1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/ptrace.c 4 * 5 * (C) Copyright 1999 Linus Torvalds 6 * 7 * Common interfaces for "ptrace()" which we do not want 8 * to continually duplicate across every architecture. 9 */ 10 11 #include <linux/capability.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/coredump.h> 16 #include <linux/sched/task.h> 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/pagemap.h> 21 #include <linux/ptrace.h> 22 #include <linux/security.h> 23 #include <linux/signal.h> 24 #include <linux/uio.h> 25 #include <linux/audit.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/syscalls.h> 28 #include <linux/uaccess.h> 29 #include <linux/regset.h> 30 #include <linux/hw_breakpoint.h> 31 #include <linux/cn_proc.h> 32 #include <linux/compat.h> 33 #include <linux/sched/signal.h> 34 #include <linux/minmax.h> 35 36 #include <asm/syscall.h> /* for syscall_get_* */ 37 38 /* 39 * Access another process' address space via ptrace. 40 * Source/target buffer must be kernel space, 41 * Do not walk the page table directly, use get_user_pages 42 */ 43 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, 44 void *buf, int len, unsigned int gup_flags) 45 { 46 struct mm_struct *mm; 47 int ret; 48 49 mm = get_task_mm(tsk); 50 if (!mm) 51 return 0; 52 53 if (!tsk->ptrace || 54 (current != tsk->parent) || 55 ((get_dumpable(mm) != SUID_DUMP_USER) && 56 !ptracer_capable(tsk, mm->user_ns))) { 57 mmput(mm); 58 return 0; 59 } 60 61 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 62 mmput(mm); 63 64 return ret; 65 } 66 67 68 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent, 69 const struct cred *ptracer_cred) 70 { 71 BUG_ON(!list_empty(&child->ptrace_entry)); 72 list_add(&child->ptrace_entry, &new_parent->ptraced); 73 child->parent = new_parent; 74 child->ptracer_cred = get_cred(ptracer_cred); 75 } 76 77 /* 78 * ptrace a task: make the debugger its new parent and 79 * move it to the ptrace list. 80 * 81 * Must be called with the tasklist lock write-held. 82 */ 83 static void ptrace_link(struct task_struct *child, struct task_struct *new_parent) 84 { 85 __ptrace_link(child, new_parent, current_cred()); 86 } 87 88 /** 89 * __ptrace_unlink - unlink ptracee and restore its execution state 90 * @child: ptracee to be unlinked 91 * 92 * Remove @child from the ptrace list, move it back to the original parent, 93 * and restore the execution state so that it conforms to the group stop 94 * state. 95 * 96 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer 97 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between 98 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED. 99 * If the ptracer is exiting, the ptracee can be in any state. 100 * 101 * After detach, the ptracee should be in a state which conforms to the 102 * group stop. If the group is stopped or in the process of stopping, the 103 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken 104 * up from TASK_TRACED. 105 * 106 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED, 107 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar 108 * to but in the opposite direction of what happens while attaching to a 109 * stopped task. However, in this direction, the intermediate RUNNING 110 * state is not hidden even from the current ptracer and if it immediately 111 * re-attaches and performs a WNOHANG wait(2), it may fail. 112 * 113 * CONTEXT: 114 * write_lock_irq(tasklist_lock) 115 */ 116 void __ptrace_unlink(struct task_struct *child) 117 { 118 const struct cred *old_cred; 119 BUG_ON(!child->ptrace); 120 121 clear_task_syscall_work(child, SYSCALL_TRACE); 122 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 123 clear_task_syscall_work(child, SYSCALL_EMU); 124 #endif 125 126 child->parent = child->real_parent; 127 list_del_init(&child->ptrace_entry); 128 old_cred = child->ptracer_cred; 129 child->ptracer_cred = NULL; 130 put_cred(old_cred); 131 132 spin_lock(&child->sighand->siglock); 133 child->ptrace = 0; 134 /* 135 * Clear all pending traps and TRAPPING. TRAPPING should be 136 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly. 137 */ 138 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK); 139 task_clear_jobctl_trapping(child); 140 141 /* 142 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and 143 * @child isn't dead. 144 */ 145 if (!(child->flags & PF_EXITING) && 146 (child->signal->flags & SIGNAL_STOP_STOPPED || 147 child->signal->group_stop_count)) { 148 child->jobctl |= JOBCTL_STOP_PENDING; 149 150 /* 151 * This is only possible if this thread was cloned by the 152 * traced task running in the stopped group, set the signal 153 * for the future reports. 154 * FIXME: we should change ptrace_init_task() to handle this 155 * case. 156 */ 157 if (!(child->jobctl & JOBCTL_STOP_SIGMASK)) 158 child->jobctl |= SIGSTOP; 159 } 160 161 /* 162 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick 163 * @child in the butt. Note that @resume should be used iff @child 164 * is in TASK_TRACED; otherwise, we might unduly disrupt 165 * TASK_KILLABLE sleeps. 166 */ 167 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child)) 168 ptrace_signal_wake_up(child, true); 169 170 spin_unlock(&child->sighand->siglock); 171 } 172 173 static bool looks_like_a_spurious_pid(struct task_struct *task) 174 { 175 if (task->exit_code != ((PTRACE_EVENT_EXEC << 8) | SIGTRAP)) 176 return false; 177 178 if (task_pid_vnr(task) == task->ptrace_message) 179 return false; 180 /* 181 * The tracee changed its pid but the PTRACE_EVENT_EXEC event 182 * was not wait()'ed, most probably debugger targets the old 183 * leader which was destroyed in de_thread(). 184 */ 185 return true; 186 } 187 188 /* Ensure that nothing can wake it up, even SIGKILL */ 189 static bool ptrace_freeze_traced(struct task_struct *task) 190 { 191 bool ret = false; 192 193 /* Lockless, nobody but us can set this flag */ 194 if (task->jobctl & JOBCTL_LISTENING) 195 return ret; 196 197 spin_lock_irq(&task->sighand->siglock); 198 if (task_is_traced(task) && !looks_like_a_spurious_pid(task) && 199 !__fatal_signal_pending(task)) { 200 WRITE_ONCE(task->__state, __TASK_TRACED); 201 ret = true; 202 } 203 spin_unlock_irq(&task->sighand->siglock); 204 205 return ret; 206 } 207 208 static void ptrace_unfreeze_traced(struct task_struct *task) 209 { 210 if (READ_ONCE(task->__state) != __TASK_TRACED) 211 return; 212 213 WARN_ON(!task->ptrace || task->parent != current); 214 215 /* 216 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely. 217 * Recheck state under the lock to close this race. 218 */ 219 spin_lock_irq(&task->sighand->siglock); 220 if (READ_ONCE(task->__state) == __TASK_TRACED) { 221 if (__fatal_signal_pending(task)) 222 wake_up_state(task, __TASK_TRACED); 223 else 224 WRITE_ONCE(task->__state, TASK_TRACED); 225 } 226 spin_unlock_irq(&task->sighand->siglock); 227 } 228 229 /** 230 * ptrace_check_attach - check whether ptracee is ready for ptrace operation 231 * @child: ptracee to check for 232 * @ignore_state: don't check whether @child is currently %TASK_TRACED 233 * 234 * Check whether @child is being ptraced by %current and ready for further 235 * ptrace operations. If @ignore_state is %false, @child also should be in 236 * %TASK_TRACED state and on return the child is guaranteed to be traced 237 * and not executing. If @ignore_state is %true, @child can be in any 238 * state. 239 * 240 * CONTEXT: 241 * Grabs and releases tasklist_lock and @child->sighand->siglock. 242 * 243 * RETURNS: 244 * 0 on success, -ESRCH if %child is not ready. 245 */ 246 static int ptrace_check_attach(struct task_struct *child, bool ignore_state) 247 { 248 int ret = -ESRCH; 249 250 /* 251 * We take the read lock around doing both checks to close a 252 * possible race where someone else was tracing our child and 253 * detached between these two checks. After this locked check, 254 * we are sure that this is our traced child and that can only 255 * be changed by us so it's not changing right after this. 256 */ 257 read_lock(&tasklist_lock); 258 if (child->ptrace && child->parent == current) { 259 WARN_ON(READ_ONCE(child->__state) == __TASK_TRACED); 260 /* 261 * child->sighand can't be NULL, release_task() 262 * does ptrace_unlink() before __exit_signal(). 263 */ 264 if (ignore_state || ptrace_freeze_traced(child)) 265 ret = 0; 266 } 267 read_unlock(&tasklist_lock); 268 269 if (!ret && !ignore_state) { 270 if (!wait_task_inactive(child, __TASK_TRACED)) { 271 /* 272 * This can only happen if may_ptrace_stop() fails and 273 * ptrace_stop() changes ->state back to TASK_RUNNING, 274 * so we should not worry about leaking __TASK_TRACED. 275 */ 276 WARN_ON(READ_ONCE(child->__state) == __TASK_TRACED); 277 ret = -ESRCH; 278 } 279 } 280 281 return ret; 282 } 283 284 static bool ptrace_has_cap(struct user_namespace *ns, unsigned int mode) 285 { 286 if (mode & PTRACE_MODE_NOAUDIT) 287 return ns_capable_noaudit(ns, CAP_SYS_PTRACE); 288 return ns_capable(ns, CAP_SYS_PTRACE); 289 } 290 291 /* Returns 0 on success, -errno on denial. */ 292 static int __ptrace_may_access(struct task_struct *task, unsigned int mode) 293 { 294 const struct cred *cred = current_cred(), *tcred; 295 struct mm_struct *mm; 296 kuid_t caller_uid; 297 kgid_t caller_gid; 298 299 if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) { 300 WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n"); 301 return -EPERM; 302 } 303 304 /* May we inspect the given task? 305 * This check is used both for attaching with ptrace 306 * and for allowing access to sensitive information in /proc. 307 * 308 * ptrace_attach denies several cases that /proc allows 309 * because setting up the necessary parent/child relationship 310 * or halting the specified task is impossible. 311 */ 312 313 /* Don't let security modules deny introspection */ 314 if (same_thread_group(task, current)) 315 return 0; 316 rcu_read_lock(); 317 if (mode & PTRACE_MODE_FSCREDS) { 318 caller_uid = cred->fsuid; 319 caller_gid = cred->fsgid; 320 } else { 321 /* 322 * Using the euid would make more sense here, but something 323 * in userland might rely on the old behavior, and this 324 * shouldn't be a security problem since 325 * PTRACE_MODE_REALCREDS implies that the caller explicitly 326 * used a syscall that requests access to another process 327 * (and not a filesystem syscall to procfs). 328 */ 329 caller_uid = cred->uid; 330 caller_gid = cred->gid; 331 } 332 tcred = __task_cred(task); 333 if (uid_eq(caller_uid, tcred->euid) && 334 uid_eq(caller_uid, tcred->suid) && 335 uid_eq(caller_uid, tcred->uid) && 336 gid_eq(caller_gid, tcred->egid) && 337 gid_eq(caller_gid, tcred->sgid) && 338 gid_eq(caller_gid, tcred->gid)) 339 goto ok; 340 if (ptrace_has_cap(tcred->user_ns, mode)) 341 goto ok; 342 rcu_read_unlock(); 343 return -EPERM; 344 ok: 345 rcu_read_unlock(); 346 /* 347 * If a task drops privileges and becomes nondumpable (through a syscall 348 * like setresuid()) while we are trying to access it, we must ensure 349 * that the dumpability is read after the credentials; otherwise, 350 * we may be able to attach to a task that we shouldn't be able to 351 * attach to (as if the task had dropped privileges without becoming 352 * nondumpable). 353 * Pairs with a write barrier in commit_creds(). 354 */ 355 smp_rmb(); 356 mm = task->mm; 357 if (mm && 358 ((get_dumpable(mm) != SUID_DUMP_USER) && 359 !ptrace_has_cap(mm->user_ns, mode))) 360 return -EPERM; 361 362 return security_ptrace_access_check(task, mode); 363 } 364 365 bool ptrace_may_access(struct task_struct *task, unsigned int mode) 366 { 367 int err; 368 task_lock(task); 369 err = __ptrace_may_access(task, mode); 370 task_unlock(task); 371 return !err; 372 } 373 374 static int check_ptrace_options(unsigned long data) 375 { 376 if (data & ~(unsigned long)PTRACE_O_MASK) 377 return -EINVAL; 378 379 if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) { 380 if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) || 381 !IS_ENABLED(CONFIG_SECCOMP)) 382 return -EINVAL; 383 384 if (!capable(CAP_SYS_ADMIN)) 385 return -EPERM; 386 387 if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED || 388 current->ptrace & PT_SUSPEND_SECCOMP) 389 return -EPERM; 390 } 391 return 0; 392 } 393 394 static int ptrace_attach(struct task_struct *task, long request, 395 unsigned long addr, 396 unsigned long flags) 397 { 398 bool seize = (request == PTRACE_SEIZE); 399 int retval; 400 401 retval = -EIO; 402 if (seize) { 403 if (addr != 0) 404 goto out; 405 /* 406 * This duplicates the check in check_ptrace_options() because 407 * ptrace_attach() and ptrace_setoptions() have historically 408 * used different error codes for unknown ptrace options. 409 */ 410 if (flags & ~(unsigned long)PTRACE_O_MASK) 411 goto out; 412 retval = check_ptrace_options(flags); 413 if (retval) 414 return retval; 415 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT); 416 } else { 417 flags = PT_PTRACED; 418 } 419 420 audit_ptrace(task); 421 422 retval = -EPERM; 423 if (unlikely(task->flags & PF_KTHREAD)) 424 goto out; 425 if (same_thread_group(task, current)) 426 goto out; 427 428 /* 429 * Protect exec's credential calculations against our interference; 430 * SUID, SGID and LSM creds get determined differently 431 * under ptrace. 432 */ 433 retval = -ERESTARTNOINTR; 434 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex)) 435 goto out; 436 437 task_lock(task); 438 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS); 439 task_unlock(task); 440 if (retval) 441 goto unlock_creds; 442 443 write_lock_irq(&tasklist_lock); 444 retval = -EPERM; 445 if (unlikely(task->exit_state)) 446 goto unlock_tasklist; 447 if (task->ptrace) 448 goto unlock_tasklist; 449 450 task->ptrace = flags; 451 452 ptrace_link(task, current); 453 454 /* SEIZE doesn't trap tracee on attach */ 455 if (!seize) 456 send_sig_info(SIGSTOP, SEND_SIG_PRIV, task); 457 458 spin_lock(&task->sighand->siglock); 459 460 /* 461 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and 462 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING 463 * will be cleared if the child completes the transition or any 464 * event which clears the group stop states happens. We'll wait 465 * for the transition to complete before returning from this 466 * function. 467 * 468 * This hides STOPPED -> RUNNING -> TRACED transition from the 469 * attaching thread but a different thread in the same group can 470 * still observe the transient RUNNING state. IOW, if another 471 * thread's WNOHANG wait(2) on the stopped tracee races against 472 * ATTACH, the wait(2) may fail due to the transient RUNNING. 473 * 474 * The following task_is_stopped() test is safe as both transitions 475 * in and out of STOPPED are protected by siglock. 476 */ 477 if (task_is_stopped(task) && 478 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING)) 479 signal_wake_up_state(task, __TASK_STOPPED); 480 481 spin_unlock(&task->sighand->siglock); 482 483 retval = 0; 484 unlock_tasklist: 485 write_unlock_irq(&tasklist_lock); 486 unlock_creds: 487 mutex_unlock(&task->signal->cred_guard_mutex); 488 out: 489 if (!retval) { 490 /* 491 * We do not bother to change retval or clear JOBCTL_TRAPPING 492 * if wait_on_bit() was interrupted by SIGKILL. The tracer will 493 * not return to user-mode, it will exit and clear this bit in 494 * __ptrace_unlink() if it wasn't already cleared by the tracee; 495 * and until then nobody can ptrace this task. 496 */ 497 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE); 498 proc_ptrace_connector(task, PTRACE_ATTACH); 499 } 500 501 return retval; 502 } 503 504 /** 505 * ptrace_traceme -- helper for PTRACE_TRACEME 506 * 507 * Performs checks and sets PT_PTRACED. 508 * Should be used by all ptrace implementations for PTRACE_TRACEME. 509 */ 510 static int ptrace_traceme(void) 511 { 512 int ret = -EPERM; 513 514 write_lock_irq(&tasklist_lock); 515 /* Are we already being traced? */ 516 if (!current->ptrace) { 517 ret = security_ptrace_traceme(current->parent); 518 /* 519 * Check PF_EXITING to ensure ->real_parent has not passed 520 * exit_ptrace(). Otherwise we don't report the error but 521 * pretend ->real_parent untraces us right after return. 522 */ 523 if (!ret && !(current->real_parent->flags & PF_EXITING)) { 524 current->ptrace = PT_PTRACED; 525 ptrace_link(current, current->real_parent); 526 } 527 } 528 write_unlock_irq(&tasklist_lock); 529 530 return ret; 531 } 532 533 /* 534 * Called with irqs disabled, returns true if childs should reap themselves. 535 */ 536 static int ignoring_children(struct sighand_struct *sigh) 537 { 538 int ret; 539 spin_lock(&sigh->siglock); 540 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) || 541 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT); 542 spin_unlock(&sigh->siglock); 543 return ret; 544 } 545 546 /* 547 * Called with tasklist_lock held for writing. 548 * Unlink a traced task, and clean it up if it was a traced zombie. 549 * Return true if it needs to be reaped with release_task(). 550 * (We can't call release_task() here because we already hold tasklist_lock.) 551 * 552 * If it's a zombie, our attachedness prevented normal parent notification 553 * or self-reaping. Do notification now if it would have happened earlier. 554 * If it should reap itself, return true. 555 * 556 * If it's our own child, there is no notification to do. But if our normal 557 * children self-reap, then this child was prevented by ptrace and we must 558 * reap it now, in that case we must also wake up sub-threads sleeping in 559 * do_wait(). 560 */ 561 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) 562 { 563 bool dead; 564 565 __ptrace_unlink(p); 566 567 if (p->exit_state != EXIT_ZOMBIE) 568 return false; 569 570 dead = !thread_group_leader(p); 571 572 if (!dead && thread_group_empty(p)) { 573 if (!same_thread_group(p->real_parent, tracer)) 574 dead = do_notify_parent(p, p->exit_signal); 575 else if (ignoring_children(tracer->sighand)) { 576 __wake_up_parent(p, tracer); 577 dead = true; 578 } 579 } 580 /* Mark it as in the process of being reaped. */ 581 if (dead) 582 p->exit_state = EXIT_DEAD; 583 return dead; 584 } 585 586 static int ptrace_detach(struct task_struct *child, unsigned int data) 587 { 588 if (!valid_signal(data)) 589 return -EIO; 590 591 /* Architecture-specific hardware disable .. */ 592 ptrace_disable(child); 593 594 write_lock_irq(&tasklist_lock); 595 /* 596 * We rely on ptrace_freeze_traced(). It can't be killed and 597 * untraced by another thread, it can't be a zombie. 598 */ 599 WARN_ON(!child->ptrace || child->exit_state); 600 /* 601 * tasklist_lock avoids the race with wait_task_stopped(), see 602 * the comment in ptrace_resume(). 603 */ 604 child->exit_code = data; 605 __ptrace_detach(current, child); 606 write_unlock_irq(&tasklist_lock); 607 608 proc_ptrace_connector(child, PTRACE_DETACH); 609 610 return 0; 611 } 612 613 /* 614 * Detach all tasks we were using ptrace on. Called with tasklist held 615 * for writing. 616 */ 617 void exit_ptrace(struct task_struct *tracer, struct list_head *dead) 618 { 619 struct task_struct *p, *n; 620 621 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) { 622 if (unlikely(p->ptrace & PT_EXITKILL)) 623 send_sig_info(SIGKILL, SEND_SIG_PRIV, p); 624 625 if (__ptrace_detach(tracer, p)) 626 list_add(&p->ptrace_entry, dead); 627 } 628 } 629 630 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len) 631 { 632 int copied = 0; 633 634 while (len > 0) { 635 char buf[128]; 636 int this_len, retval; 637 638 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 639 retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE); 640 641 if (!retval) { 642 if (copied) 643 break; 644 return -EIO; 645 } 646 if (copy_to_user(dst, buf, retval)) 647 return -EFAULT; 648 copied += retval; 649 src += retval; 650 dst += retval; 651 len -= retval; 652 } 653 return copied; 654 } 655 656 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len) 657 { 658 int copied = 0; 659 660 while (len > 0) { 661 char buf[128]; 662 int this_len, retval; 663 664 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 665 if (copy_from_user(buf, src, this_len)) 666 return -EFAULT; 667 retval = ptrace_access_vm(tsk, dst, buf, this_len, 668 FOLL_FORCE | FOLL_WRITE); 669 if (!retval) { 670 if (copied) 671 break; 672 return -EIO; 673 } 674 copied += retval; 675 src += retval; 676 dst += retval; 677 len -= retval; 678 } 679 return copied; 680 } 681 682 static int ptrace_setoptions(struct task_struct *child, unsigned long data) 683 { 684 unsigned flags; 685 int ret; 686 687 ret = check_ptrace_options(data); 688 if (ret) 689 return ret; 690 691 /* Avoid intermediate state when all opts are cleared */ 692 flags = child->ptrace; 693 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT); 694 flags |= (data << PT_OPT_FLAG_SHIFT); 695 child->ptrace = flags; 696 697 return 0; 698 } 699 700 static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info) 701 { 702 unsigned long flags; 703 int error = -ESRCH; 704 705 if (lock_task_sighand(child, &flags)) { 706 error = -EINVAL; 707 if (likely(child->last_siginfo != NULL)) { 708 copy_siginfo(info, child->last_siginfo); 709 error = 0; 710 } 711 unlock_task_sighand(child, &flags); 712 } 713 return error; 714 } 715 716 static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info) 717 { 718 unsigned long flags; 719 int error = -ESRCH; 720 721 if (lock_task_sighand(child, &flags)) { 722 error = -EINVAL; 723 if (likely(child->last_siginfo != NULL)) { 724 copy_siginfo(child->last_siginfo, info); 725 error = 0; 726 } 727 unlock_task_sighand(child, &flags); 728 } 729 return error; 730 } 731 732 static int ptrace_peek_siginfo(struct task_struct *child, 733 unsigned long addr, 734 unsigned long data) 735 { 736 struct ptrace_peeksiginfo_args arg; 737 struct sigpending *pending; 738 struct sigqueue *q; 739 int ret, i; 740 741 ret = copy_from_user(&arg, (void __user *) addr, 742 sizeof(struct ptrace_peeksiginfo_args)); 743 if (ret) 744 return -EFAULT; 745 746 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED) 747 return -EINVAL; /* unknown flags */ 748 749 if (arg.nr < 0) 750 return -EINVAL; 751 752 /* Ensure arg.off fits in an unsigned long */ 753 if (arg.off > ULONG_MAX) 754 return 0; 755 756 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED) 757 pending = &child->signal->shared_pending; 758 else 759 pending = &child->pending; 760 761 for (i = 0; i < arg.nr; ) { 762 kernel_siginfo_t info; 763 unsigned long off = arg.off + i; 764 bool found = false; 765 766 spin_lock_irq(&child->sighand->siglock); 767 list_for_each_entry(q, &pending->list, list) { 768 if (!off--) { 769 found = true; 770 copy_siginfo(&info, &q->info); 771 break; 772 } 773 } 774 spin_unlock_irq(&child->sighand->siglock); 775 776 if (!found) /* beyond the end of the list */ 777 break; 778 779 #ifdef CONFIG_COMPAT 780 if (unlikely(in_compat_syscall())) { 781 compat_siginfo_t __user *uinfo = compat_ptr(data); 782 783 if (copy_siginfo_to_user32(uinfo, &info)) { 784 ret = -EFAULT; 785 break; 786 } 787 788 } else 789 #endif 790 { 791 siginfo_t __user *uinfo = (siginfo_t __user *) data; 792 793 if (copy_siginfo_to_user(uinfo, &info)) { 794 ret = -EFAULT; 795 break; 796 } 797 } 798 799 data += sizeof(siginfo_t); 800 i++; 801 802 if (signal_pending(current)) 803 break; 804 805 cond_resched(); 806 } 807 808 if (i > 0) 809 return i; 810 811 return ret; 812 } 813 814 #ifdef CONFIG_RSEQ 815 static long ptrace_get_rseq_configuration(struct task_struct *task, 816 unsigned long size, void __user *data) 817 { 818 struct ptrace_rseq_configuration conf = { 819 .rseq_abi_pointer = (u64)(uintptr_t)task->rseq, 820 .rseq_abi_size = sizeof(*task->rseq), 821 .signature = task->rseq_sig, 822 .flags = 0, 823 }; 824 825 size = min_t(unsigned long, size, sizeof(conf)); 826 if (copy_to_user(data, &conf, size)) 827 return -EFAULT; 828 return sizeof(conf); 829 } 830 #endif 831 832 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP) 833 834 #ifdef PTRACE_SINGLEBLOCK 835 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK) 836 #else 837 #define is_singleblock(request) 0 838 #endif 839 840 #ifdef PTRACE_SYSEMU 841 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP) 842 #else 843 #define is_sysemu_singlestep(request) 0 844 #endif 845 846 static int ptrace_resume(struct task_struct *child, long request, 847 unsigned long data) 848 { 849 bool need_siglock; 850 851 if (!valid_signal(data)) 852 return -EIO; 853 854 if (request == PTRACE_SYSCALL) 855 set_task_syscall_work(child, SYSCALL_TRACE); 856 else 857 clear_task_syscall_work(child, SYSCALL_TRACE); 858 859 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 860 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP) 861 set_task_syscall_work(child, SYSCALL_EMU); 862 else 863 clear_task_syscall_work(child, SYSCALL_EMU); 864 #endif 865 866 if (is_singleblock(request)) { 867 if (unlikely(!arch_has_block_step())) 868 return -EIO; 869 user_enable_block_step(child); 870 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) { 871 if (unlikely(!arch_has_single_step())) 872 return -EIO; 873 user_enable_single_step(child); 874 } else { 875 user_disable_single_step(child); 876 } 877 878 /* 879 * Change ->exit_code and ->state under siglock to avoid the race 880 * with wait_task_stopped() in between; a non-zero ->exit_code will 881 * wrongly look like another report from tracee. 882 * 883 * Note that we need siglock even if ->exit_code == data and/or this 884 * status was not reported yet, the new status must not be cleared by 885 * wait_task_stopped() after resume. 886 * 887 * If data == 0 we do not care if wait_task_stopped() reports the old 888 * status and clears the code too; this can't race with the tracee, it 889 * takes siglock after resume. 890 */ 891 need_siglock = data && !thread_group_empty(current); 892 if (need_siglock) 893 spin_lock_irq(&child->sighand->siglock); 894 child->exit_code = data; 895 wake_up_state(child, __TASK_TRACED); 896 if (need_siglock) 897 spin_unlock_irq(&child->sighand->siglock); 898 899 return 0; 900 } 901 902 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 903 904 static const struct user_regset * 905 find_regset(const struct user_regset_view *view, unsigned int type) 906 { 907 const struct user_regset *regset; 908 int n; 909 910 for (n = 0; n < view->n; ++n) { 911 regset = view->regsets + n; 912 if (regset->core_note_type == type) 913 return regset; 914 } 915 916 return NULL; 917 } 918 919 static int ptrace_regset(struct task_struct *task, int req, unsigned int type, 920 struct iovec *kiov) 921 { 922 const struct user_regset_view *view = task_user_regset_view(task); 923 const struct user_regset *regset = find_regset(view, type); 924 int regset_no; 925 926 if (!regset || (kiov->iov_len % regset->size) != 0) 927 return -EINVAL; 928 929 regset_no = regset - view->regsets; 930 kiov->iov_len = min(kiov->iov_len, 931 (__kernel_size_t) (regset->n * regset->size)); 932 933 if (req == PTRACE_GETREGSET) 934 return copy_regset_to_user(task, view, regset_no, 0, 935 kiov->iov_len, kiov->iov_base); 936 else 937 return copy_regset_from_user(task, view, regset_no, 0, 938 kiov->iov_len, kiov->iov_base); 939 } 940 941 /* 942 * This is declared in linux/regset.h and defined in machine-dependent 943 * code. We put the export here, near the primary machine-neutral use, 944 * to ensure no machine forgets it. 945 */ 946 EXPORT_SYMBOL_GPL(task_user_regset_view); 947 948 static unsigned long 949 ptrace_get_syscall_info_entry(struct task_struct *child, struct pt_regs *regs, 950 struct ptrace_syscall_info *info) 951 { 952 unsigned long args[ARRAY_SIZE(info->entry.args)]; 953 int i; 954 955 info->op = PTRACE_SYSCALL_INFO_ENTRY; 956 info->entry.nr = syscall_get_nr(child, regs); 957 syscall_get_arguments(child, regs, args); 958 for (i = 0; i < ARRAY_SIZE(args); i++) 959 info->entry.args[i] = args[i]; 960 961 /* args is the last field in struct ptrace_syscall_info.entry */ 962 return offsetofend(struct ptrace_syscall_info, entry.args); 963 } 964 965 static unsigned long 966 ptrace_get_syscall_info_seccomp(struct task_struct *child, struct pt_regs *regs, 967 struct ptrace_syscall_info *info) 968 { 969 /* 970 * As struct ptrace_syscall_info.entry is currently a subset 971 * of struct ptrace_syscall_info.seccomp, it makes sense to 972 * initialize that subset using ptrace_get_syscall_info_entry(). 973 * This can be reconsidered in the future if these structures 974 * diverge significantly enough. 975 */ 976 ptrace_get_syscall_info_entry(child, regs, info); 977 info->op = PTRACE_SYSCALL_INFO_SECCOMP; 978 info->seccomp.ret_data = child->ptrace_message; 979 980 /* ret_data is the last field in struct ptrace_syscall_info.seccomp */ 981 return offsetofend(struct ptrace_syscall_info, seccomp.ret_data); 982 } 983 984 static unsigned long 985 ptrace_get_syscall_info_exit(struct task_struct *child, struct pt_regs *regs, 986 struct ptrace_syscall_info *info) 987 { 988 info->op = PTRACE_SYSCALL_INFO_EXIT; 989 info->exit.rval = syscall_get_error(child, regs); 990 info->exit.is_error = !!info->exit.rval; 991 if (!info->exit.is_error) 992 info->exit.rval = syscall_get_return_value(child, regs); 993 994 /* is_error is the last field in struct ptrace_syscall_info.exit */ 995 return offsetofend(struct ptrace_syscall_info, exit.is_error); 996 } 997 998 static int 999 ptrace_get_syscall_info(struct task_struct *child, unsigned long user_size, 1000 void __user *datavp) 1001 { 1002 struct pt_regs *regs = task_pt_regs(child); 1003 struct ptrace_syscall_info info = { 1004 .op = PTRACE_SYSCALL_INFO_NONE, 1005 .arch = syscall_get_arch(child), 1006 .instruction_pointer = instruction_pointer(regs), 1007 .stack_pointer = user_stack_pointer(regs), 1008 }; 1009 unsigned long actual_size = offsetof(struct ptrace_syscall_info, entry); 1010 unsigned long write_size; 1011 1012 /* 1013 * This does not need lock_task_sighand() to access 1014 * child->last_siginfo because ptrace_freeze_traced() 1015 * called earlier by ptrace_check_attach() ensures that 1016 * the tracee cannot go away and clear its last_siginfo. 1017 */ 1018 switch (child->last_siginfo ? child->last_siginfo->si_code : 0) { 1019 case SIGTRAP | 0x80: 1020 switch (child->ptrace_message) { 1021 case PTRACE_EVENTMSG_SYSCALL_ENTRY: 1022 actual_size = ptrace_get_syscall_info_entry(child, regs, 1023 &info); 1024 break; 1025 case PTRACE_EVENTMSG_SYSCALL_EXIT: 1026 actual_size = ptrace_get_syscall_info_exit(child, regs, 1027 &info); 1028 break; 1029 } 1030 break; 1031 case SIGTRAP | (PTRACE_EVENT_SECCOMP << 8): 1032 actual_size = ptrace_get_syscall_info_seccomp(child, regs, 1033 &info); 1034 break; 1035 } 1036 1037 write_size = min(actual_size, user_size); 1038 return copy_to_user(datavp, &info, write_size) ? -EFAULT : actual_size; 1039 } 1040 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 1041 1042 int ptrace_request(struct task_struct *child, long request, 1043 unsigned long addr, unsigned long data) 1044 { 1045 bool seized = child->ptrace & PT_SEIZED; 1046 int ret = -EIO; 1047 kernel_siginfo_t siginfo, *si; 1048 void __user *datavp = (void __user *) data; 1049 unsigned long __user *datalp = datavp; 1050 unsigned long flags; 1051 1052 switch (request) { 1053 case PTRACE_PEEKTEXT: 1054 case PTRACE_PEEKDATA: 1055 return generic_ptrace_peekdata(child, addr, data); 1056 case PTRACE_POKETEXT: 1057 case PTRACE_POKEDATA: 1058 return generic_ptrace_pokedata(child, addr, data); 1059 1060 #ifdef PTRACE_OLDSETOPTIONS 1061 case PTRACE_OLDSETOPTIONS: 1062 #endif 1063 case PTRACE_SETOPTIONS: 1064 ret = ptrace_setoptions(child, data); 1065 break; 1066 case PTRACE_GETEVENTMSG: 1067 ret = put_user(child->ptrace_message, datalp); 1068 break; 1069 1070 case PTRACE_PEEKSIGINFO: 1071 ret = ptrace_peek_siginfo(child, addr, data); 1072 break; 1073 1074 case PTRACE_GETSIGINFO: 1075 ret = ptrace_getsiginfo(child, &siginfo); 1076 if (!ret) 1077 ret = copy_siginfo_to_user(datavp, &siginfo); 1078 break; 1079 1080 case PTRACE_SETSIGINFO: 1081 ret = copy_siginfo_from_user(&siginfo, datavp); 1082 if (!ret) 1083 ret = ptrace_setsiginfo(child, &siginfo); 1084 break; 1085 1086 case PTRACE_GETSIGMASK: { 1087 sigset_t *mask; 1088 1089 if (addr != sizeof(sigset_t)) { 1090 ret = -EINVAL; 1091 break; 1092 } 1093 1094 if (test_tsk_restore_sigmask(child)) 1095 mask = &child->saved_sigmask; 1096 else 1097 mask = &child->blocked; 1098 1099 if (copy_to_user(datavp, mask, sizeof(sigset_t))) 1100 ret = -EFAULT; 1101 else 1102 ret = 0; 1103 1104 break; 1105 } 1106 1107 case PTRACE_SETSIGMASK: { 1108 sigset_t new_set; 1109 1110 if (addr != sizeof(sigset_t)) { 1111 ret = -EINVAL; 1112 break; 1113 } 1114 1115 if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) { 1116 ret = -EFAULT; 1117 break; 1118 } 1119 1120 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1121 1122 /* 1123 * Every thread does recalc_sigpending() after resume, so 1124 * retarget_shared_pending() and recalc_sigpending() are not 1125 * called here. 1126 */ 1127 spin_lock_irq(&child->sighand->siglock); 1128 child->blocked = new_set; 1129 spin_unlock_irq(&child->sighand->siglock); 1130 1131 clear_tsk_restore_sigmask(child); 1132 1133 ret = 0; 1134 break; 1135 } 1136 1137 case PTRACE_INTERRUPT: 1138 /* 1139 * Stop tracee without any side-effect on signal or job 1140 * control. At least one trap is guaranteed to happen 1141 * after this request. If @child is already trapped, the 1142 * current trap is not disturbed and another trap will 1143 * happen after the current trap is ended with PTRACE_CONT. 1144 * 1145 * The actual trap might not be PTRACE_EVENT_STOP trap but 1146 * the pending condition is cleared regardless. 1147 */ 1148 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 1149 break; 1150 1151 /* 1152 * INTERRUPT doesn't disturb existing trap sans one 1153 * exception. If ptracer issued LISTEN for the current 1154 * STOP, this INTERRUPT should clear LISTEN and re-trap 1155 * tracee into STOP. 1156 */ 1157 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP))) 1158 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING); 1159 1160 unlock_task_sighand(child, &flags); 1161 ret = 0; 1162 break; 1163 1164 case PTRACE_LISTEN: 1165 /* 1166 * Listen for events. Tracee must be in STOP. It's not 1167 * resumed per-se but is not considered to be in TRACED by 1168 * wait(2) or ptrace(2). If an async event (e.g. group 1169 * stop state change) happens, tracee will enter STOP trap 1170 * again. Alternatively, ptracer can issue INTERRUPT to 1171 * finish listening and re-trap tracee into STOP. 1172 */ 1173 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 1174 break; 1175 1176 si = child->last_siginfo; 1177 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) { 1178 child->jobctl |= JOBCTL_LISTENING; 1179 /* 1180 * If NOTIFY is set, it means event happened between 1181 * start of this trap and now. Trigger re-trap. 1182 */ 1183 if (child->jobctl & JOBCTL_TRAP_NOTIFY) 1184 ptrace_signal_wake_up(child, true); 1185 ret = 0; 1186 } 1187 unlock_task_sighand(child, &flags); 1188 break; 1189 1190 case PTRACE_DETACH: /* detach a process that was attached. */ 1191 ret = ptrace_detach(child, data); 1192 break; 1193 1194 #ifdef CONFIG_BINFMT_ELF_FDPIC 1195 case PTRACE_GETFDPIC: { 1196 struct mm_struct *mm = get_task_mm(child); 1197 unsigned long tmp = 0; 1198 1199 ret = -ESRCH; 1200 if (!mm) 1201 break; 1202 1203 switch (addr) { 1204 case PTRACE_GETFDPIC_EXEC: 1205 tmp = mm->context.exec_fdpic_loadmap; 1206 break; 1207 case PTRACE_GETFDPIC_INTERP: 1208 tmp = mm->context.interp_fdpic_loadmap; 1209 break; 1210 default: 1211 break; 1212 } 1213 mmput(mm); 1214 1215 ret = put_user(tmp, datalp); 1216 break; 1217 } 1218 #endif 1219 1220 case PTRACE_SINGLESTEP: 1221 #ifdef PTRACE_SINGLEBLOCK 1222 case PTRACE_SINGLEBLOCK: 1223 #endif 1224 #ifdef PTRACE_SYSEMU 1225 case PTRACE_SYSEMU: 1226 case PTRACE_SYSEMU_SINGLESTEP: 1227 #endif 1228 case PTRACE_SYSCALL: 1229 case PTRACE_CONT: 1230 return ptrace_resume(child, request, data); 1231 1232 case PTRACE_KILL: 1233 if (child->exit_state) /* already dead */ 1234 return 0; 1235 return ptrace_resume(child, request, SIGKILL); 1236 1237 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 1238 case PTRACE_GETREGSET: 1239 case PTRACE_SETREGSET: { 1240 struct iovec kiov; 1241 struct iovec __user *uiov = datavp; 1242 1243 if (!access_ok(uiov, sizeof(*uiov))) 1244 return -EFAULT; 1245 1246 if (__get_user(kiov.iov_base, &uiov->iov_base) || 1247 __get_user(kiov.iov_len, &uiov->iov_len)) 1248 return -EFAULT; 1249 1250 ret = ptrace_regset(child, request, addr, &kiov); 1251 if (!ret) 1252 ret = __put_user(kiov.iov_len, &uiov->iov_len); 1253 break; 1254 } 1255 1256 case PTRACE_GET_SYSCALL_INFO: 1257 ret = ptrace_get_syscall_info(child, addr, datavp); 1258 break; 1259 #endif 1260 1261 case PTRACE_SECCOMP_GET_FILTER: 1262 ret = seccomp_get_filter(child, addr, datavp); 1263 break; 1264 1265 case PTRACE_SECCOMP_GET_METADATA: 1266 ret = seccomp_get_metadata(child, addr, datavp); 1267 break; 1268 1269 #ifdef CONFIG_RSEQ 1270 case PTRACE_GET_RSEQ_CONFIGURATION: 1271 ret = ptrace_get_rseq_configuration(child, addr, datavp); 1272 break; 1273 #endif 1274 1275 default: 1276 break; 1277 } 1278 1279 return ret; 1280 } 1281 1282 #ifndef arch_ptrace_attach 1283 #define arch_ptrace_attach(child) do { } while (0) 1284 #endif 1285 1286 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr, 1287 unsigned long, data) 1288 { 1289 struct task_struct *child; 1290 long ret; 1291 1292 if (request == PTRACE_TRACEME) { 1293 ret = ptrace_traceme(); 1294 if (!ret) 1295 arch_ptrace_attach(current); 1296 goto out; 1297 } 1298 1299 child = find_get_task_by_vpid(pid); 1300 if (!child) { 1301 ret = -ESRCH; 1302 goto out; 1303 } 1304 1305 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 1306 ret = ptrace_attach(child, request, addr, data); 1307 /* 1308 * Some architectures need to do book-keeping after 1309 * a ptrace attach. 1310 */ 1311 if (!ret) 1312 arch_ptrace_attach(child); 1313 goto out_put_task_struct; 1314 } 1315 1316 ret = ptrace_check_attach(child, request == PTRACE_KILL || 1317 request == PTRACE_INTERRUPT); 1318 if (ret < 0) 1319 goto out_put_task_struct; 1320 1321 ret = arch_ptrace(child, request, addr, data); 1322 if (ret || request != PTRACE_DETACH) 1323 ptrace_unfreeze_traced(child); 1324 1325 out_put_task_struct: 1326 put_task_struct(child); 1327 out: 1328 return ret; 1329 } 1330 1331 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 1332 unsigned long data) 1333 { 1334 unsigned long tmp; 1335 int copied; 1336 1337 copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE); 1338 if (copied != sizeof(tmp)) 1339 return -EIO; 1340 return put_user(tmp, (unsigned long __user *)data); 1341 } 1342 1343 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 1344 unsigned long data) 1345 { 1346 int copied; 1347 1348 copied = ptrace_access_vm(tsk, addr, &data, sizeof(data), 1349 FOLL_FORCE | FOLL_WRITE); 1350 return (copied == sizeof(data)) ? 0 : -EIO; 1351 } 1352 1353 #if defined CONFIG_COMPAT 1354 1355 int compat_ptrace_request(struct task_struct *child, compat_long_t request, 1356 compat_ulong_t addr, compat_ulong_t data) 1357 { 1358 compat_ulong_t __user *datap = compat_ptr(data); 1359 compat_ulong_t word; 1360 kernel_siginfo_t siginfo; 1361 int ret; 1362 1363 switch (request) { 1364 case PTRACE_PEEKTEXT: 1365 case PTRACE_PEEKDATA: 1366 ret = ptrace_access_vm(child, addr, &word, sizeof(word), 1367 FOLL_FORCE); 1368 if (ret != sizeof(word)) 1369 ret = -EIO; 1370 else 1371 ret = put_user(word, datap); 1372 break; 1373 1374 case PTRACE_POKETEXT: 1375 case PTRACE_POKEDATA: 1376 ret = ptrace_access_vm(child, addr, &data, sizeof(data), 1377 FOLL_FORCE | FOLL_WRITE); 1378 ret = (ret != sizeof(data) ? -EIO : 0); 1379 break; 1380 1381 case PTRACE_GETEVENTMSG: 1382 ret = put_user((compat_ulong_t) child->ptrace_message, datap); 1383 break; 1384 1385 case PTRACE_GETSIGINFO: 1386 ret = ptrace_getsiginfo(child, &siginfo); 1387 if (!ret) 1388 ret = copy_siginfo_to_user32( 1389 (struct compat_siginfo __user *) datap, 1390 &siginfo); 1391 break; 1392 1393 case PTRACE_SETSIGINFO: 1394 ret = copy_siginfo_from_user32( 1395 &siginfo, (struct compat_siginfo __user *) datap); 1396 if (!ret) 1397 ret = ptrace_setsiginfo(child, &siginfo); 1398 break; 1399 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 1400 case PTRACE_GETREGSET: 1401 case PTRACE_SETREGSET: 1402 { 1403 struct iovec kiov; 1404 struct compat_iovec __user *uiov = 1405 (struct compat_iovec __user *) datap; 1406 compat_uptr_t ptr; 1407 compat_size_t len; 1408 1409 if (!access_ok(uiov, sizeof(*uiov))) 1410 return -EFAULT; 1411 1412 if (__get_user(ptr, &uiov->iov_base) || 1413 __get_user(len, &uiov->iov_len)) 1414 return -EFAULT; 1415 1416 kiov.iov_base = compat_ptr(ptr); 1417 kiov.iov_len = len; 1418 1419 ret = ptrace_regset(child, request, addr, &kiov); 1420 if (!ret) 1421 ret = __put_user(kiov.iov_len, &uiov->iov_len); 1422 break; 1423 } 1424 #endif 1425 1426 default: 1427 ret = ptrace_request(child, request, addr, data); 1428 } 1429 1430 return ret; 1431 } 1432 1433 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid, 1434 compat_long_t, addr, compat_long_t, data) 1435 { 1436 struct task_struct *child; 1437 long ret; 1438 1439 if (request == PTRACE_TRACEME) { 1440 ret = ptrace_traceme(); 1441 goto out; 1442 } 1443 1444 child = find_get_task_by_vpid(pid); 1445 if (!child) { 1446 ret = -ESRCH; 1447 goto out; 1448 } 1449 1450 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 1451 ret = ptrace_attach(child, request, addr, data); 1452 /* 1453 * Some architectures need to do book-keeping after 1454 * a ptrace attach. 1455 */ 1456 if (!ret) 1457 arch_ptrace_attach(child); 1458 goto out_put_task_struct; 1459 } 1460 1461 ret = ptrace_check_attach(child, request == PTRACE_KILL || 1462 request == PTRACE_INTERRUPT); 1463 if (!ret) { 1464 ret = compat_arch_ptrace(child, request, addr, data); 1465 if (ret || request != PTRACE_DETACH) 1466 ptrace_unfreeze_traced(child); 1467 } 1468 1469 out_put_task_struct: 1470 put_task_struct(child); 1471 out: 1472 return ret; 1473 } 1474 #endif /* CONFIG_COMPAT */ 1475