1 /* 2 * linux/kernel/ptrace.c 3 * 4 * (C) Copyright 1999 Linus Torvalds 5 * 6 * Common interfaces for "ptrace()" which we do not want 7 * to continually duplicate across every architecture. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/export.h> 12 #include <linux/sched.h> 13 #include <linux/sched/mm.h> 14 #include <linux/sched/coredump.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/highmem.h> 18 #include <linux/pagemap.h> 19 #include <linux/ptrace.h> 20 #include <linux/security.h> 21 #include <linux/signal.h> 22 #include <linux/uio.h> 23 #include <linux/audit.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/syscalls.h> 26 #include <linux/uaccess.h> 27 #include <linux/regset.h> 28 #include <linux/hw_breakpoint.h> 29 #include <linux/cn_proc.h> 30 #include <linux/compat.h> 31 32 /* 33 * Access another process' address space via ptrace. 34 * Source/target buffer must be kernel space, 35 * Do not walk the page table directly, use get_user_pages 36 */ 37 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, 38 void *buf, int len, unsigned int gup_flags) 39 { 40 struct mm_struct *mm; 41 int ret; 42 43 mm = get_task_mm(tsk); 44 if (!mm) 45 return 0; 46 47 if (!tsk->ptrace || 48 (current != tsk->parent) || 49 ((get_dumpable(mm) != SUID_DUMP_USER) && 50 !ptracer_capable(tsk, mm->user_ns))) { 51 mmput(mm); 52 return 0; 53 } 54 55 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 56 mmput(mm); 57 58 return ret; 59 } 60 61 62 /* 63 * ptrace a task: make the debugger its new parent and 64 * move it to the ptrace list. 65 * 66 * Must be called with the tasklist lock write-held. 67 */ 68 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent) 69 { 70 BUG_ON(!list_empty(&child->ptrace_entry)); 71 list_add(&child->ptrace_entry, &new_parent->ptraced); 72 child->parent = new_parent; 73 rcu_read_lock(); 74 child->ptracer_cred = get_cred(__task_cred(new_parent)); 75 rcu_read_unlock(); 76 } 77 78 /** 79 * __ptrace_unlink - unlink ptracee and restore its execution state 80 * @child: ptracee to be unlinked 81 * 82 * Remove @child from the ptrace list, move it back to the original parent, 83 * and restore the execution state so that it conforms to the group stop 84 * state. 85 * 86 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer 87 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between 88 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED. 89 * If the ptracer is exiting, the ptracee can be in any state. 90 * 91 * After detach, the ptracee should be in a state which conforms to the 92 * group stop. If the group is stopped or in the process of stopping, the 93 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken 94 * up from TASK_TRACED. 95 * 96 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED, 97 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar 98 * to but in the opposite direction of what happens while attaching to a 99 * stopped task. However, in this direction, the intermediate RUNNING 100 * state is not hidden even from the current ptracer and if it immediately 101 * re-attaches and performs a WNOHANG wait(2), it may fail. 102 * 103 * CONTEXT: 104 * write_lock_irq(tasklist_lock) 105 */ 106 void __ptrace_unlink(struct task_struct *child) 107 { 108 const struct cred *old_cred; 109 BUG_ON(!child->ptrace); 110 111 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 112 113 child->parent = child->real_parent; 114 list_del_init(&child->ptrace_entry); 115 old_cred = child->ptracer_cred; 116 child->ptracer_cred = NULL; 117 put_cred(old_cred); 118 119 spin_lock(&child->sighand->siglock); 120 child->ptrace = 0; 121 /* 122 * Clear all pending traps and TRAPPING. TRAPPING should be 123 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly. 124 */ 125 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK); 126 task_clear_jobctl_trapping(child); 127 128 /* 129 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and 130 * @child isn't dead. 131 */ 132 if (!(child->flags & PF_EXITING) && 133 (child->signal->flags & SIGNAL_STOP_STOPPED || 134 child->signal->group_stop_count)) { 135 child->jobctl |= JOBCTL_STOP_PENDING; 136 137 /* 138 * This is only possible if this thread was cloned by the 139 * traced task running in the stopped group, set the signal 140 * for the future reports. 141 * FIXME: we should change ptrace_init_task() to handle this 142 * case. 143 */ 144 if (!(child->jobctl & JOBCTL_STOP_SIGMASK)) 145 child->jobctl |= SIGSTOP; 146 } 147 148 /* 149 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick 150 * @child in the butt. Note that @resume should be used iff @child 151 * is in TASK_TRACED; otherwise, we might unduly disrupt 152 * TASK_KILLABLE sleeps. 153 */ 154 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child)) 155 ptrace_signal_wake_up(child, true); 156 157 spin_unlock(&child->sighand->siglock); 158 } 159 160 /* Ensure that nothing can wake it up, even SIGKILL */ 161 static bool ptrace_freeze_traced(struct task_struct *task) 162 { 163 bool ret = false; 164 165 /* Lockless, nobody but us can set this flag */ 166 if (task->jobctl & JOBCTL_LISTENING) 167 return ret; 168 169 spin_lock_irq(&task->sighand->siglock); 170 if (task_is_traced(task) && !__fatal_signal_pending(task)) { 171 task->state = __TASK_TRACED; 172 ret = true; 173 } 174 spin_unlock_irq(&task->sighand->siglock); 175 176 return ret; 177 } 178 179 static void ptrace_unfreeze_traced(struct task_struct *task) 180 { 181 if (task->state != __TASK_TRACED) 182 return; 183 184 WARN_ON(!task->ptrace || task->parent != current); 185 186 spin_lock_irq(&task->sighand->siglock); 187 if (__fatal_signal_pending(task)) 188 wake_up_state(task, __TASK_TRACED); 189 else 190 task->state = TASK_TRACED; 191 spin_unlock_irq(&task->sighand->siglock); 192 } 193 194 /** 195 * ptrace_check_attach - check whether ptracee is ready for ptrace operation 196 * @child: ptracee to check for 197 * @ignore_state: don't check whether @child is currently %TASK_TRACED 198 * 199 * Check whether @child is being ptraced by %current and ready for further 200 * ptrace operations. If @ignore_state is %false, @child also should be in 201 * %TASK_TRACED state and on return the child is guaranteed to be traced 202 * and not executing. If @ignore_state is %true, @child can be in any 203 * state. 204 * 205 * CONTEXT: 206 * Grabs and releases tasklist_lock and @child->sighand->siglock. 207 * 208 * RETURNS: 209 * 0 on success, -ESRCH if %child is not ready. 210 */ 211 static int ptrace_check_attach(struct task_struct *child, bool ignore_state) 212 { 213 int ret = -ESRCH; 214 215 /* 216 * We take the read lock around doing both checks to close a 217 * possible race where someone else was tracing our child and 218 * detached between these two checks. After this locked check, 219 * we are sure that this is our traced child and that can only 220 * be changed by us so it's not changing right after this. 221 */ 222 read_lock(&tasklist_lock); 223 if (child->ptrace && child->parent == current) { 224 WARN_ON(child->state == __TASK_TRACED); 225 /* 226 * child->sighand can't be NULL, release_task() 227 * does ptrace_unlink() before __exit_signal(). 228 */ 229 if (ignore_state || ptrace_freeze_traced(child)) 230 ret = 0; 231 } 232 read_unlock(&tasklist_lock); 233 234 if (!ret && !ignore_state) { 235 if (!wait_task_inactive(child, __TASK_TRACED)) { 236 /* 237 * This can only happen if may_ptrace_stop() fails and 238 * ptrace_stop() changes ->state back to TASK_RUNNING, 239 * so we should not worry about leaking __TASK_TRACED. 240 */ 241 WARN_ON(child->state == __TASK_TRACED); 242 ret = -ESRCH; 243 } 244 } 245 246 return ret; 247 } 248 249 static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode) 250 { 251 if (mode & PTRACE_MODE_NOAUDIT) 252 return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE); 253 else 254 return has_ns_capability(current, ns, CAP_SYS_PTRACE); 255 } 256 257 /* Returns 0 on success, -errno on denial. */ 258 static int __ptrace_may_access(struct task_struct *task, unsigned int mode) 259 { 260 const struct cred *cred = current_cred(), *tcred; 261 struct mm_struct *mm; 262 kuid_t caller_uid; 263 kgid_t caller_gid; 264 265 if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) { 266 WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n"); 267 return -EPERM; 268 } 269 270 /* May we inspect the given task? 271 * This check is used both for attaching with ptrace 272 * and for allowing access to sensitive information in /proc. 273 * 274 * ptrace_attach denies several cases that /proc allows 275 * because setting up the necessary parent/child relationship 276 * or halting the specified task is impossible. 277 */ 278 279 /* Don't let security modules deny introspection */ 280 if (same_thread_group(task, current)) 281 return 0; 282 rcu_read_lock(); 283 if (mode & PTRACE_MODE_FSCREDS) { 284 caller_uid = cred->fsuid; 285 caller_gid = cred->fsgid; 286 } else { 287 /* 288 * Using the euid would make more sense here, but something 289 * in userland might rely on the old behavior, and this 290 * shouldn't be a security problem since 291 * PTRACE_MODE_REALCREDS implies that the caller explicitly 292 * used a syscall that requests access to another process 293 * (and not a filesystem syscall to procfs). 294 */ 295 caller_uid = cred->uid; 296 caller_gid = cred->gid; 297 } 298 tcred = __task_cred(task); 299 if (uid_eq(caller_uid, tcred->euid) && 300 uid_eq(caller_uid, tcred->suid) && 301 uid_eq(caller_uid, tcred->uid) && 302 gid_eq(caller_gid, tcred->egid) && 303 gid_eq(caller_gid, tcred->sgid) && 304 gid_eq(caller_gid, tcred->gid)) 305 goto ok; 306 if (ptrace_has_cap(tcred->user_ns, mode)) 307 goto ok; 308 rcu_read_unlock(); 309 return -EPERM; 310 ok: 311 rcu_read_unlock(); 312 mm = task->mm; 313 if (mm && 314 ((get_dumpable(mm) != SUID_DUMP_USER) && 315 !ptrace_has_cap(mm->user_ns, mode))) 316 return -EPERM; 317 318 return security_ptrace_access_check(task, mode); 319 } 320 321 bool ptrace_may_access(struct task_struct *task, unsigned int mode) 322 { 323 int err; 324 task_lock(task); 325 err = __ptrace_may_access(task, mode); 326 task_unlock(task); 327 return !err; 328 } 329 330 static int ptrace_attach(struct task_struct *task, long request, 331 unsigned long addr, 332 unsigned long flags) 333 { 334 bool seize = (request == PTRACE_SEIZE); 335 int retval; 336 337 retval = -EIO; 338 if (seize) { 339 if (addr != 0) 340 goto out; 341 if (flags & ~(unsigned long)PTRACE_O_MASK) 342 goto out; 343 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT); 344 } else { 345 flags = PT_PTRACED; 346 } 347 348 audit_ptrace(task); 349 350 retval = -EPERM; 351 if (unlikely(task->flags & PF_KTHREAD)) 352 goto out; 353 if (same_thread_group(task, current)) 354 goto out; 355 356 /* 357 * Protect exec's credential calculations against our interference; 358 * SUID, SGID and LSM creds get determined differently 359 * under ptrace. 360 */ 361 retval = -ERESTARTNOINTR; 362 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex)) 363 goto out; 364 365 task_lock(task); 366 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS); 367 task_unlock(task); 368 if (retval) 369 goto unlock_creds; 370 371 write_lock_irq(&tasklist_lock); 372 retval = -EPERM; 373 if (unlikely(task->exit_state)) 374 goto unlock_tasklist; 375 if (task->ptrace) 376 goto unlock_tasklist; 377 378 if (seize) 379 flags |= PT_SEIZED; 380 task->ptrace = flags; 381 382 __ptrace_link(task, current); 383 384 /* SEIZE doesn't trap tracee on attach */ 385 if (!seize) 386 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task); 387 388 spin_lock(&task->sighand->siglock); 389 390 /* 391 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and 392 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING 393 * will be cleared if the child completes the transition or any 394 * event which clears the group stop states happens. We'll wait 395 * for the transition to complete before returning from this 396 * function. 397 * 398 * This hides STOPPED -> RUNNING -> TRACED transition from the 399 * attaching thread but a different thread in the same group can 400 * still observe the transient RUNNING state. IOW, if another 401 * thread's WNOHANG wait(2) on the stopped tracee races against 402 * ATTACH, the wait(2) may fail due to the transient RUNNING. 403 * 404 * The following task_is_stopped() test is safe as both transitions 405 * in and out of STOPPED are protected by siglock. 406 */ 407 if (task_is_stopped(task) && 408 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING)) 409 signal_wake_up_state(task, __TASK_STOPPED); 410 411 spin_unlock(&task->sighand->siglock); 412 413 retval = 0; 414 unlock_tasklist: 415 write_unlock_irq(&tasklist_lock); 416 unlock_creds: 417 mutex_unlock(&task->signal->cred_guard_mutex); 418 out: 419 if (!retval) { 420 /* 421 * We do not bother to change retval or clear JOBCTL_TRAPPING 422 * if wait_on_bit() was interrupted by SIGKILL. The tracer will 423 * not return to user-mode, it will exit and clear this bit in 424 * __ptrace_unlink() if it wasn't already cleared by the tracee; 425 * and until then nobody can ptrace this task. 426 */ 427 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE); 428 proc_ptrace_connector(task, PTRACE_ATTACH); 429 } 430 431 return retval; 432 } 433 434 /** 435 * ptrace_traceme -- helper for PTRACE_TRACEME 436 * 437 * Performs checks and sets PT_PTRACED. 438 * Should be used by all ptrace implementations for PTRACE_TRACEME. 439 */ 440 static int ptrace_traceme(void) 441 { 442 int ret = -EPERM; 443 444 write_lock_irq(&tasklist_lock); 445 /* Are we already being traced? */ 446 if (!current->ptrace) { 447 ret = security_ptrace_traceme(current->parent); 448 /* 449 * Check PF_EXITING to ensure ->real_parent has not passed 450 * exit_ptrace(). Otherwise we don't report the error but 451 * pretend ->real_parent untraces us right after return. 452 */ 453 if (!ret && !(current->real_parent->flags & PF_EXITING)) { 454 current->ptrace = PT_PTRACED; 455 __ptrace_link(current, current->real_parent); 456 } 457 } 458 write_unlock_irq(&tasklist_lock); 459 460 return ret; 461 } 462 463 /* 464 * Called with irqs disabled, returns true if childs should reap themselves. 465 */ 466 static int ignoring_children(struct sighand_struct *sigh) 467 { 468 int ret; 469 spin_lock(&sigh->siglock); 470 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) || 471 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT); 472 spin_unlock(&sigh->siglock); 473 return ret; 474 } 475 476 /* 477 * Called with tasklist_lock held for writing. 478 * Unlink a traced task, and clean it up if it was a traced zombie. 479 * Return true if it needs to be reaped with release_task(). 480 * (We can't call release_task() here because we already hold tasklist_lock.) 481 * 482 * If it's a zombie, our attachedness prevented normal parent notification 483 * or self-reaping. Do notification now if it would have happened earlier. 484 * If it should reap itself, return true. 485 * 486 * If it's our own child, there is no notification to do. But if our normal 487 * children self-reap, then this child was prevented by ptrace and we must 488 * reap it now, in that case we must also wake up sub-threads sleeping in 489 * do_wait(). 490 */ 491 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) 492 { 493 bool dead; 494 495 __ptrace_unlink(p); 496 497 if (p->exit_state != EXIT_ZOMBIE) 498 return false; 499 500 dead = !thread_group_leader(p); 501 502 if (!dead && thread_group_empty(p)) { 503 if (!same_thread_group(p->real_parent, tracer)) 504 dead = do_notify_parent(p, p->exit_signal); 505 else if (ignoring_children(tracer->sighand)) { 506 __wake_up_parent(p, tracer); 507 dead = true; 508 } 509 } 510 /* Mark it as in the process of being reaped. */ 511 if (dead) 512 p->exit_state = EXIT_DEAD; 513 return dead; 514 } 515 516 static int ptrace_detach(struct task_struct *child, unsigned int data) 517 { 518 if (!valid_signal(data)) 519 return -EIO; 520 521 /* Architecture-specific hardware disable .. */ 522 ptrace_disable(child); 523 524 write_lock_irq(&tasklist_lock); 525 /* 526 * We rely on ptrace_freeze_traced(). It can't be killed and 527 * untraced by another thread, it can't be a zombie. 528 */ 529 WARN_ON(!child->ptrace || child->exit_state); 530 /* 531 * tasklist_lock avoids the race with wait_task_stopped(), see 532 * the comment in ptrace_resume(). 533 */ 534 child->exit_code = data; 535 __ptrace_detach(current, child); 536 write_unlock_irq(&tasklist_lock); 537 538 proc_ptrace_connector(child, PTRACE_DETACH); 539 540 return 0; 541 } 542 543 /* 544 * Detach all tasks we were using ptrace on. Called with tasklist held 545 * for writing. 546 */ 547 void exit_ptrace(struct task_struct *tracer, struct list_head *dead) 548 { 549 struct task_struct *p, *n; 550 551 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) { 552 if (unlikely(p->ptrace & PT_EXITKILL)) 553 send_sig_info(SIGKILL, SEND_SIG_FORCED, p); 554 555 if (__ptrace_detach(tracer, p)) 556 list_add(&p->ptrace_entry, dead); 557 } 558 } 559 560 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len) 561 { 562 int copied = 0; 563 564 while (len > 0) { 565 char buf[128]; 566 int this_len, retval; 567 568 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 569 retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE); 570 571 if (!retval) { 572 if (copied) 573 break; 574 return -EIO; 575 } 576 if (copy_to_user(dst, buf, retval)) 577 return -EFAULT; 578 copied += retval; 579 src += retval; 580 dst += retval; 581 len -= retval; 582 } 583 return copied; 584 } 585 586 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len) 587 { 588 int copied = 0; 589 590 while (len > 0) { 591 char buf[128]; 592 int this_len, retval; 593 594 this_len = (len > sizeof(buf)) ? sizeof(buf) : len; 595 if (copy_from_user(buf, src, this_len)) 596 return -EFAULT; 597 retval = ptrace_access_vm(tsk, dst, buf, this_len, 598 FOLL_FORCE | FOLL_WRITE); 599 if (!retval) { 600 if (copied) 601 break; 602 return -EIO; 603 } 604 copied += retval; 605 src += retval; 606 dst += retval; 607 len -= retval; 608 } 609 return copied; 610 } 611 612 static int ptrace_setoptions(struct task_struct *child, unsigned long data) 613 { 614 unsigned flags; 615 616 if (data & ~(unsigned long)PTRACE_O_MASK) 617 return -EINVAL; 618 619 if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) { 620 if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) || 621 !IS_ENABLED(CONFIG_SECCOMP)) 622 return -EINVAL; 623 624 if (!capable(CAP_SYS_ADMIN)) 625 return -EPERM; 626 627 if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED || 628 current->ptrace & PT_SUSPEND_SECCOMP) 629 return -EPERM; 630 } 631 632 /* Avoid intermediate state when all opts are cleared */ 633 flags = child->ptrace; 634 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT); 635 flags |= (data << PT_OPT_FLAG_SHIFT); 636 child->ptrace = flags; 637 638 return 0; 639 } 640 641 static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info) 642 { 643 unsigned long flags; 644 int error = -ESRCH; 645 646 if (lock_task_sighand(child, &flags)) { 647 error = -EINVAL; 648 if (likely(child->last_siginfo != NULL)) { 649 *info = *child->last_siginfo; 650 error = 0; 651 } 652 unlock_task_sighand(child, &flags); 653 } 654 return error; 655 } 656 657 static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info) 658 { 659 unsigned long flags; 660 int error = -ESRCH; 661 662 if (lock_task_sighand(child, &flags)) { 663 error = -EINVAL; 664 if (likely(child->last_siginfo != NULL)) { 665 *child->last_siginfo = *info; 666 error = 0; 667 } 668 unlock_task_sighand(child, &flags); 669 } 670 return error; 671 } 672 673 static int ptrace_peek_siginfo(struct task_struct *child, 674 unsigned long addr, 675 unsigned long data) 676 { 677 struct ptrace_peeksiginfo_args arg; 678 struct sigpending *pending; 679 struct sigqueue *q; 680 int ret, i; 681 682 ret = copy_from_user(&arg, (void __user *) addr, 683 sizeof(struct ptrace_peeksiginfo_args)); 684 if (ret) 685 return -EFAULT; 686 687 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED) 688 return -EINVAL; /* unknown flags */ 689 690 if (arg.nr < 0) 691 return -EINVAL; 692 693 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED) 694 pending = &child->signal->shared_pending; 695 else 696 pending = &child->pending; 697 698 for (i = 0; i < arg.nr; ) { 699 siginfo_t info; 700 s32 off = arg.off + i; 701 702 spin_lock_irq(&child->sighand->siglock); 703 list_for_each_entry(q, &pending->list, list) { 704 if (!off--) { 705 copy_siginfo(&info, &q->info); 706 break; 707 } 708 } 709 spin_unlock_irq(&child->sighand->siglock); 710 711 if (off >= 0) /* beyond the end of the list */ 712 break; 713 714 #ifdef CONFIG_COMPAT 715 if (unlikely(in_compat_syscall())) { 716 compat_siginfo_t __user *uinfo = compat_ptr(data); 717 718 if (copy_siginfo_to_user32(uinfo, &info) || 719 __put_user(info.si_code, &uinfo->si_code)) { 720 ret = -EFAULT; 721 break; 722 } 723 724 } else 725 #endif 726 { 727 siginfo_t __user *uinfo = (siginfo_t __user *) data; 728 729 if (copy_siginfo_to_user(uinfo, &info) || 730 __put_user(info.si_code, &uinfo->si_code)) { 731 ret = -EFAULT; 732 break; 733 } 734 } 735 736 data += sizeof(siginfo_t); 737 i++; 738 739 if (signal_pending(current)) 740 break; 741 742 cond_resched(); 743 } 744 745 if (i > 0) 746 return i; 747 748 return ret; 749 } 750 751 #ifdef PTRACE_SINGLESTEP 752 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP) 753 #else 754 #define is_singlestep(request) 0 755 #endif 756 757 #ifdef PTRACE_SINGLEBLOCK 758 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK) 759 #else 760 #define is_singleblock(request) 0 761 #endif 762 763 #ifdef PTRACE_SYSEMU 764 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP) 765 #else 766 #define is_sysemu_singlestep(request) 0 767 #endif 768 769 static int ptrace_resume(struct task_struct *child, long request, 770 unsigned long data) 771 { 772 bool need_siglock; 773 774 if (!valid_signal(data)) 775 return -EIO; 776 777 if (request == PTRACE_SYSCALL) 778 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 779 else 780 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 781 782 #ifdef TIF_SYSCALL_EMU 783 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP) 784 set_tsk_thread_flag(child, TIF_SYSCALL_EMU); 785 else 786 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU); 787 #endif 788 789 if (is_singleblock(request)) { 790 if (unlikely(!arch_has_block_step())) 791 return -EIO; 792 user_enable_block_step(child); 793 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) { 794 if (unlikely(!arch_has_single_step())) 795 return -EIO; 796 user_enable_single_step(child); 797 } else { 798 user_disable_single_step(child); 799 } 800 801 /* 802 * Change ->exit_code and ->state under siglock to avoid the race 803 * with wait_task_stopped() in between; a non-zero ->exit_code will 804 * wrongly look like another report from tracee. 805 * 806 * Note that we need siglock even if ->exit_code == data and/or this 807 * status was not reported yet, the new status must not be cleared by 808 * wait_task_stopped() after resume. 809 * 810 * If data == 0 we do not care if wait_task_stopped() reports the old 811 * status and clears the code too; this can't race with the tracee, it 812 * takes siglock after resume. 813 */ 814 need_siglock = data && !thread_group_empty(current); 815 if (need_siglock) 816 spin_lock_irq(&child->sighand->siglock); 817 child->exit_code = data; 818 wake_up_state(child, __TASK_TRACED); 819 if (need_siglock) 820 spin_unlock_irq(&child->sighand->siglock); 821 822 return 0; 823 } 824 825 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 826 827 static const struct user_regset * 828 find_regset(const struct user_regset_view *view, unsigned int type) 829 { 830 const struct user_regset *regset; 831 int n; 832 833 for (n = 0; n < view->n; ++n) { 834 regset = view->regsets + n; 835 if (regset->core_note_type == type) 836 return regset; 837 } 838 839 return NULL; 840 } 841 842 static int ptrace_regset(struct task_struct *task, int req, unsigned int type, 843 struct iovec *kiov) 844 { 845 const struct user_regset_view *view = task_user_regset_view(task); 846 const struct user_regset *regset = find_regset(view, type); 847 int regset_no; 848 849 if (!regset || (kiov->iov_len % regset->size) != 0) 850 return -EINVAL; 851 852 regset_no = regset - view->regsets; 853 kiov->iov_len = min(kiov->iov_len, 854 (__kernel_size_t) (regset->n * regset->size)); 855 856 if (req == PTRACE_GETREGSET) 857 return copy_regset_to_user(task, view, regset_no, 0, 858 kiov->iov_len, kiov->iov_base); 859 else 860 return copy_regset_from_user(task, view, regset_no, 0, 861 kiov->iov_len, kiov->iov_base); 862 } 863 864 /* 865 * This is declared in linux/regset.h and defined in machine-dependent 866 * code. We put the export here, near the primary machine-neutral use, 867 * to ensure no machine forgets it. 868 */ 869 EXPORT_SYMBOL_GPL(task_user_regset_view); 870 #endif 871 872 int ptrace_request(struct task_struct *child, long request, 873 unsigned long addr, unsigned long data) 874 { 875 bool seized = child->ptrace & PT_SEIZED; 876 int ret = -EIO; 877 siginfo_t siginfo, *si; 878 void __user *datavp = (void __user *) data; 879 unsigned long __user *datalp = datavp; 880 unsigned long flags; 881 882 switch (request) { 883 case PTRACE_PEEKTEXT: 884 case PTRACE_PEEKDATA: 885 return generic_ptrace_peekdata(child, addr, data); 886 case PTRACE_POKETEXT: 887 case PTRACE_POKEDATA: 888 return generic_ptrace_pokedata(child, addr, data); 889 890 #ifdef PTRACE_OLDSETOPTIONS 891 case PTRACE_OLDSETOPTIONS: 892 #endif 893 case PTRACE_SETOPTIONS: 894 ret = ptrace_setoptions(child, data); 895 break; 896 case PTRACE_GETEVENTMSG: 897 ret = put_user(child->ptrace_message, datalp); 898 break; 899 900 case PTRACE_PEEKSIGINFO: 901 ret = ptrace_peek_siginfo(child, addr, data); 902 break; 903 904 case PTRACE_GETSIGINFO: 905 ret = ptrace_getsiginfo(child, &siginfo); 906 if (!ret) 907 ret = copy_siginfo_to_user(datavp, &siginfo); 908 break; 909 910 case PTRACE_SETSIGINFO: 911 if (copy_from_user(&siginfo, datavp, sizeof siginfo)) 912 ret = -EFAULT; 913 else 914 ret = ptrace_setsiginfo(child, &siginfo); 915 break; 916 917 case PTRACE_GETSIGMASK: 918 if (addr != sizeof(sigset_t)) { 919 ret = -EINVAL; 920 break; 921 } 922 923 if (copy_to_user(datavp, &child->blocked, sizeof(sigset_t))) 924 ret = -EFAULT; 925 else 926 ret = 0; 927 928 break; 929 930 case PTRACE_SETSIGMASK: { 931 sigset_t new_set; 932 933 if (addr != sizeof(sigset_t)) { 934 ret = -EINVAL; 935 break; 936 } 937 938 if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) { 939 ret = -EFAULT; 940 break; 941 } 942 943 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 944 945 /* 946 * Every thread does recalc_sigpending() after resume, so 947 * retarget_shared_pending() and recalc_sigpending() are not 948 * called here. 949 */ 950 spin_lock_irq(&child->sighand->siglock); 951 child->blocked = new_set; 952 spin_unlock_irq(&child->sighand->siglock); 953 954 ret = 0; 955 break; 956 } 957 958 case PTRACE_INTERRUPT: 959 /* 960 * Stop tracee without any side-effect on signal or job 961 * control. At least one trap is guaranteed to happen 962 * after this request. If @child is already trapped, the 963 * current trap is not disturbed and another trap will 964 * happen after the current trap is ended with PTRACE_CONT. 965 * 966 * The actual trap might not be PTRACE_EVENT_STOP trap but 967 * the pending condition is cleared regardless. 968 */ 969 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 970 break; 971 972 /* 973 * INTERRUPT doesn't disturb existing trap sans one 974 * exception. If ptracer issued LISTEN for the current 975 * STOP, this INTERRUPT should clear LISTEN and re-trap 976 * tracee into STOP. 977 */ 978 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP))) 979 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING); 980 981 unlock_task_sighand(child, &flags); 982 ret = 0; 983 break; 984 985 case PTRACE_LISTEN: 986 /* 987 * Listen for events. Tracee must be in STOP. It's not 988 * resumed per-se but is not considered to be in TRACED by 989 * wait(2) or ptrace(2). If an async event (e.g. group 990 * stop state change) happens, tracee will enter STOP trap 991 * again. Alternatively, ptracer can issue INTERRUPT to 992 * finish listening and re-trap tracee into STOP. 993 */ 994 if (unlikely(!seized || !lock_task_sighand(child, &flags))) 995 break; 996 997 si = child->last_siginfo; 998 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) { 999 child->jobctl |= JOBCTL_LISTENING; 1000 /* 1001 * If NOTIFY is set, it means event happened between 1002 * start of this trap and now. Trigger re-trap. 1003 */ 1004 if (child->jobctl & JOBCTL_TRAP_NOTIFY) 1005 ptrace_signal_wake_up(child, true); 1006 ret = 0; 1007 } 1008 unlock_task_sighand(child, &flags); 1009 break; 1010 1011 case PTRACE_DETACH: /* detach a process that was attached. */ 1012 ret = ptrace_detach(child, data); 1013 break; 1014 1015 #ifdef CONFIG_BINFMT_ELF_FDPIC 1016 case PTRACE_GETFDPIC: { 1017 struct mm_struct *mm = get_task_mm(child); 1018 unsigned long tmp = 0; 1019 1020 ret = -ESRCH; 1021 if (!mm) 1022 break; 1023 1024 switch (addr) { 1025 case PTRACE_GETFDPIC_EXEC: 1026 tmp = mm->context.exec_fdpic_loadmap; 1027 break; 1028 case PTRACE_GETFDPIC_INTERP: 1029 tmp = mm->context.interp_fdpic_loadmap; 1030 break; 1031 default: 1032 break; 1033 } 1034 mmput(mm); 1035 1036 ret = put_user(tmp, datalp); 1037 break; 1038 } 1039 #endif 1040 1041 #ifdef PTRACE_SINGLESTEP 1042 case PTRACE_SINGLESTEP: 1043 #endif 1044 #ifdef PTRACE_SINGLEBLOCK 1045 case PTRACE_SINGLEBLOCK: 1046 #endif 1047 #ifdef PTRACE_SYSEMU 1048 case PTRACE_SYSEMU: 1049 case PTRACE_SYSEMU_SINGLESTEP: 1050 #endif 1051 case PTRACE_SYSCALL: 1052 case PTRACE_CONT: 1053 return ptrace_resume(child, request, data); 1054 1055 case PTRACE_KILL: 1056 if (child->exit_state) /* already dead */ 1057 return 0; 1058 return ptrace_resume(child, request, SIGKILL); 1059 1060 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 1061 case PTRACE_GETREGSET: 1062 case PTRACE_SETREGSET: { 1063 struct iovec kiov; 1064 struct iovec __user *uiov = datavp; 1065 1066 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov))) 1067 return -EFAULT; 1068 1069 if (__get_user(kiov.iov_base, &uiov->iov_base) || 1070 __get_user(kiov.iov_len, &uiov->iov_len)) 1071 return -EFAULT; 1072 1073 ret = ptrace_regset(child, request, addr, &kiov); 1074 if (!ret) 1075 ret = __put_user(kiov.iov_len, &uiov->iov_len); 1076 break; 1077 } 1078 #endif 1079 1080 case PTRACE_SECCOMP_GET_FILTER: 1081 ret = seccomp_get_filter(child, addr, datavp); 1082 break; 1083 1084 default: 1085 break; 1086 } 1087 1088 return ret; 1089 } 1090 1091 static struct task_struct *ptrace_get_task_struct(pid_t pid) 1092 { 1093 struct task_struct *child; 1094 1095 rcu_read_lock(); 1096 child = find_task_by_vpid(pid); 1097 if (child) 1098 get_task_struct(child); 1099 rcu_read_unlock(); 1100 1101 if (!child) 1102 return ERR_PTR(-ESRCH); 1103 return child; 1104 } 1105 1106 #ifndef arch_ptrace_attach 1107 #define arch_ptrace_attach(child) do { } while (0) 1108 #endif 1109 1110 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr, 1111 unsigned long, data) 1112 { 1113 struct task_struct *child; 1114 long ret; 1115 1116 if (request == PTRACE_TRACEME) { 1117 ret = ptrace_traceme(); 1118 if (!ret) 1119 arch_ptrace_attach(current); 1120 goto out; 1121 } 1122 1123 child = ptrace_get_task_struct(pid); 1124 if (IS_ERR(child)) { 1125 ret = PTR_ERR(child); 1126 goto out; 1127 } 1128 1129 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 1130 ret = ptrace_attach(child, request, addr, data); 1131 /* 1132 * Some architectures need to do book-keeping after 1133 * a ptrace attach. 1134 */ 1135 if (!ret) 1136 arch_ptrace_attach(child); 1137 goto out_put_task_struct; 1138 } 1139 1140 ret = ptrace_check_attach(child, request == PTRACE_KILL || 1141 request == PTRACE_INTERRUPT); 1142 if (ret < 0) 1143 goto out_put_task_struct; 1144 1145 ret = arch_ptrace(child, request, addr, data); 1146 if (ret || request != PTRACE_DETACH) 1147 ptrace_unfreeze_traced(child); 1148 1149 out_put_task_struct: 1150 put_task_struct(child); 1151 out: 1152 return ret; 1153 } 1154 1155 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 1156 unsigned long data) 1157 { 1158 unsigned long tmp; 1159 int copied; 1160 1161 copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE); 1162 if (copied != sizeof(tmp)) 1163 return -EIO; 1164 return put_user(tmp, (unsigned long __user *)data); 1165 } 1166 1167 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 1168 unsigned long data) 1169 { 1170 int copied; 1171 1172 copied = ptrace_access_vm(tsk, addr, &data, sizeof(data), 1173 FOLL_FORCE | FOLL_WRITE); 1174 return (copied == sizeof(data)) ? 0 : -EIO; 1175 } 1176 1177 #if defined CONFIG_COMPAT 1178 1179 int compat_ptrace_request(struct task_struct *child, compat_long_t request, 1180 compat_ulong_t addr, compat_ulong_t data) 1181 { 1182 compat_ulong_t __user *datap = compat_ptr(data); 1183 compat_ulong_t word; 1184 siginfo_t siginfo; 1185 int ret; 1186 1187 switch (request) { 1188 case PTRACE_PEEKTEXT: 1189 case PTRACE_PEEKDATA: 1190 ret = ptrace_access_vm(child, addr, &word, sizeof(word), 1191 FOLL_FORCE); 1192 if (ret != sizeof(word)) 1193 ret = -EIO; 1194 else 1195 ret = put_user(word, datap); 1196 break; 1197 1198 case PTRACE_POKETEXT: 1199 case PTRACE_POKEDATA: 1200 ret = ptrace_access_vm(child, addr, &data, sizeof(data), 1201 FOLL_FORCE | FOLL_WRITE); 1202 ret = (ret != sizeof(data) ? -EIO : 0); 1203 break; 1204 1205 case PTRACE_GETEVENTMSG: 1206 ret = put_user((compat_ulong_t) child->ptrace_message, datap); 1207 break; 1208 1209 case PTRACE_GETSIGINFO: 1210 ret = ptrace_getsiginfo(child, &siginfo); 1211 if (!ret) 1212 ret = copy_siginfo_to_user32( 1213 (struct compat_siginfo __user *) datap, 1214 &siginfo); 1215 break; 1216 1217 case PTRACE_SETSIGINFO: 1218 memset(&siginfo, 0, sizeof siginfo); 1219 if (copy_siginfo_from_user32( 1220 &siginfo, (struct compat_siginfo __user *) datap)) 1221 ret = -EFAULT; 1222 else 1223 ret = ptrace_setsiginfo(child, &siginfo); 1224 break; 1225 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 1226 case PTRACE_GETREGSET: 1227 case PTRACE_SETREGSET: 1228 { 1229 struct iovec kiov; 1230 struct compat_iovec __user *uiov = 1231 (struct compat_iovec __user *) datap; 1232 compat_uptr_t ptr; 1233 compat_size_t len; 1234 1235 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov))) 1236 return -EFAULT; 1237 1238 if (__get_user(ptr, &uiov->iov_base) || 1239 __get_user(len, &uiov->iov_len)) 1240 return -EFAULT; 1241 1242 kiov.iov_base = compat_ptr(ptr); 1243 kiov.iov_len = len; 1244 1245 ret = ptrace_regset(child, request, addr, &kiov); 1246 if (!ret) 1247 ret = __put_user(kiov.iov_len, &uiov->iov_len); 1248 break; 1249 } 1250 #endif 1251 1252 default: 1253 ret = ptrace_request(child, request, addr, data); 1254 } 1255 1256 return ret; 1257 } 1258 1259 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid, 1260 compat_long_t, addr, compat_long_t, data) 1261 { 1262 struct task_struct *child; 1263 long ret; 1264 1265 if (request == PTRACE_TRACEME) { 1266 ret = ptrace_traceme(); 1267 goto out; 1268 } 1269 1270 child = ptrace_get_task_struct(pid); 1271 if (IS_ERR(child)) { 1272 ret = PTR_ERR(child); 1273 goto out; 1274 } 1275 1276 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { 1277 ret = ptrace_attach(child, request, addr, data); 1278 /* 1279 * Some architectures need to do book-keeping after 1280 * a ptrace attach. 1281 */ 1282 if (!ret) 1283 arch_ptrace_attach(child); 1284 goto out_put_task_struct; 1285 } 1286 1287 ret = ptrace_check_attach(child, request == PTRACE_KILL || 1288 request == PTRACE_INTERRUPT); 1289 if (!ret) { 1290 ret = compat_arch_ptrace(child, request, addr, data); 1291 if (ret || request != PTRACE_DETACH) 1292 ptrace_unfreeze_traced(child); 1293 } 1294 1295 out_put_task_struct: 1296 put_task_struct(child); 1297 out: 1298 return ret; 1299 } 1300 #endif /* CONFIG_COMPAT */ 1301