different thread in the same group can
423 	 * still observe the transient RUNNING state.  IOW, if another
424 	 * thread's WNOHANG wait(2) on the stopped tracee races against
425 	 * ATTACH, the wait(2) may fail due to the transient RUNNING.
426 	 *
427 	 * The following task_is_stopped() test is safe as both transitions
428 	 * in and out of STOPPED are protected by siglock.
429 	 */
430 	if (task_is_stopped(task) &&
431 	    task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
432 		signal_wake_up_state(task, __TASK_STOPPED);
433 
434 	spin_unlock(&task->sighand->siglock);
435 
436 	retval = 0;
437 unlock_tasklist:
438 	write_unlock_irq(&tasklist_lock);
439 unlock_creds:
440 	mutex_unlock(&task->signal->cred_guard_mutex);
441 out:
442 	if (!retval) {
443 		/*
444 		 * We do not bother to change retval or clear JOBCTL_TRAPPING
445 		 * if wait_on_bit() was interrupted by SIGKILL. The tracer will
446 		 * not return to user-mode, it will exit and clear this bit in
447 		 * __ptrace_unlink() if it wasn't already cleared by the tracee;
448 		 * and until then nobody can ptrace this task.
449 		 */
450 		wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
451 		proc_ptrace_connector(task, PTRACE_ATTACH);
452 	}
453 
454 	return retval;
455 }
456 
457 /**
458  * ptrace_traceme  --  helper for PTRACE_TRACEME
459  *
460  * Performs checks and sets PT_PTRACED.
461  * Should be used by all ptrace implementations for PTRACE_TRACEME.
462  */
463 static int ptrace_traceme(void)
464 {
465 	int ret = -EPERM;
466 
467 	write_lock_irq(&tasklist_lock);
468 	/* Are we already being traced? */
469 	if (!current->ptrace) {
470 		ret = security_ptrace_traceme(current->parent);
471 		/*
472 		 * Check PF_EXITING to ensure ->real_parent has not passed
473 		 * exit_ptrace(). Otherwise we don't report the error but
474 		 * pretend ->real_parent untraces us right after return.
475 		 */
476 		if (!ret && !(current->real_parent->flags & PF_EXITING)) {
477 			current->ptrace = PT_PTRACED;
478 			ptrace_link(current, current->real_parent);
479 		}
480 	}
481 	write_unlock_irq(&tasklist_lock);
482 
483 	return ret;
484 }
485 
486 /*
487  * Called with irqs disabled, returns true if childs should reap themselves.
488  */
489 static int ignoring_children(struct sighand_struct *sigh)
490 {
491 	int ret;
492 	spin_lock(&sigh->siglock);
493 	ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
494 	      (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
495 	spin_unlock(&sigh->siglock);
496 	return ret;
497 }
498 
499 /*
500  * Called with tasklist_lock held for writing.
501  * Unlink a traced task, and clean it up if it was a traced zombie.
502  * Return true if it needs to be reaped with release_task().
503  * (We can't call release_task() here because we already hold tasklist_lock.)
504  *
505  * If it's a zombie, our attachedness prevented normal parent notification
506  * or self-reaping.  Do notification now if it would have happened earlier.
507  * If it should reap itself, return true.
508  *
509  * If it's our own child, there is no notification to do. But if our normal
510  * children self-reap, then this child was prevented by ptrace and we must
511  * reap it now, in that case we must also wake up sub-threads sleeping in
512  * do_wait().
513  */
514 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
515 {
516 	bool dead;
517 
518 	__ptrace_unlink(p);
519 
520 	if (p->exit_state != EXIT_ZOMBIE)
521 		return false;
522 
523 	dead = !thread_group_leader(p);
524 
525 	if (!dead && thread_group_empty(p)) {
526 		if (!same_thread_group(p->real_parent, tracer))
527 			dead = do_notify_parent(p, p->exit_signal);
528 		else if (ignoring_children(tracer->sighand)) {
529 			__wake_up_parent(p, tracer);
530 			dead = true;
531 		}
532 	}
533 	/* Mark it as in the process of being reaped. */
534 	if (dead)
535 		p->exit_state = EXIT_DEAD;
536 	return dead;
537 }
538 
539 static int ptrace_detach(struct task_struct *child, unsigned int data)
540 {
541 	if (!valid_signal(data))
542 		return -EIO;
543 
544 	/* Architecture-specific hardware disable .. */
545 	ptrace_disable(child);
546 
547 	write_lock_irq(&tasklist_lock);
548 	/*
549 	 * We rely on ptrace_freeze_traced(). It can't be killed and
550 	 * untraced by another thread, it can't be a zombie.
551 	 */
552 	WARN_ON(!child->ptrace || child->exit_state);
553 	/*
554 	 * tasklist_lock avoids the race with wait_task_stopped(), see
555 	 * the comment in ptrace_resume().
556 	 */
557 	child->exit_code = data;
558 	__ptrace_detach(current, child);
559 	write_unlock_irq(&tasklist_lock);
560 
561 	proc_ptrace_connector(child, PTRACE_DETACH);
562 
563 	return 0;
564 }
565 
566 /*
567  * Detach all tasks we were using ptrace on. Called with tasklist held
568  * for writing.
569  */
570 void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
571 {
572 	struct task_struct *p, *n;
573 
574 	list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
575 		if (unlikely(p->ptrace & PT_EXITKILL))
576 			send_sig_info(SIGKILL, SEND_SIG_PRIV, p);
577 
578 		if (__ptrace_detach(tracer, p))
579 			list_add(&p->ptrace_entry, dead);
580 	}
581 }
582 
583 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
584 {
585 	int copied = 0;
586 
587 	while (len > 0) {
588 		char buf[128];
589 		int this_len, retval;
590 
591 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
592 		retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
593 
594 		if (!retval) {
595 			if (copied)
596 				break;
597 			return -EIO;
598 		}
599 		if (copy_to_user(dst, buf, retval))
600 			return -EFAULT;
601 		copied += retval;
602 		src += retval;
603 		dst += retval;
604 		len -= retval;
605 	}
606 	return copied;
607 }
608 
609 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
610 {
611 	int copied = 0;
612 
613 	while (len > 0) {
614 		char buf[128];
615 		int this_len, retval;
616 
617 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
618 		if (copy_from_user(buf, src, this_len))
619 			return -EFAULT;
620 		retval = ptrace_access_vm(tsk, dst, buf, this_len,
621 				FOLL_FORCE | FOLL_WRITE);
622 		if (!retval) {
623 			if (copied)
624 				break;
625 			return -EIO;
626 		}
627 		copied += retval;
628 		src += retval;
629 		dst += retval;
630 		len -= retval;
631 	}
632 	return copied;
633 }
634 
635 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
636 {
637 	unsigned flags;
638 
639 	if (data & ~(unsigned long)PTRACE_O_MASK)
640 		return -EINVAL;
641 
642 	if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
643 		if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
644 		    !IS_ENABLED(CONFIG_SECCOMP))
645 			return -EINVAL;
646 
647 		if (!capable(CAP_SYS_ADMIN))
648 			return -EPERM;
649 
650 		if (seccomp_mode(&current->seccomp) != SECCOMP_MODE_DISABLED ||
651 		    current->ptrace & PT_SUSPEND_SECCOMP)
652 			return -EPERM;
653 	}
654 
655 	/* Avoid intermediate state when all opts are cleared */
656 	flags = child->ptrace;
657 	flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
658 	flags |= (data << PT_OPT_FLAG_SHIFT);
659 	child->ptrace = flags;
660 
661 	return 0;
662 }
663 
664 static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info)
665 {
666 	unsigned long flags;
667 	int error = -ESRCH;
668 
669 	if (lock_task_sighand(child, &flags)) {
670 		error = -EINVAL;
671 		if (likely(child->last_siginfo != NULL)) {
672 			copy_siginfo(info, child->last_siginfo);
673 			error = 0;
674 		}
675 		unlock_task_sighand(child, &flags);
676 	}
677 	return error;
678 }
679 
680 static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info)
681 {
682 	unsigned long flags;
683 	int error = -ESRCH;
684 
685 	if (lock_task_sighand(child, &flags)) {
686 		error = -EINVAL;
687 		if (likely(child->last_siginfo != NULL)) {
688 			copy_siginfo(child->last_siginfo, info);
689 			error = 0;
690 		}
691 		unlock_task_sighand(child, &flags);
692 	}
693 	return error;
694 }
695 
696 static int ptrace_peek_siginfo(struct task_struct *child,
697 				unsigned long addr,
698 				unsigned long data)
699 {
700 	struct ptrace_peeksiginfo_args arg;
701 	struct sigpending *pending;
702 	struct sigqueue *q;
703 	int ret, i;
704 
705 	ret = copy_from_user(&arg, (void __user *) addr,
706 				sizeof(struct ptrace_peeksiginfo_args));
707 	if (ret)
708 		return -EFAULT;
709 
710 	if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
711 		return -EINVAL; /* unknown flags */
712 
713 	if (arg.nr < 0)
714 		return -EINVAL;
715 
716 	if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
717 		pending = &child->signal->shared_pending;
718 	else
719 		pending = &child->pending;
720 
721 	for (i = 0; i < arg.nr; ) {
722 		kernel_siginfo_t info;
723 		s32 off = arg.off + i;
724 
725 		spin_lock_irq(&child->sighand->siglock);
726 		list_for_each_entry(q, &pending->list, list) {
727 			if (!off--) {
728 				copy_siginfo(&info, &q->info);
729 				break;
730 			}
731 		}
732 		spin_unlock_irq(&child->sighand->siglock);
733 
734 		if (off >= 0) /* beyond the end of the list */
735 			break;
736 
737 #ifdef CONFIG_COMPAT
738 		if (unlikely(in_compat_syscall())) {
739 			compat_siginfo_t __user *uinfo = compat_ptr(data);
740 
741 			if (copy_siginfo_to_user32(uinfo, &info)) {
742 				ret = -EFAULT;
743 				break;
744 			}
745 
746 		} else
747 #endif
748 		{
749 			siginfo_t __user *uinfo = (siginfo_t __user *) data;
750 
751 			if (copy_siginfo_to_user(uinfo, &info)) {
752 				ret = -EFAULT;
753 				break;
754 			}
755 		}
756 
757 		data += sizeof(siginfo_t);
758 		i++;
759 
760 		if (signal_pending(current))
761 			break;
762 
763 		cond_resched();
764 	}
765 
766 	if (i > 0)
767 		return i;
768 
769 	return ret;
770 }
771 
772 #ifdef PTRACE_SINGLESTEP
773 #define is_singlestep(request)		((request) == PTRACE_SINGLESTEP)
774 #else
775 #define is_singlestep(request)		0
776 #endif
777 
778 #ifdef PTRACE_SINGLEBLOCK
779 #define is_singleblock(request)		((request) == PTRACE_SINGLEBLOCK)
780 #else
781 #define is_singleblock(request)		0
782 #endif
783 
784 #ifdef PTRACE_SYSEMU
785 #define is_sysemu_singlestep(request)	((request) == PTRACE_SYSEMU_SINGLESTEP)
786 #else
787 #define is_sysemu_singlestep(request)	0
788 #endif
789 
790 static int ptrace_resume(struct task_struct *child, long request,
791 			 unsigned long data)
792 {
793 	bool need_siglock;
794 
795 	if (!valid_signal(data))
796 		return -EIO;
797 
798 	if (request == PTRACE_SYSCALL)
799 		set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
800 	else
801 		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
802 
803 #ifdef TIF_SYSCALL_EMU
804 	if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
805 		set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
806 	else
807 		clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
808 #endif
809 
810 	if (is_singleblock(request)) {
811 		if (unlikely(!arch_has_block_step()))
812 			return -EIO;
813 		user_enable_block_step(child);
814 	} else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
815 		if (unlikely(!arch_has_single_step()))
816 			return -EIO;
817 		user_enable_single_step(child);
818 	} else {
819 		user_disable_single_step(child);
820 	}
821 
822 	/*
823 	 * Change ->exit_code and ->state under siglock to avoid the race
824 	 * with wait_task_stopped() in between; a non-zero ->exit_code will
825 	 * wrongly look like another report from tracee.
826 	 *
827 	 * Note that we need siglock even if ->exit_code == data and/or this
828 	 * status was not reported yet, the new status must not be cleared by
829 	 * wait_task_stopped() after resume.
830 	 *
831 	 * If data == 0 we do not care if wait_task_stopped() reports the old
832 	 * status and clears the code too; this can't race with the tracee, it
833 	 * takes siglock after resume.
834 	 */
835 	need_siglock = data && !thread_group_empty(current);
836 	if (need_siglock)
837 		spin_lock_irq(&child->sighand->siglock);
838 	child->exit_code = data;
839 	wake_up_state(child, __TASK_TRACED);
840 	if (need_siglock)
841 		spin_unlock_irq(&child->sighand->siglock);
842 
843 	return 0;
844 }
845 
846 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
847 
848 static const struct user_regset *
849 find_regset(const struct user_regset_view *view, unsigned int type)
850 {
851 	const struct user_regset *regset;
852 	int n;
853 
854 	for (n = 0; n < view->n; ++n) {
855 		regset = view->regsets + n;
856 		if (regset->core_note_type == type)
857 			return regset;
858 	}
859 
860 	return NULL;
861 }
862 
863 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
864 			 struct iovec *kiov)
865 {
866 	const struct user_regset_view *view = task_user_regset_view(task);
867 	const struct user_regset *regset = find_regset(view, type);
868 	int regset_no;
869 
870 	if (!regset || (kiov->iov_len % regset->size) != 0)
871 		return -EINVAL;
872 
873 	regset_no = regset - view->regsets;
874 	kiov->iov_len = min(kiov->iov_len,
875 			    (__kernel_size_t) (regset->n * regset->size));
876 
877 	if (req == PTRACE_GETREGSET)
878 		return copy_regset_to_user(task, view, regset_no, 0,
879 					   kiov->iov_len, kiov->iov_base);
880 	else
881 		return copy_regset_from_user(task, view, regset_no, 0,
882 					     kiov->iov_len, kiov->iov_base);
883 }
884 
885 /*
886  * This is declared in linux/regset.h and defined in machine-dependent
887  * code.  We put the export here, near the primary machine-neutral use,
888  * to ensure no machine forgets it.
889  */
890 EXPORT_SYMBOL_GPL(task_user_regset_view);
891 #endif
892 
893 int ptrace_request(struct task_struct *child, long request,
894 		   unsigned long addr, unsigned long data)
895 {
896 	bool seized = child->ptrace & PT_SEIZED;
897 	int ret = -EIO;
898 	kernel_siginfo_t siginfo, *si;
899 	void __user *datavp = (void __user *) data;
900 	unsigned long __user *datalp = datavp;
901 	unsigned long flags;
902 
903 	switch (request) {
904 	case PTRACE_PEEKTEXT:
905 	case PTRACE_PEEKDATA:
906 		return generic_ptrace_peekdata(child, addr, data);
907 	case PTRACE_POKETEXT:
908 	case PTRACE_POKEDATA:
909 		return generic_ptrace_pokedata(child, addr, data);
910 
911 #ifdef PTRACE_OLDSETOPTIONS
912 	case PTRACE_OLDSETOPTIONS:
913 #endif
914 	case PTRACE_SETOPTIONS:
915 		ret = ptrace_setoptions(child, data);
916 		break;
917 	case PTRACE_GETEVENTMSG:
918 		ret = put_user(child->ptrace_message, datalp);
919 		break;
920 
921 	case PTRACE_PEEKSIGINFO:
922 		ret = ptrace_peek_siginfo(child, addr, data);
923 		break;
924 
925 	case PTRACE_GETSIGINFO:
926 		ret = ptrace_getsiginfo(child, &siginfo);
927 		if (!ret)
928 			ret = copy_siginfo_to_user(datavp, &siginfo);
929 		break;
930 
931 	case PTRACE_SETSIGINFO:
932 		ret = copy_siginfo_from_user(&siginfo, datavp);
933 		if (!ret)
934 			ret = ptrace_setsiginfo(child, &siginfo);
935 		break;
936 
937 	case PTRACE_GETSIGMASK:
938 		if (addr != sizeof(sigset_t)) {
939 			ret = -EINVAL;
940 			break;
941 		}
942 
943 		if (copy_to_user(datavp, &child->blocked, sizeof(sigset_t)))
944 			ret = -EFAULT;
945 		else
946 			ret = 0;
947 
948 		break;
949 
950 	case PTRACE_SETSIGMASK: {
951 		sigset_t new_set;
952 
953 		if (addr != sizeof(sigset_t)) {
954 			ret = -EINVAL;
955 			break;
956 		}
957 
958 		if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
959 			ret = -EFAULT;
960 			break;
961 		}
962 
963 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
964 
965 		/*
966 		 * Every thread does recalc_sigpending() after resume, so
967 		 * retarget_shared_pending() and recalc_sigpending() are not
968 		 * called here.
969 		 */
970 		spin_lock_irq(&child->sighand->siglock);
971 		child->blocked = new_set;
972 		spin_unlock_irq(&child->sighand->siglock);
973 
974 		ret = 0;
975 		break;
976 	}
977 
978 	case PTRACE_INTERRUPT:
979 		/*
980 		 * Stop tracee without any side-effect on signal or job
981 		 * control.  At least one trap is guaranteed to happen
982 		 * after this request.  If @child is already trapped, the
983 		 * current trap is not disturbed and another trap will
984 		 * happen after the current trap is ended with PTRACE_CONT.
985 		 *
986 		 * The actual trap might not be PTRACE_EVENT_STOP trap but
987 		 * the pending condition is cleared regardless.
988 		 */
989 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
990 			break;
991 
992 		/*
993 		 * INTERRUPT doesn't disturb existing trap sans one
994 		 * exception.  If ptracer issued LISTEN for the current
995 		 * STOP, this INTERRUPT should clear LISTEN and re-trap
996 		 * tracee into STOP.
997 		 */
998 		if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
999 			ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
1000 
1001 		unlock_task_sighand(child, &flags);
1002 		ret = 0;
1003 		break;
1004 
1005 	case PTRACE_LISTEN:
1006 		/*
1007 		 * Listen for events.  Tracee must be in STOP.  It's not
1008 		 * resumed per-se but is not considered to be in TRACED by
1009 		 * wait(2) or ptrace(2).  If an async event (e.g. group
1010 		 * stop state change) happens, tracee will enter STOP trap
1011 		 * again.  Alternatively, ptracer can issue INTERRUPT to
1012 		 * finish listening and re-trap tracee into STOP.
1013 		 */
1014 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1015 			break;
1016 
1017 		si = child->last_siginfo;
1018 		if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
1019 			child->jobctl |= JOBCTL_LISTENING;
1020 			/*
1021 			 * If NOTIFY is set, it means event happened between
1022 			 * start of this trap and now.  Trigger re-trap.
1023 			 */
1024 			if (child->jobctl & JOBCTL_TRAP_NOTIFY)
1025 				ptrace_signal_wake_up(child, true);
1026 			ret = 0;
1027 		}
1028 		unlock_task_sighand(child, &flags);
1029 		break;
1030 
1031 	case PTRACE_DETACH:	 /* detach a process that was attached. */
1032 		ret = ptrace_detach(child, data);
1033 		break;
1034 
1035 #ifdef CONFIG_BINFMT_ELF_FDPIC
1036 	case PTRACE_GETFDPIC: {
1037 		struct mm_struct *mm = get_task_mm(child);
1038 		unsigned long tmp = 0;
1039 
1040 		ret = -ESRCH;
1041 		if (!mm)
1042 			break;
1043 
1044 		switch (addr) {
1045 		case PTRACE_GETFDPIC_EXEC:
1046 			tmp = mm->context.exec_fdpic_loadmap;
1047 			break;
1048 		case PTRACE_GETFDPIC_INTERP:
1049 			tmp = mm->context.interp_fdpic_loadmap;
1050 			break;
1051 		default:
1052 			break;
1053 		}
1054 		mmput(mm);
1055 
1056 		ret = put_user(tmp, datalp);
1057 		break;
1058 	}
1059 #endif
1060 
1061 #ifdef PTRACE_SINGLESTEP
1062 	case PTRACE_SINGLESTEP:
1063 #endif
1064 #ifdef PTRACE_SINGLEBLOCK
1065 	case PTRACE_SINGLEBLOCK:
1066 #endif
1067 #ifdef PTRACE_SYSEMU
1068 	case PTRACE_SYSEMU:
1069 	case PTRACE_SYSEMU_SINGLESTEP:
1070 #endif
1071 	case PTRACE_SYSCALL:
1072 	case PTRACE_CONT:
1073 		return ptrace_resume(child, request, data);
1074 
1075 	case PTRACE_KILL:
1076 		if (child->exit_state)	/* already dead */
1077 			return 0;
1078 		return ptrace_resume(child, request, SIGKILL);
1079 
1080 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1081 	case PTRACE_GETREGSET:
1082 	case PTRACE_SETREGSET: {
1083 		struct iovec kiov;
1084 		struct iovec __user *uiov = datavp;
1085 
1086 		if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1087 			return -EFAULT;
1088 
1089 		if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1090 		    __get_user(kiov.iov_len, &uiov->iov_len))
1091 			return -EFAULT;
1092 
1093 		ret = ptrace_regset(child, request, addr, &kiov);
1094 		if (!ret)
1095 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1096 		break;
1097 	}
1098 #endif
1099 
1100 	case PTRACE_SECCOMP_GET_FILTER:
1101 		ret = seccomp_get_filter(child, addr, datavp);
1102 		break;
1103 
1104 	case PTRACE_SECCOMP_GET_METADATA:
1105 		ret = seccomp_get_metadata(child, addr, datavp);
1106 		break;
1107 
1108 	default:
1109 		break;
1110 	}
1111 
1112 	return ret;
1113 }
1114 
1115 #ifndef arch_ptrace_attach
1116 #define arch_ptrace_attach(child)	do { } while (0)
1117 #endif
1118 
1119 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1120 		unsigned long, data)
1121 {
1122 	struct task_struct *child;
1123 	long ret;
1124 
1125 	if (request == PTRACE_TRACEME) {
1126 		ret = ptrace_traceme();
1127 		if (!ret)
1128 			arch_ptrace_attach(current);
1129 		goto out;
1130 	}
1131 
1132 	child = find_get_task_by_vpid(pid);
1133 	if (!child) {
1134 		ret = -ESRCH;
1135 		goto out;
1136 	}
1137 
1138 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1139 		ret = ptrace_attach(child, request, addr, data);
1140 		/*
1141 		 * Some architectures need to do book-keeping after
1142 		 * a ptrace attach.
1143 		 */
1144 		if (!ret)
1145 			arch_ptrace_attach(child);
1146 		goto out_put_task_struct;
1147 	}
1148 
1149 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1150 				  request == PTRACE_INTERRUPT);
1151 	if (ret < 0)
1152 		goto out_put_task_struct;
1153 
1154 	ret = arch_ptrace(child, request, addr, data);
1155 	if (ret || request != PTRACE_DETACH)
1156 		ptrace_unfreeze_traced(child);
1157 
1158  out_put_task_struct:
1159 	put_task_struct(child);
1160  out:
1161 	return ret;
1162 }
1163 
1164 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1165 			    unsigned long data)
1166 {
1167 	unsigned long tmp;
1168 	int copied;
1169 
1170 	copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
1171 	if (copied != sizeof(tmp))
1172 		return -EIO;
1173 	return put_user(tmp, (unsigned long __user *)data);
1174 }
1175 
1176 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1177 			    unsigned long data)
1178 {
1179 	int copied;
1180 
1181 	copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
1182 			FOLL_FORCE | FOLL_WRITE);
1183 	return (copied == sizeof(data)) ? 0 : -EIO;
1184 }
1185 
1186 #if defined CONFIG_COMPAT
1187 
1188 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1189 			  compat_ulong_t addr, compat_ulong_t data)
1190 {
1191 	compat_ulong_t __user *datap = compat_ptr(data);
1192 	compat_ulong_t word;
1193 	kernel_siginfo_t siginfo;
1194 	int ret;
1195 
1196 	switch (request) {
1197 	case PTRACE_PEEKTEXT:
1198 	case PTRACE_PEEKDATA:
1199 		ret = ptrace_access_vm(child, addr, &word, sizeof(word),
1200 				FOLL_FORCE);
1201 		if (ret != sizeof(word))
1202 			ret = -EIO;
1203 		else
1204 			ret = put_user(word, datap);
1205 		break;
1206 
1207 	case PTRACE_POKETEXT:
1208 	case PTRACE_POKEDATA:
1209 		ret = ptrace_access_vm(child, addr, &data, sizeof(data),
1210 				FOLL_FORCE | FOLL_WRITE);
1211 		ret = (ret != sizeof(data) ? -EIO : 0);
1212 		break;
1213 
1214 	case PTRACE_GETEVENTMSG:
1215 		ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1216 		break;
1217 
1218 	case PTRACE_GETSIGINFO:
1219 		ret = ptrace_getsiginfo(child, &siginfo);
1220 		if (!ret)
1221 			ret = copy_siginfo_to_user32(
1222 				(struct compat_siginfo __user *) datap,
1223 				&siginfo);
1224 		break;
1225 
1226 	case PTRACE_SETSIGINFO:
1227 		ret = copy_siginfo_from_user32(
1228 			&siginfo, (struct compat_siginfo __user *) datap);
1229 		if (!ret)
1230 			ret = ptrace_setsiginfo(child, &siginfo);
1231 		break;
1232 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1233 	case PTRACE_GETREGSET:
1234 	case PTRACE_SETREGSET:
1235 	{
1236 		struct iovec kiov;
1237 		struct compat_iovec __user *uiov =
1238 			(struct compat_iovec __user *) datap;
1239 		compat_uptr_t ptr;
1240 		compat_size_t len;
1241 
1242 		if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1243 			return -EFAULT;
1244 
1245 		if (__get_user(ptr, &uiov->iov_base) ||
1246 		    __get_user(len, &uiov->iov_len))
1247 			return -EFAULT;
1248 
1249 		kiov.iov_base = compat_ptr(ptr);
1250 		kiov.iov_len = len;
1251 
1252 		ret = ptrace_regset(child, request, addr, &kiov);
1253 		if (!ret)
1254 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1255 		break;
1256 	}
1257 #endif
1258 
1259 	default:
1260 		ret = ptrace_request(child, request, addr, data);
1261 	}
1262 
1263 	return ret;
1264 }
1265 
1266 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1267 		       compat_long_t, addr, compat_long_t, data)
1268 {
1269 	struct task_struct *child;
1270 	long ret;
1271 
1272 	if (request == PTRACE_TRACEME) {
1273 		ret = ptrace_traceme();
1274 		goto out;
1275 	}
1276 
1277 	child = find_get_task_by_vpid(pid);
1278 	if (!child) {
1279 		ret = -ESRCH;
1280 		goto out;
1281 	}
1282 
1283 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1284 		ret = ptrace_attach(child, request, addr, data);
1285 		/*
1286 		 * Some architectures need to do book-keeping after
1287 		 * a ptrace attach.
1288 		 */
1289 		if (!ret)
1290 			arch_ptrace_attach(child);
1291 		goto out_put_task_struct;
1292 	}
1293 
1294 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1295 				  request == PTRACE_INTERRUPT);
1296 	if (!ret) {
1297 		ret = compat_arch_ptrace(child, request, addr, data);
1298 		if (ret || request != PTRACE_DETACH)
1299 			ptrace_unfreeze_traced(child);
1300 	}
1301 
1302  out_put_task_struct:
1303 	put_task_struct(child);
1304  out:
1305 	return ret;
1306 }
1307 #endif	/* CONFIG_COMPAT */
1308