xref: /openbmc/linux/kernel/ptrace.c (revision 1bcca2b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/ptrace.c
4  *
5  * (C) Copyright 1999 Linus Torvalds
6  *
7  * Common interfaces for "ptrace()" which we do not want
8  * to continually duplicate across every architecture.
9  */
10 
11 #include <linux/capability.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/coredump.h>
16 #include <linux/sched/task.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/ptrace.h>
22 #include <linux/security.h>
23 #include <linux/signal.h>
24 #include <linux/uio.h>
25 #include <linux/audit.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/syscalls.h>
28 #include <linux/uaccess.h>
29 #include <linux/regset.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/cn_proc.h>
32 #include <linux/compat.h>
33 #include <linux/sched/signal.h>
34 #include <linux/minmax.h>
35 
36 #include <asm/syscall.h>	/* for syscall_get_* */
37 
38 /*
39  * Access another process' address space via ptrace.
40  * Source/target buffer must be kernel space,
41  * Do not walk the page table directly, use get_user_pages
42  */
43 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
44 		     void *buf, int len, unsigned int gup_flags)
45 {
46 	struct mm_struct *mm;
47 	int ret;
48 
49 	mm = get_task_mm(tsk);
50 	if (!mm)
51 		return 0;
52 
53 	if (!tsk->ptrace ||
54 	    (current != tsk->parent) ||
55 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
56 	     !ptracer_capable(tsk, mm->user_ns))) {
57 		mmput(mm);
58 		return 0;
59 	}
60 
61 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
62 	mmput(mm);
63 
64 	return ret;
65 }
66 
67 
68 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent,
69 		   const struct cred *ptracer_cred)
70 {
71 	BUG_ON(!list_empty(&child->ptrace_entry));
72 	list_add(&child->ptrace_entry, &new_parent->ptraced);
73 	child->parent = new_parent;
74 	child->ptracer_cred = get_cred(ptracer_cred);
75 }
76 
77 /*
78  * ptrace a task: make the debugger its new parent and
79  * move it to the ptrace list.
80  *
81  * Must be called with the tasklist lock write-held.
82  */
83 static void ptrace_link(struct task_struct *child, struct task_struct *new_parent)
84 {
85 	__ptrace_link(child, new_parent, current_cred());
86 }
87 
88 /**
89  * __ptrace_unlink - unlink ptracee and restore its execution state
90  * @child: ptracee to be unlinked
91  *
92  * Remove @child from the ptrace list, move it back to the original parent,
93  * and restore the execution state so that it conforms to the group stop
94  * state.
95  *
96  * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
97  * exiting.  For PTRACE_DETACH, unless the ptracee has been killed between
98  * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
99  * If the ptracer is exiting, the ptracee can be in any state.
100  *
101  * After detach, the ptracee should be in a state which conforms to the
102  * group stop.  If the group is stopped or in the process of stopping, the
103  * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
104  * up from TASK_TRACED.
105  *
106  * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
107  * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
108  * to but in the opposite direction of what happens while attaching to a
109  * stopped task.  However, in this direction, the intermediate RUNNING
110  * state is not hidden even from the current ptracer and if it immediately
111  * re-attaches and performs a WNOHANG wait(2), it may fail.
112  *
113  * CONTEXT:
114  * write_lock_irq(tasklist_lock)
115  */
116 void __ptrace_unlink(struct task_struct *child)
117 {
118 	const struct cred *old_cred;
119 	BUG_ON(!child->ptrace);
120 
121 	clear_task_syscall_work(child, SYSCALL_TRACE);
122 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
123 	clear_task_syscall_work(child, SYSCALL_EMU);
124 #endif
125 
126 	child->parent = child->real_parent;
127 	list_del_init(&child->ptrace_entry);
128 	old_cred = child->ptracer_cred;
129 	child->ptracer_cred = NULL;
130 	put_cred(old_cred);
131 
132 	spin_lock(&child->sighand->siglock);
133 	child->ptrace = 0;
134 	/*
135 	 * Clear all pending traps and TRAPPING.  TRAPPING should be
136 	 * cleared regardless of JOBCTL_STOP_PENDING.  Do it explicitly.
137 	 */
138 	task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
139 	task_clear_jobctl_trapping(child);
140 
141 	/*
142 	 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
143 	 * @child isn't dead.
144 	 */
145 	if (!(child->flags & PF_EXITING) &&
146 	    (child->signal->flags & SIGNAL_STOP_STOPPED ||
147 	     child->signal->group_stop_count)) {
148 		child->jobctl |= JOBCTL_STOP_PENDING;
149 
150 		/*
151 		 * This is only possible if this thread was cloned by the
152 		 * traced task running in the stopped group, set the signal
153 		 * for the future reports.
154 		 * FIXME: we should change ptrace_init_task() to handle this
155 		 * case.
156 		 */
157 		if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
158 			child->jobctl |= SIGSTOP;
159 	}
160 
161 	/*
162 	 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
163 	 * @child in the butt.  Note that @resume should be used iff @child
164 	 * is in TASK_TRACED; otherwise, we might unduly disrupt
165 	 * TASK_KILLABLE sleeps.
166 	 */
167 	if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
168 		ptrace_signal_wake_up(child, true);
169 
170 	spin_unlock(&child->sighand->siglock);
171 }
172 
173 static bool looks_like_a_spurious_pid(struct task_struct *task)
174 {
175 	if (task->exit_code != ((PTRACE_EVENT_EXEC << 8) | SIGTRAP))
176 		return false;
177 
178 	if (task_pid_vnr(task) == task->ptrace_message)
179 		return false;
180 	/*
181 	 * The tracee changed its pid but the PTRACE_EVENT_EXEC event
182 	 * was not wait()'ed, most probably debugger targets the old
183 	 * leader which was destroyed in de_thread().
184 	 */
185 	return true;
186 }
187 
188 /* Ensure that nothing can wake it up, even SIGKILL */
189 static bool ptrace_freeze_traced(struct task_struct *task)
190 {
191 	bool ret = false;
192 
193 	/* Lockless, nobody but us can set this flag */
194 	if (task->jobctl & JOBCTL_LISTENING)
195 		return ret;
196 
197 	spin_lock_irq(&task->sighand->siglock);
198 	if (task_is_traced(task) && !looks_like_a_spurious_pid(task) &&
199 	    !__fatal_signal_pending(task)) {
200 		WRITE_ONCE(task->__state, __TASK_TRACED);
201 		ret = true;
202 	}
203 	spin_unlock_irq(&task->sighand->siglock);
204 
205 	return ret;
206 }
207 
208 static void ptrace_unfreeze_traced(struct task_struct *task)
209 {
210 	if (READ_ONCE(task->__state) != __TASK_TRACED)
211 		return;
212 
213 	WARN_ON(!task->ptrace || task->parent != current);
214 
215 	/*
216 	 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely.
217 	 * Recheck state under the lock to close this race.
218 	 */
219 	spin_lock_irq(&task->sighand->siglock);
220 	if (READ_ONCE(task->__state) == __TASK_TRACED) {
221 		if (__fatal_signal_pending(task))
222 			wake_up_state(task, __TASK_TRACED);
223 		else
224 			WRITE_ONCE(task->__state, TASK_TRACED);
225 	}
226 	spin_unlock_irq(&task->sighand->siglock);
227 }
228 
229 /**
230  * ptrace_check_attach - check whether ptracee is ready for ptrace operation
231  * @child: ptracee to check for
232  * @ignore_state: don't check whether @child is currently %TASK_TRACED
233  *
234  * Check whether @child is being ptraced by %current and ready for further
235  * ptrace operations.  If @ignore_state is %false, @child also should be in
236  * %TASK_TRACED state and on return the child is guaranteed to be traced
237  * and not executing.  If @ignore_state is %true, @child can be in any
238  * state.
239  *
240  * CONTEXT:
241  * Grabs and releases tasklist_lock and @child->sighand->siglock.
242  *
243  * RETURNS:
244  * 0 on success, -ESRCH if %child is not ready.
245  */
246 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
247 {
248 	int ret = -ESRCH;
249 
250 	/*
251 	 * We take the read lock around doing both checks to close a
252 	 * possible race where someone else was tracing our child and
253 	 * detached between these two checks.  After this locked check,
254 	 * we are sure that this is our traced child and that can only
255 	 * be changed by us so it's not changing right after this.
256 	 */
257 	read_lock(&tasklist_lock);
258 	if (child->ptrace && child->parent == current) {
259 		WARN_ON(READ_ONCE(child->__state) == __TASK_TRACED);
260 		/*
261 		 * child->sighand can't be NULL, release_task()
262 		 * does ptrace_unlink() before __exit_signal().
263 		 */
264 		if (ignore_state || ptrace_freeze_traced(child))
265 			ret = 0;
266 	}
267 	read_unlock(&tasklist_lock);
268 
269 	if (!ret && !ignore_state) {
270 		if (!wait_task_inactive(child, __TASK_TRACED)) {
271 			/*
272 			 * This can only happen if may_ptrace_stop() fails and
273 			 * ptrace_stop() changes ->state back to TASK_RUNNING,
274 			 * so we should not worry about leaking __TASK_TRACED.
275 			 */
276 			WARN_ON(READ_ONCE(child->__state) == __TASK_TRACED);
277 			ret = -ESRCH;
278 		}
279 	}
280 
281 	return ret;
282 }
283 
284 static bool ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
285 {
286 	if (mode & PTRACE_MODE_NOAUDIT)
287 		return ns_capable_noaudit(ns, CAP_SYS_PTRACE);
288 	return ns_capable(ns, CAP_SYS_PTRACE);
289 }
290 
291 /* Returns 0 on success, -errno on denial. */
292 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
293 {
294 	const struct cred *cred = current_cred(), *tcred;
295 	struct mm_struct *mm;
296 	kuid_t caller_uid;
297 	kgid_t caller_gid;
298 
299 	if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
300 		WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
301 		return -EPERM;
302 	}
303 
304 	/* May we inspect the given task?
305 	 * This check is used both for attaching with ptrace
306 	 * and for allowing access to sensitive information in /proc.
307 	 *
308 	 * ptrace_attach denies several cases that /proc allows
309 	 * because setting up the necessary parent/child relationship
310 	 * or halting the specified task is impossible.
311 	 */
312 
313 	/* Don't let security modules deny introspection */
314 	if (same_thread_group(task, current))
315 		return 0;
316 	rcu_read_lock();
317 	if (mode & PTRACE_MODE_FSCREDS) {
318 		caller_uid = cred->fsuid;
319 		caller_gid = cred->fsgid;
320 	} else {
321 		/*
322 		 * Using the euid would make more sense here, but something
323 		 * in userland might rely on the old behavior, and this
324 		 * shouldn't be a security problem since
325 		 * PTRACE_MODE_REALCREDS implies that the caller explicitly
326 		 * used a syscall that requests access to another process
327 		 * (and not a filesystem syscall to procfs).
328 		 */
329 		caller_uid = cred->uid;
330 		caller_gid = cred->gid;
331 	}
332 	tcred = __task_cred(task);
333 	if (uid_eq(caller_uid, tcred->euid) &&
334 	    uid_eq(caller_uid, tcred->suid) &&
335 	    uid_eq(caller_uid, tcred->uid)  &&
336 	    gid_eq(caller_gid, tcred->egid) &&
337 	    gid_eq(caller_gid, tcred->sgid) &&
338 	    gid_eq(caller_gid, tcred->gid))
339 		goto ok;
340 	if (ptrace_has_cap(tcred->user_ns, mode))
341 		goto ok;
342 	rcu_read_unlock();
343 	return -EPERM;
344 ok:
345 	rcu_read_unlock();
346 	/*
347 	 * If a task drops privileges and becomes nondumpable (through a syscall
348 	 * like setresuid()) while we are trying to access it, we must ensure
349 	 * that the dumpability is read after the credentials; otherwise,
350 	 * we may be able to attach to a task that we shouldn't be able to
351 	 * attach to (as if the task had dropped privileges without becoming
352 	 * nondumpable).
353 	 * Pairs with a write barrier in commit_creds().
354 	 */
355 	smp_rmb();
356 	mm = task->mm;
357 	if (mm &&
358 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
359 	     !ptrace_has_cap(mm->user_ns, mode)))
360 	    return -EPERM;
361 
362 	return security_ptrace_access_check(task, mode);
363 }
364 
365 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
366 {
367 	int err;
368 	task_lock(task);
369 	err = __ptrace_may_access(task, mode);
370 	task_unlock(task);
371 	return !err;
372 }
373 
374 static int check_ptrace_options(unsigned long data)
375 {
376 	if (data & ~(unsigned long)PTRACE_O_MASK)
377 		return -EINVAL;
378 
379 	if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
380 		if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
381 		    !IS_ENABLED(CONFIG_SECCOMP))
382 			return -EINVAL;
383 
384 		if (!capable(CAP_SYS_ADMIN))
385 			return -EPERM;
386 
387 		if (seccomp_mode(&current->seccomp) != SECCOMP_MODE_DISABLED ||
388 		    current->ptrace & PT_SUSPEND_SECCOMP)
389 			return -EPERM;
390 	}
391 	return 0;
392 }
393 
394 static int ptrace_attach(struct task_struct *task, long request,
395 			 unsigned long addr,
396 			 unsigned long flags)
397 {
398 	bool seize = (request == PTRACE_SEIZE);
399 	int retval;
400 
401 	retval = -EIO;
402 	if (seize) {
403 		if (addr != 0)
404 			goto out;
405 		/*
406 		 * This duplicates the check in check_ptrace_options() because
407 		 * ptrace_attach() and ptrace_setoptions() have historically
408 		 * used different error codes for unknown ptrace options.
409 		 */
410 		if (flags & ~(unsigned long)PTRACE_O_MASK)
411 			goto out;
412 		retval = check_ptrace_options(flags);
413 		if (retval)
414 			return retval;
415 		flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
416 	} else {
417 		flags = PT_PTRACED;
418 	}
419 
420 	audit_ptrace(task);
421 
422 	retval = -EPERM;
423 	if (unlikely(task->flags & PF_KTHREAD))
424 		goto out;
425 	if (same_thread_group(task, current))
426 		goto out;
427 
428 	/*
429 	 * Protect exec's credential calculations against our interference;
430 	 * SUID, SGID and LSM creds get determined differently
431 	 * under ptrace.
432 	 */
433 	retval = -ERESTARTNOINTR;
434 	if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
435 		goto out;
436 
437 	task_lock(task);
438 	retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
439 	task_unlock(task);
440 	if (retval)
441 		goto unlock_creds;
442 
443 	write_lock_irq(&tasklist_lock);
444 	retval = -EPERM;
445 	if (unlikely(task->exit_state))
446 		goto unlock_tasklist;
447 	if (task->ptrace)
448 		goto unlock_tasklist;
449 
450 	task->ptrace = flags;
451 
452 	ptrace_link(task, current);
453 
454 	/* SEIZE doesn't trap tracee on attach */
455 	if (!seize)
456 		send_sig_info(SIGSTOP, SEND_SIG_PRIV, task);
457 
458 	spin_lock(&task->sighand->siglock);
459 
460 	/*
461 	 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
462 	 * TRAPPING, and kick it so that it transits to TRACED.  TRAPPING
463 	 * will be cleared if the child completes the transition or any
464 	 * event which clears the group stop states happens.  We'll wait
465 	 * for the transition to complete before returning from this
466 	 * function.
467 	 *
468 	 * This hides STOPPED -> RUNNING -> TRACED transition from the
469 	 * attaching thread but a different thread in the same group can
470 	 * still observe the transient RUNNING state.  IOW, if another
471 	 * thread's WNOHANG wait(2) on the stopped tracee races against
472 	 * ATTACH, the wait(2) may fail due to the transient RUNNING.
473 	 *
474 	 * The following task_is_stopped() test is safe as both transitions
475 	 * in and out of STOPPED are protected by siglock.
476 	 */
477 	if (task_is_stopped(task) &&
478 	    task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
479 		signal_wake_up_state(task, __TASK_STOPPED);
480 
481 	spin_unlock(&task->sighand->siglock);
482 
483 	retval = 0;
484 unlock_tasklist:
485 	write_unlock_irq(&tasklist_lock);
486 unlock_creds:
487 	mutex_unlock(&task->signal->cred_guard_mutex);
488 out:
489 	if (!retval) {
490 		/*
491 		 * We do not bother to change retval or clear JOBCTL_TRAPPING
492 		 * if wait_on_bit() was interrupted by SIGKILL. The tracer will
493 		 * not return to user-mode, it will exit and clear this bit in
494 		 * __ptrace_unlink() if it wasn't already cleared by the tracee;
495 		 * and until then nobody can ptrace this task.
496 		 */
497 		wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
498 		proc_ptrace_connector(task, PTRACE_ATTACH);
499 	}
500 
501 	return retval;
502 }
503 
504 /**
505  * ptrace_traceme  --  helper for PTRACE_TRACEME
506  *
507  * Performs checks and sets PT_PTRACED.
508  * Should be used by all ptrace implementations for PTRACE_TRACEME.
509  */
510 static int ptrace_traceme(void)
511 {
512 	int ret = -EPERM;
513 
514 	write_lock_irq(&tasklist_lock);
515 	/* Are we already being traced? */
516 	if (!current->ptrace) {
517 		ret = security_ptrace_traceme(current->parent);
518 		/*
519 		 * Check PF_EXITING to ensure ->real_parent has not passed
520 		 * exit_ptrace(). Otherwise we don't report the error but
521 		 * pretend ->real_parent untraces us right after return.
522 		 */
523 		if (!ret && !(current->real_parent->flags & PF_EXITING)) {
524 			current->ptrace = PT_PTRACED;
525 			ptrace_link(current, current->real_parent);
526 		}
527 	}
528 	write_unlock_irq(&tasklist_lock);
529 
530 	return ret;
531 }
532 
533 /*
534  * Called with irqs disabled, returns true if childs should reap themselves.
535  */
536 static int ignoring_children(struct sighand_struct *sigh)
537 {
538 	int ret;
539 	spin_lock(&sigh->siglock);
540 	ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
541 	      (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
542 	spin_unlock(&sigh->siglock);
543 	return ret;
544 }
545 
546 /*
547  * Called with tasklist_lock held for writing.
548  * Unlink a traced task, and clean it up if it was a traced zombie.
549  * Return true if it needs to be reaped with release_task().
550  * (We can't call release_task() here because we already hold tasklist_lock.)
551  *
552  * If it's a zombie, our attachedness prevented normal parent notification
553  * or self-reaping.  Do notification now if it would have happened earlier.
554  * If it should reap itself, return true.
555  *
556  * If it's our own child, there is no notification to do. But if our normal
557  * children self-reap, then this child was prevented by ptrace and we must
558  * reap it now, in that case we must also wake up sub-threads sleeping in
559  * do_wait().
560  */
561 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
562 {
563 	bool dead;
564 
565 	__ptrace_unlink(p);
566 
567 	if (p->exit_state != EXIT_ZOMBIE)
568 		return false;
569 
570 	dead = !thread_group_leader(p);
571 
572 	if (!dead && thread_group_empty(p)) {
573 		if (!same_thread_group(p->real_parent, tracer))
574 			dead = do_notify_parent(p, p->exit_signal);
575 		else if (ignoring_children(tracer->sighand)) {
576 			__wake_up_parent(p, tracer);
577 			dead = true;
578 		}
579 	}
580 	/* Mark it as in the process of being reaped. */
581 	if (dead)
582 		p->exit_state = EXIT_DEAD;
583 	return dead;
584 }
585 
586 static int ptrace_detach(struct task_struct *child, unsigned int data)
587 {
588 	if (!valid_signal(data))
589 		return -EIO;
590 
591 	/* Architecture-specific hardware disable .. */
592 	ptrace_disable(child);
593 
594 	write_lock_irq(&tasklist_lock);
595 	/*
596 	 * We rely on ptrace_freeze_traced(). It can't be killed and
597 	 * untraced by another thread, it can't be a zombie.
598 	 */
599 	WARN_ON(!child->ptrace || child->exit_state);
600 	/*
601 	 * tasklist_lock avoids the race with wait_task_stopped(), see
602 	 * the comment in ptrace_resume().
603 	 */
604 	child->exit_code = data;
605 	__ptrace_detach(current, child);
606 	write_unlock_irq(&tasklist_lock);
607 
608 	proc_ptrace_connector(child, PTRACE_DETACH);
609 
610 	return 0;
611 }
612 
613 /*
614  * Detach all tasks we were using ptrace on. Called with tasklist held
615  * for writing.
616  */
617 void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
618 {
619 	struct task_struct *p, *n;
620 
621 	list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
622 		if (unlikely(p->ptrace & PT_EXITKILL))
623 			send_sig_info(SIGKILL, SEND_SIG_PRIV, p);
624 
625 		if (__ptrace_detach(tracer, p))
626 			list_add(&p->ptrace_entry, dead);
627 	}
628 }
629 
630 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
631 {
632 	int copied = 0;
633 
634 	while (len > 0) {
635 		char buf[128];
636 		int this_len, retval;
637 
638 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
639 		retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
640 
641 		if (!retval) {
642 			if (copied)
643 				break;
644 			return -EIO;
645 		}
646 		if (copy_to_user(dst, buf, retval))
647 			return -EFAULT;
648 		copied += retval;
649 		src += retval;
650 		dst += retval;
651 		len -= retval;
652 	}
653 	return copied;
654 }
655 
656 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
657 {
658 	int copied = 0;
659 
660 	while (len > 0) {
661 		char buf[128];
662 		int this_len, retval;
663 
664 		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
665 		if (copy_from_user(buf, src, this_len))
666 			return -EFAULT;
667 		retval = ptrace_access_vm(tsk, dst, buf, this_len,
668 				FOLL_FORCE | FOLL_WRITE);
669 		if (!retval) {
670 			if (copied)
671 				break;
672 			return -EIO;
673 		}
674 		copied += retval;
675 		src += retval;
676 		dst += retval;
677 		len -= retval;
678 	}
679 	return copied;
680 }
681 
682 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
683 {
684 	unsigned flags;
685 	int ret;
686 
687 	ret = check_ptrace_options(data);
688 	if (ret)
689 		return ret;
690 
691 	/* Avoid intermediate state when all opts are cleared */
692 	flags = child->ptrace;
693 	flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
694 	flags |= (data << PT_OPT_FLAG_SHIFT);
695 	child->ptrace = flags;
696 
697 	return 0;
698 }
699 
700 static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info)
701 {
702 	unsigned long flags;
703 	int error = -ESRCH;
704 
705 	if (lock_task_sighand(child, &flags)) {
706 		error = -EINVAL;
707 		if (likely(child->last_siginfo != NULL)) {
708 			copy_siginfo(info, child->last_siginfo);
709 			error = 0;
710 		}
711 		unlock_task_sighand(child, &flags);
712 	}
713 	return error;
714 }
715 
716 static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info)
717 {
718 	unsigned long flags;
719 	int error = -ESRCH;
720 
721 	if (lock_task_sighand(child, &flags)) {
722 		error = -EINVAL;
723 		if (likely(child->last_siginfo != NULL)) {
724 			copy_siginfo(child->last_siginfo, info);
725 			error = 0;
726 		}
727 		unlock_task_sighand(child, &flags);
728 	}
729 	return error;
730 }
731 
732 static int ptrace_peek_siginfo(struct task_struct *child,
733 				unsigned long addr,
734 				unsigned long data)
735 {
736 	struct ptrace_peeksiginfo_args arg;
737 	struct sigpending *pending;
738 	struct sigqueue *q;
739 	int ret, i;
740 
741 	ret = copy_from_user(&arg, (void __user *) addr,
742 				sizeof(struct ptrace_peeksiginfo_args));
743 	if (ret)
744 		return -EFAULT;
745 
746 	if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
747 		return -EINVAL; /* unknown flags */
748 
749 	if (arg.nr < 0)
750 		return -EINVAL;
751 
752 	/* Ensure arg.off fits in an unsigned long */
753 	if (arg.off > ULONG_MAX)
754 		return 0;
755 
756 	if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
757 		pending = &child->signal->shared_pending;
758 	else
759 		pending = &child->pending;
760 
761 	for (i = 0; i < arg.nr; ) {
762 		kernel_siginfo_t info;
763 		unsigned long off = arg.off + i;
764 		bool found = false;
765 
766 		spin_lock_irq(&child->sighand->siglock);
767 		list_for_each_entry(q, &pending->list, list) {
768 			if (!off--) {
769 				found = true;
770 				copy_siginfo(&info, &q->info);
771 				break;
772 			}
773 		}
774 		spin_unlock_irq(&child->sighand->siglock);
775 
776 		if (!found) /* beyond the end of the list */
777 			break;
778 
779 #ifdef CONFIG_COMPAT
780 		if (unlikely(in_compat_syscall())) {
781 			compat_siginfo_t __user *uinfo = compat_ptr(data);
782 
783 			if (copy_siginfo_to_user32(uinfo, &info)) {
784 				ret = -EFAULT;
785 				break;
786 			}
787 
788 		} else
789 #endif
790 		{
791 			siginfo_t __user *uinfo = (siginfo_t __user *) data;
792 
793 			if (copy_siginfo_to_user(uinfo, &info)) {
794 				ret = -EFAULT;
795 				break;
796 			}
797 		}
798 
799 		data += sizeof(siginfo_t);
800 		i++;
801 
802 		if (signal_pending(current))
803 			break;
804 
805 		cond_resched();
806 	}
807 
808 	if (i > 0)
809 		return i;
810 
811 	return ret;
812 }
813 
814 #ifdef CONFIG_RSEQ
815 static long ptrace_get_rseq_configuration(struct task_struct *task,
816 					  unsigned long size, void __user *data)
817 {
818 	struct ptrace_rseq_configuration conf = {
819 		.rseq_abi_pointer = (u64)(uintptr_t)task->rseq,
820 		.rseq_abi_size = sizeof(*task->rseq),
821 		.signature = task->rseq_sig,
822 		.flags = 0,
823 	};
824 
825 	size = min_t(unsigned long, size, sizeof(conf));
826 	if (copy_to_user(data, &conf, size))
827 		return -EFAULT;
828 	return sizeof(conf);
829 }
830 #endif
831 
832 #define is_singlestep(request)		((request) == PTRACE_SINGLESTEP)
833 
834 #ifdef PTRACE_SINGLEBLOCK
835 #define is_singleblock(request)		((request) == PTRACE_SINGLEBLOCK)
836 #else
837 #define is_singleblock(request)		0
838 #endif
839 
840 #ifdef PTRACE_SYSEMU
841 #define is_sysemu_singlestep(request)	((request) == PTRACE_SYSEMU_SINGLESTEP)
842 #else
843 #define is_sysemu_singlestep(request)	0
844 #endif
845 
846 static int ptrace_resume(struct task_struct *child, long request,
847 			 unsigned long data)
848 {
849 	bool need_siglock;
850 
851 	if (!valid_signal(data))
852 		return -EIO;
853 
854 	if (request == PTRACE_SYSCALL)
855 		set_task_syscall_work(child, SYSCALL_TRACE);
856 	else
857 		clear_task_syscall_work(child, SYSCALL_TRACE);
858 
859 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
860 	if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
861 		set_task_syscall_work(child, SYSCALL_EMU);
862 	else
863 		clear_task_syscall_work(child, SYSCALL_EMU);
864 #endif
865 
866 	if (is_singleblock(request)) {
867 		if (unlikely(!arch_has_block_step()))
868 			return -EIO;
869 		user_enable_block_step(child);
870 	} else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
871 		if (unlikely(!arch_has_single_step()))
872 			return -EIO;
873 		user_enable_single_step(child);
874 	} else {
875 		user_disable_single_step(child);
876 	}
877 
878 	/*
879 	 * Change ->exit_code and ->state under siglock to avoid the race
880 	 * with wait_task_stopped() in between; a non-zero ->exit_code will
881 	 * wrongly look like another report from tracee.
882 	 *
883 	 * Note that we need siglock even if ->exit_code == data and/or this
884 	 * status was not reported yet, the new status must not be cleared by
885 	 * wait_task_stopped() after resume.
886 	 *
887 	 * If data == 0 we do not care if wait_task_stopped() reports the old
888 	 * status and clears the code too; this can't race with the tracee, it
889 	 * takes siglock after resume.
890 	 */
891 	need_siglock = data && !thread_group_empty(current);
892 	if (need_siglock)
893 		spin_lock_irq(&child->sighand->siglock);
894 	child->exit_code = data;
895 	wake_up_state(child, __TASK_TRACED);
896 	if (need_siglock)
897 		spin_unlock_irq(&child->sighand->siglock);
898 
899 	return 0;
900 }
901 
902 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
903 
904 static const struct user_regset *
905 find_regset(const struct user_regset_view *view, unsigned int type)
906 {
907 	const struct user_regset *regset;
908 	int n;
909 
910 	for (n = 0; n < view->n; ++n) {
911 		regset = view->regsets + n;
912 		if (regset->core_note_type == type)
913 			return regset;
914 	}
915 
916 	return NULL;
917 }
918 
919 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
920 			 struct iovec *kiov)
921 {
922 	const struct user_regset_view *view = task_user_regset_view(task);
923 	const struct user_regset *regset = find_regset(view, type);
924 	int regset_no;
925 
926 	if (!regset || (kiov->iov_len % regset->size) != 0)
927 		return -EINVAL;
928 
929 	regset_no = regset - view->regsets;
930 	kiov->iov_len = min(kiov->iov_len,
931 			    (__kernel_size_t) (regset->n * regset->size));
932 
933 	if (req == PTRACE_GETREGSET)
934 		return copy_regset_to_user(task, view, regset_no, 0,
935 					   kiov->iov_len, kiov->iov_base);
936 	else
937 		return copy_regset_from_user(task, view, regset_no, 0,
938 					     kiov->iov_len, kiov->iov_base);
939 }
940 
941 /*
942  * This is declared in linux/regset.h and defined in machine-dependent
943  * code.  We put the export here, near the primary machine-neutral use,
944  * to ensure no machine forgets it.
945  */
946 EXPORT_SYMBOL_GPL(task_user_regset_view);
947 
948 static unsigned long
949 ptrace_get_syscall_info_entry(struct task_struct *child, struct pt_regs *regs,
950 			      struct ptrace_syscall_info *info)
951 {
952 	unsigned long args[ARRAY_SIZE(info->entry.args)];
953 	int i;
954 
955 	info->op = PTRACE_SYSCALL_INFO_ENTRY;
956 	info->entry.nr = syscall_get_nr(child, regs);
957 	syscall_get_arguments(child, regs, args);
958 	for (i = 0; i < ARRAY_SIZE(args); i++)
959 		info->entry.args[i] = args[i];
960 
961 	/* args is the last field in struct ptrace_syscall_info.entry */
962 	return offsetofend(struct ptrace_syscall_info, entry.args);
963 }
964 
965 static unsigned long
966 ptrace_get_syscall_info_seccomp(struct task_struct *child, struct pt_regs *regs,
967 				struct ptrace_syscall_info *info)
968 {
969 	/*
970 	 * As struct ptrace_syscall_info.entry is currently a subset
971 	 * of struct ptrace_syscall_info.seccomp, it makes sense to
972 	 * initialize that subset using ptrace_get_syscall_info_entry().
973 	 * This can be reconsidered in the future if these structures
974 	 * diverge significantly enough.
975 	 */
976 	ptrace_get_syscall_info_entry(child, regs, info);
977 	info->op = PTRACE_SYSCALL_INFO_SECCOMP;
978 	info->seccomp.ret_data = child->ptrace_message;
979 
980 	/* ret_data is the last field in struct ptrace_syscall_info.seccomp */
981 	return offsetofend(struct ptrace_syscall_info, seccomp.ret_data);
982 }
983 
984 static unsigned long
985 ptrace_get_syscall_info_exit(struct task_struct *child, struct pt_regs *regs,
986 			     struct ptrace_syscall_info *info)
987 {
988 	info->op = PTRACE_SYSCALL_INFO_EXIT;
989 	info->exit.rval = syscall_get_error(child, regs);
990 	info->exit.is_error = !!info->exit.rval;
991 	if (!info->exit.is_error)
992 		info->exit.rval = syscall_get_return_value(child, regs);
993 
994 	/* is_error is the last field in struct ptrace_syscall_info.exit */
995 	return offsetofend(struct ptrace_syscall_info, exit.is_error);
996 }
997 
998 static int
999 ptrace_get_syscall_info(struct task_struct *child, unsigned long user_size,
1000 			void __user *datavp)
1001 {
1002 	struct pt_regs *regs = task_pt_regs(child);
1003 	struct ptrace_syscall_info info = {
1004 		.op = PTRACE_SYSCALL_INFO_NONE,
1005 		.arch = syscall_get_arch(child),
1006 		.instruction_pointer = instruction_pointer(regs),
1007 		.stack_pointer = user_stack_pointer(regs),
1008 	};
1009 	unsigned long actual_size = offsetof(struct ptrace_syscall_info, entry);
1010 	unsigned long write_size;
1011 
1012 	/*
1013 	 * This does not need lock_task_sighand() to access
1014 	 * child->last_siginfo because ptrace_freeze_traced()
1015 	 * called earlier by ptrace_check_attach() ensures that
1016 	 * the tracee cannot go away and clear its last_siginfo.
1017 	 */
1018 	switch (child->last_siginfo ? child->last_siginfo->si_code : 0) {
1019 	case SIGTRAP | 0x80:
1020 		switch (child->ptrace_message) {
1021 		case PTRACE_EVENTMSG_SYSCALL_ENTRY:
1022 			actual_size = ptrace_get_syscall_info_entry(child, regs,
1023 								    &info);
1024 			break;
1025 		case PTRACE_EVENTMSG_SYSCALL_EXIT:
1026 			actual_size = ptrace_get_syscall_info_exit(child, regs,
1027 								   &info);
1028 			break;
1029 		}
1030 		break;
1031 	case SIGTRAP | (PTRACE_EVENT_SECCOMP << 8):
1032 		actual_size = ptrace_get_syscall_info_seccomp(child, regs,
1033 							      &info);
1034 		break;
1035 	}
1036 
1037 	write_size = min(actual_size, user_size);
1038 	return copy_to_user(datavp, &info, write_size) ? -EFAULT : actual_size;
1039 }
1040 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
1041 
1042 int ptrace_request(struct task_struct *child, long request,
1043 		   unsigned long addr, unsigned long data)
1044 {
1045 	bool seized = child->ptrace & PT_SEIZED;
1046 	int ret = -EIO;
1047 	kernel_siginfo_t siginfo, *si;
1048 	void __user *datavp = (void __user *) data;
1049 	unsigned long __user *datalp = datavp;
1050 	unsigned long flags;
1051 
1052 	switch (request) {
1053 	case PTRACE_PEEKTEXT:
1054 	case PTRACE_PEEKDATA:
1055 		return generic_ptrace_peekdata(child, addr, data);
1056 	case PTRACE_POKETEXT:
1057 	case PTRACE_POKEDATA:
1058 		return generic_ptrace_pokedata(child, addr, data);
1059 
1060 #ifdef PTRACE_OLDSETOPTIONS
1061 	case PTRACE_OLDSETOPTIONS:
1062 #endif
1063 	case PTRACE_SETOPTIONS:
1064 		ret = ptrace_setoptions(child, data);
1065 		break;
1066 	case PTRACE_GETEVENTMSG:
1067 		ret = put_user(child->ptrace_message, datalp);
1068 		break;
1069 
1070 	case PTRACE_PEEKSIGINFO:
1071 		ret = ptrace_peek_siginfo(child, addr, data);
1072 		break;
1073 
1074 	case PTRACE_GETSIGINFO:
1075 		ret = ptrace_getsiginfo(child, &siginfo);
1076 		if (!ret)
1077 			ret = copy_siginfo_to_user(datavp, &siginfo);
1078 		break;
1079 
1080 	case PTRACE_SETSIGINFO:
1081 		ret = copy_siginfo_from_user(&siginfo, datavp);
1082 		if (!ret)
1083 			ret = ptrace_setsiginfo(child, &siginfo);
1084 		break;
1085 
1086 	case PTRACE_GETSIGMASK: {
1087 		sigset_t *mask;
1088 
1089 		if (addr != sizeof(sigset_t)) {
1090 			ret = -EINVAL;
1091 			break;
1092 		}
1093 
1094 		if (test_tsk_restore_sigmask(child))
1095 			mask = &child->saved_sigmask;
1096 		else
1097 			mask = &child->blocked;
1098 
1099 		if (copy_to_user(datavp, mask, sizeof(sigset_t)))
1100 			ret = -EFAULT;
1101 		else
1102 			ret = 0;
1103 
1104 		break;
1105 	}
1106 
1107 	case PTRACE_SETSIGMASK: {
1108 		sigset_t new_set;
1109 
1110 		if (addr != sizeof(sigset_t)) {
1111 			ret = -EINVAL;
1112 			break;
1113 		}
1114 
1115 		if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
1116 			ret = -EFAULT;
1117 			break;
1118 		}
1119 
1120 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1121 
1122 		/*
1123 		 * Every thread does recalc_sigpending() after resume, so
1124 		 * retarget_shared_pending() and recalc_sigpending() are not
1125 		 * called here.
1126 		 */
1127 		spin_lock_irq(&child->sighand->siglock);
1128 		child->blocked = new_set;
1129 		spin_unlock_irq(&child->sighand->siglock);
1130 
1131 		clear_tsk_restore_sigmask(child);
1132 
1133 		ret = 0;
1134 		break;
1135 	}
1136 
1137 	case PTRACE_INTERRUPT:
1138 		/*
1139 		 * Stop tracee without any side-effect on signal or job
1140 		 * control.  At least one trap is guaranteed to happen
1141 		 * after this request.  If @child is already trapped, the
1142 		 * current trap is not disturbed and another trap will
1143 		 * happen after the current trap is ended with PTRACE_CONT.
1144 		 *
1145 		 * The actual trap might not be PTRACE_EVENT_STOP trap but
1146 		 * the pending condition is cleared regardless.
1147 		 */
1148 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1149 			break;
1150 
1151 		/*
1152 		 * INTERRUPT doesn't disturb existing trap sans one
1153 		 * exception.  If ptracer issued LISTEN for the current
1154 		 * STOP, this INTERRUPT should clear LISTEN and re-trap
1155 		 * tracee into STOP.
1156 		 */
1157 		if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
1158 			ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
1159 
1160 		unlock_task_sighand(child, &flags);
1161 		ret = 0;
1162 		break;
1163 
1164 	case PTRACE_LISTEN:
1165 		/*
1166 		 * Listen for events.  Tracee must be in STOP.  It's not
1167 		 * resumed per-se but is not considered to be in TRACED by
1168 		 * wait(2) or ptrace(2).  If an async event (e.g. group
1169 		 * stop state change) happens, tracee will enter STOP trap
1170 		 * again.  Alternatively, ptracer can issue INTERRUPT to
1171 		 * finish listening and re-trap tracee into STOP.
1172 		 */
1173 		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1174 			break;
1175 
1176 		si = child->last_siginfo;
1177 		if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
1178 			child->jobctl |= JOBCTL_LISTENING;
1179 			/*
1180 			 * If NOTIFY is set, it means event happened between
1181 			 * start of this trap and now.  Trigger re-trap.
1182 			 */
1183 			if (child->jobctl & JOBCTL_TRAP_NOTIFY)
1184 				ptrace_signal_wake_up(child, true);
1185 			ret = 0;
1186 		}
1187 		unlock_task_sighand(child, &flags);
1188 		break;
1189 
1190 	case PTRACE_DETACH:	 /* detach a process that was attached. */
1191 		ret = ptrace_detach(child, data);
1192 		break;
1193 
1194 #ifdef CONFIG_BINFMT_ELF_FDPIC
1195 	case PTRACE_GETFDPIC: {
1196 		struct mm_struct *mm = get_task_mm(child);
1197 		unsigned long tmp = 0;
1198 
1199 		ret = -ESRCH;
1200 		if (!mm)
1201 			break;
1202 
1203 		switch (addr) {
1204 		case PTRACE_GETFDPIC_EXEC:
1205 			tmp = mm->context.exec_fdpic_loadmap;
1206 			break;
1207 		case PTRACE_GETFDPIC_INTERP:
1208 			tmp = mm->context.interp_fdpic_loadmap;
1209 			break;
1210 		default:
1211 			break;
1212 		}
1213 		mmput(mm);
1214 
1215 		ret = put_user(tmp, datalp);
1216 		break;
1217 	}
1218 #endif
1219 
1220 	case PTRACE_SINGLESTEP:
1221 #ifdef PTRACE_SINGLEBLOCK
1222 	case PTRACE_SINGLEBLOCK:
1223 #endif
1224 #ifdef PTRACE_SYSEMU
1225 	case PTRACE_SYSEMU:
1226 	case PTRACE_SYSEMU_SINGLESTEP:
1227 #endif
1228 	case PTRACE_SYSCALL:
1229 	case PTRACE_CONT:
1230 		return ptrace_resume(child, request, data);
1231 
1232 	case PTRACE_KILL:
1233 		if (child->exit_state)	/* already dead */
1234 			return 0;
1235 		return ptrace_resume(child, request, SIGKILL);
1236 
1237 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1238 	case PTRACE_GETREGSET:
1239 	case PTRACE_SETREGSET: {
1240 		struct iovec kiov;
1241 		struct iovec __user *uiov = datavp;
1242 
1243 		if (!access_ok(uiov, sizeof(*uiov)))
1244 			return -EFAULT;
1245 
1246 		if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1247 		    __get_user(kiov.iov_len, &uiov->iov_len))
1248 			return -EFAULT;
1249 
1250 		ret = ptrace_regset(child, request, addr, &kiov);
1251 		if (!ret)
1252 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1253 		break;
1254 	}
1255 
1256 	case PTRACE_GET_SYSCALL_INFO:
1257 		ret = ptrace_get_syscall_info(child, addr, datavp);
1258 		break;
1259 #endif
1260 
1261 	case PTRACE_SECCOMP_GET_FILTER:
1262 		ret = seccomp_get_filter(child, addr, datavp);
1263 		break;
1264 
1265 	case PTRACE_SECCOMP_GET_METADATA:
1266 		ret = seccomp_get_metadata(child, addr, datavp);
1267 		break;
1268 
1269 #ifdef CONFIG_RSEQ
1270 	case PTRACE_GET_RSEQ_CONFIGURATION:
1271 		ret = ptrace_get_rseq_configuration(child, addr, datavp);
1272 		break;
1273 #endif
1274 
1275 	default:
1276 		break;
1277 	}
1278 
1279 	return ret;
1280 }
1281 
1282 #ifndef arch_ptrace_attach
1283 #define arch_ptrace_attach(child)	do { } while (0)
1284 #endif
1285 
1286 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1287 		unsigned long, data)
1288 {
1289 	struct task_struct *child;
1290 	long ret;
1291 
1292 	if (request == PTRACE_TRACEME) {
1293 		ret = ptrace_traceme();
1294 		if (!ret)
1295 			arch_ptrace_attach(current);
1296 		goto out;
1297 	}
1298 
1299 	child = find_get_task_by_vpid(pid);
1300 	if (!child) {
1301 		ret = -ESRCH;
1302 		goto out;
1303 	}
1304 
1305 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1306 		ret = ptrace_attach(child, request, addr, data);
1307 		/*
1308 		 * Some architectures need to do book-keeping after
1309 		 * a ptrace attach.
1310 		 */
1311 		if (!ret)
1312 			arch_ptrace_attach(child);
1313 		goto out_put_task_struct;
1314 	}
1315 
1316 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1317 				  request == PTRACE_INTERRUPT);
1318 	if (ret < 0)
1319 		goto out_put_task_struct;
1320 
1321 	ret = arch_ptrace(child, request, addr, data);
1322 	if (ret || request != PTRACE_DETACH)
1323 		ptrace_unfreeze_traced(child);
1324 
1325  out_put_task_struct:
1326 	put_task_struct(child);
1327  out:
1328 	return ret;
1329 }
1330 
1331 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1332 			    unsigned long data)
1333 {
1334 	unsigned long tmp;
1335 	int copied;
1336 
1337 	copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
1338 	if (copied != sizeof(tmp))
1339 		return -EIO;
1340 	return put_user(tmp, (unsigned long __user *)data);
1341 }
1342 
1343 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1344 			    unsigned long data)
1345 {
1346 	int copied;
1347 
1348 	copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
1349 			FOLL_FORCE | FOLL_WRITE);
1350 	return (copied == sizeof(data)) ? 0 : -EIO;
1351 }
1352 
1353 #if defined CONFIG_COMPAT
1354 
1355 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1356 			  compat_ulong_t addr, compat_ulong_t data)
1357 {
1358 	compat_ulong_t __user *datap = compat_ptr(data);
1359 	compat_ulong_t word;
1360 	kernel_siginfo_t siginfo;
1361 	int ret;
1362 
1363 	switch (request) {
1364 	case PTRACE_PEEKTEXT:
1365 	case PTRACE_PEEKDATA:
1366 		ret = ptrace_access_vm(child, addr, &word, sizeof(word),
1367 				FOLL_FORCE);
1368 		if (ret != sizeof(word))
1369 			ret = -EIO;
1370 		else
1371 			ret = put_user(word, datap);
1372 		break;
1373 
1374 	case PTRACE_POKETEXT:
1375 	case PTRACE_POKEDATA:
1376 		ret = ptrace_access_vm(child, addr, &data, sizeof(data),
1377 				FOLL_FORCE | FOLL_WRITE);
1378 		ret = (ret != sizeof(data) ? -EIO : 0);
1379 		break;
1380 
1381 	case PTRACE_GETEVENTMSG:
1382 		ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1383 		break;
1384 
1385 	case PTRACE_GETSIGINFO:
1386 		ret = ptrace_getsiginfo(child, &siginfo);
1387 		if (!ret)
1388 			ret = copy_siginfo_to_user32(
1389 				(struct compat_siginfo __user *) datap,
1390 				&siginfo);
1391 		break;
1392 
1393 	case PTRACE_SETSIGINFO:
1394 		ret = copy_siginfo_from_user32(
1395 			&siginfo, (struct compat_siginfo __user *) datap);
1396 		if (!ret)
1397 			ret = ptrace_setsiginfo(child, &siginfo);
1398 		break;
1399 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1400 	case PTRACE_GETREGSET:
1401 	case PTRACE_SETREGSET:
1402 	{
1403 		struct iovec kiov;
1404 		struct compat_iovec __user *uiov =
1405 			(struct compat_iovec __user *) datap;
1406 		compat_uptr_t ptr;
1407 		compat_size_t len;
1408 
1409 		if (!access_ok(uiov, sizeof(*uiov)))
1410 			return -EFAULT;
1411 
1412 		if (__get_user(ptr, &uiov->iov_base) ||
1413 		    __get_user(len, &uiov->iov_len))
1414 			return -EFAULT;
1415 
1416 		kiov.iov_base = compat_ptr(ptr);
1417 		kiov.iov_len = len;
1418 
1419 		ret = ptrace_regset(child, request, addr, &kiov);
1420 		if (!ret)
1421 			ret = __put_user(kiov.iov_len, &uiov->iov_len);
1422 		break;
1423 	}
1424 #endif
1425 
1426 	default:
1427 		ret = ptrace_request(child, request, addr, data);
1428 	}
1429 
1430 	return ret;
1431 }
1432 
1433 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1434 		       compat_long_t, addr, compat_long_t, data)
1435 {
1436 	struct task_struct *child;
1437 	long ret;
1438 
1439 	if (request == PTRACE_TRACEME) {
1440 		ret = ptrace_traceme();
1441 		goto out;
1442 	}
1443 
1444 	child = find_get_task_by_vpid(pid);
1445 	if (!child) {
1446 		ret = -ESRCH;
1447 		goto out;
1448 	}
1449 
1450 	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1451 		ret = ptrace_attach(child, request, addr, data);
1452 		/*
1453 		 * Some architectures need to do book-keeping after
1454 		 * a ptrace attach.
1455 		 */
1456 		if (!ret)
1457 			arch_ptrace_attach(child);
1458 		goto out_put_task_struct;
1459 	}
1460 
1461 	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1462 				  request == PTRACE_INTERRUPT);
1463 	if (!ret) {
1464 		ret = compat_arch_ptrace(child, request, addr, data);
1465 		if (ret || request != PTRACE_DETACH)
1466 			ptrace_unfreeze_traced(child);
1467 	}
1468 
1469  out_put_task_struct:
1470 	put_task_struct(child);
1471  out:
1472 	return ret;
1473 }
1474 #endif	/* CONFIG_COMPAT */
1475