xref: /openbmc/linux/kernel/profile.c (revision f3a8b664)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	Nadia Yvette Chambers, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
14  *	Oracle, 2004
15  */
16 
17 #include <linux/export.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
21 #include <linux/mm.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <asm/sections.h>
29 #include <asm/irq_regs.h>
30 #include <asm/ptrace.h>
31 
32 struct profile_hit {
33 	u32 pc, hits;
34 };
35 #define PROFILE_GRPSHIFT	3
36 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
37 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
38 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
39 
40 static atomic_t *prof_buffer;
41 static unsigned long prof_len, prof_shift;
42 
43 int prof_on __read_mostly;
44 EXPORT_SYMBOL_GPL(prof_on);
45 
46 static cpumask_var_t prof_cpu_mask;
47 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
48 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
49 static DEFINE_PER_CPU(int, cpu_profile_flip);
50 static DEFINE_MUTEX(profile_flip_mutex);
51 #endif /* CONFIG_SMP */
52 
53 int profile_setup(char *str)
54 {
55 	static const char schedstr[] = "schedule";
56 	static const char sleepstr[] = "sleep";
57 	static const char kvmstr[] = "kvm";
58 	int par;
59 
60 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
61 #ifdef CONFIG_SCHEDSTATS
62 		force_schedstat_enabled();
63 		prof_on = SLEEP_PROFILING;
64 		if (str[strlen(sleepstr)] == ',')
65 			str += strlen(sleepstr) + 1;
66 		if (get_option(&str, &par))
67 			prof_shift = par;
68 		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
69 			prof_shift);
70 #else
71 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
72 #endif /* CONFIG_SCHEDSTATS */
73 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
74 		prof_on = SCHED_PROFILING;
75 		if (str[strlen(schedstr)] == ',')
76 			str += strlen(schedstr) + 1;
77 		if (get_option(&str, &par))
78 			prof_shift = par;
79 		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
80 			prof_shift);
81 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
82 		prof_on = KVM_PROFILING;
83 		if (str[strlen(kvmstr)] == ',')
84 			str += strlen(kvmstr) + 1;
85 		if (get_option(&str, &par))
86 			prof_shift = par;
87 		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
88 			prof_shift);
89 	} else if (get_option(&str, &par)) {
90 		prof_shift = par;
91 		prof_on = CPU_PROFILING;
92 		pr_info("kernel profiling enabled (shift: %ld)\n",
93 			prof_shift);
94 	}
95 	return 1;
96 }
97 __setup("profile=", profile_setup);
98 
99 
100 int __ref profile_init(void)
101 {
102 	int buffer_bytes;
103 	if (!prof_on)
104 		return 0;
105 
106 	/* only text is profiled */
107 	prof_len = (_etext - _stext) >> prof_shift;
108 	buffer_bytes = prof_len*sizeof(atomic_t);
109 
110 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
111 		return -ENOMEM;
112 
113 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
114 
115 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
116 	if (prof_buffer)
117 		return 0;
118 
119 	prof_buffer = alloc_pages_exact(buffer_bytes,
120 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
121 	if (prof_buffer)
122 		return 0;
123 
124 	prof_buffer = vzalloc(buffer_bytes);
125 	if (prof_buffer)
126 		return 0;
127 
128 	free_cpumask_var(prof_cpu_mask);
129 	return -ENOMEM;
130 }
131 
132 /* Profile event notifications */
133 
134 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
135 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
136 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
137 
138 void profile_task_exit(struct task_struct *task)
139 {
140 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
141 }
142 
143 int profile_handoff_task(struct task_struct *task)
144 {
145 	int ret;
146 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
147 	return (ret == NOTIFY_OK) ? 1 : 0;
148 }
149 
150 void profile_munmap(unsigned long addr)
151 {
152 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
153 }
154 
155 int task_handoff_register(struct notifier_block *n)
156 {
157 	return atomic_notifier_chain_register(&task_free_notifier, n);
158 }
159 EXPORT_SYMBOL_GPL(task_handoff_register);
160 
161 int task_handoff_unregister(struct notifier_block *n)
162 {
163 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
164 }
165 EXPORT_SYMBOL_GPL(task_handoff_unregister);
166 
167 int profile_event_register(enum profile_type type, struct notifier_block *n)
168 {
169 	int err = -EINVAL;
170 
171 	switch (type) {
172 	case PROFILE_TASK_EXIT:
173 		err = blocking_notifier_chain_register(
174 				&task_exit_notifier, n);
175 		break;
176 	case PROFILE_MUNMAP:
177 		err = blocking_notifier_chain_register(
178 				&munmap_notifier, n);
179 		break;
180 	}
181 
182 	return err;
183 }
184 EXPORT_SYMBOL_GPL(profile_event_register);
185 
186 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
187 {
188 	int err = -EINVAL;
189 
190 	switch (type) {
191 	case PROFILE_TASK_EXIT:
192 		err = blocking_notifier_chain_unregister(
193 				&task_exit_notifier, n);
194 		break;
195 	case PROFILE_MUNMAP:
196 		err = blocking_notifier_chain_unregister(
197 				&munmap_notifier, n);
198 		break;
199 	}
200 
201 	return err;
202 }
203 EXPORT_SYMBOL_GPL(profile_event_unregister);
204 
205 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
206 /*
207  * Each cpu has a pair of open-addressed hashtables for pending
208  * profile hits. read_profile() IPI's all cpus to request them
209  * to flip buffers and flushes their contents to prof_buffer itself.
210  * Flip requests are serialized by the profile_flip_mutex. The sole
211  * use of having a second hashtable is for avoiding cacheline
212  * contention that would otherwise happen during flushes of pending
213  * profile hits required for the accuracy of reported profile hits
214  * and so resurrect the interrupt livelock issue.
215  *
216  * The open-addressed hashtables are indexed by profile buffer slot
217  * and hold the number of pending hits to that profile buffer slot on
218  * a cpu in an entry. When the hashtable overflows, all pending hits
219  * are accounted to their corresponding profile buffer slots with
220  * atomic_add() and the hashtable emptied. As numerous pending hits
221  * may be accounted to a profile buffer slot in a hashtable entry,
222  * this amortizes a number of atomic profile buffer increments likely
223  * to be far larger than the number of entries in the hashtable,
224  * particularly given that the number of distinct profile buffer
225  * positions to which hits are accounted during short intervals (e.g.
226  * several seconds) is usually very small. Exclusion from buffer
227  * flipping is provided by interrupt disablement (note that for
228  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
229  * process context).
230  * The hash function is meant to be lightweight as opposed to strong,
231  * and was vaguely inspired by ppc64 firmware-supported inverted
232  * pagetable hash functions, but uses a full hashtable full of finite
233  * collision chains, not just pairs of them.
234  *
235  * -- nyc
236  */
237 static void __profile_flip_buffers(void *unused)
238 {
239 	int cpu = smp_processor_id();
240 
241 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
242 }
243 
244 static void profile_flip_buffers(void)
245 {
246 	int i, j, cpu;
247 
248 	mutex_lock(&profile_flip_mutex);
249 	j = per_cpu(cpu_profile_flip, get_cpu());
250 	put_cpu();
251 	on_each_cpu(__profile_flip_buffers, NULL, 1);
252 	for_each_online_cpu(cpu) {
253 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
254 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
255 			if (!hits[i].hits) {
256 				if (hits[i].pc)
257 					hits[i].pc = 0;
258 				continue;
259 			}
260 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
261 			hits[i].hits = hits[i].pc = 0;
262 		}
263 	}
264 	mutex_unlock(&profile_flip_mutex);
265 }
266 
267 static void profile_discard_flip_buffers(void)
268 {
269 	int i, cpu;
270 
271 	mutex_lock(&profile_flip_mutex);
272 	i = per_cpu(cpu_profile_flip, get_cpu());
273 	put_cpu();
274 	on_each_cpu(__profile_flip_buffers, NULL, 1);
275 	for_each_online_cpu(cpu) {
276 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
277 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
278 	}
279 	mutex_unlock(&profile_flip_mutex);
280 }
281 
282 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
283 {
284 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
285 	int i, j, cpu;
286 	struct profile_hit *hits;
287 
288 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
289 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
290 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
291 	cpu = get_cpu();
292 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
293 	if (!hits) {
294 		put_cpu();
295 		return;
296 	}
297 	/*
298 	 * We buffer the global profiler buffer into a per-CPU
299 	 * queue and thus reduce the number of global (and possibly
300 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
301 	 */
302 	local_irq_save(flags);
303 	do {
304 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
305 			if (hits[i + j].pc == pc) {
306 				hits[i + j].hits += nr_hits;
307 				goto out;
308 			} else if (!hits[i + j].hits) {
309 				hits[i + j].pc = pc;
310 				hits[i + j].hits = nr_hits;
311 				goto out;
312 			}
313 		}
314 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
315 	} while (i != primary);
316 
317 	/*
318 	 * Add the current hit(s) and flush the write-queue out
319 	 * to the global buffer:
320 	 */
321 	atomic_add(nr_hits, &prof_buffer[pc]);
322 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
323 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
324 		hits[i].pc = hits[i].hits = 0;
325 	}
326 out:
327 	local_irq_restore(flags);
328 	put_cpu();
329 }
330 
331 static int profile_dead_cpu(unsigned int cpu)
332 {
333 	struct page *page;
334 	int i;
335 
336 	if (prof_cpu_mask != NULL)
337 		cpumask_clear_cpu(cpu, prof_cpu_mask);
338 
339 	for (i = 0; i < 2; i++) {
340 		if (per_cpu(cpu_profile_hits, cpu)[i]) {
341 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
342 			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
343 			__free_page(page);
344 		}
345 	}
346 	return 0;
347 }
348 
349 static int profile_prepare_cpu(unsigned int cpu)
350 {
351 	int i, node = cpu_to_mem(cpu);
352 	struct page *page;
353 
354 	per_cpu(cpu_profile_flip, cpu) = 0;
355 
356 	for (i = 0; i < 2; i++) {
357 		if (per_cpu(cpu_profile_hits, cpu)[i])
358 			continue;
359 
360 		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
361 		if (!page) {
362 			profile_dead_cpu(cpu);
363 			return -ENOMEM;
364 		}
365 		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
366 
367 	}
368 	return 0;
369 }
370 
371 static int profile_online_cpu(unsigned int cpu)
372 {
373 	if (prof_cpu_mask != NULL)
374 		cpumask_set_cpu(cpu, prof_cpu_mask);
375 
376 	return 0;
377 }
378 
379 #else /* !CONFIG_SMP */
380 #define profile_flip_buffers()		do { } while (0)
381 #define profile_discard_flip_buffers()	do { } while (0)
382 
383 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
384 {
385 	unsigned long pc;
386 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
387 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
388 }
389 #endif /* !CONFIG_SMP */
390 
391 void profile_hits(int type, void *__pc, unsigned int nr_hits)
392 {
393 	if (prof_on != type || !prof_buffer)
394 		return;
395 	do_profile_hits(type, __pc, nr_hits);
396 }
397 EXPORT_SYMBOL_GPL(profile_hits);
398 
399 void profile_tick(int type)
400 {
401 	struct pt_regs *regs = get_irq_regs();
402 
403 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
404 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
405 		profile_hit(type, (void *)profile_pc(regs));
406 }
407 
408 #ifdef CONFIG_PROC_FS
409 #include <linux/proc_fs.h>
410 #include <linux/seq_file.h>
411 #include <asm/uaccess.h>
412 
413 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
414 {
415 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
416 	return 0;
417 }
418 
419 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
420 {
421 	return single_open(file, prof_cpu_mask_proc_show, NULL);
422 }
423 
424 static ssize_t prof_cpu_mask_proc_write(struct file *file,
425 	const char __user *buffer, size_t count, loff_t *pos)
426 {
427 	cpumask_var_t new_value;
428 	int err;
429 
430 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
431 		return -ENOMEM;
432 
433 	err = cpumask_parse_user(buffer, count, new_value);
434 	if (!err) {
435 		cpumask_copy(prof_cpu_mask, new_value);
436 		err = count;
437 	}
438 	free_cpumask_var(new_value);
439 	return err;
440 }
441 
442 static const struct file_operations prof_cpu_mask_proc_fops = {
443 	.open		= prof_cpu_mask_proc_open,
444 	.read		= seq_read,
445 	.llseek		= seq_lseek,
446 	.release	= single_release,
447 	.write		= prof_cpu_mask_proc_write,
448 };
449 
450 void create_prof_cpu_mask(void)
451 {
452 	/* create /proc/irq/prof_cpu_mask */
453 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
454 }
455 
456 /*
457  * This function accesses profiling information. The returned data is
458  * binary: the sampling step and the actual contents of the profile
459  * buffer. Use of the program readprofile is recommended in order to
460  * get meaningful info out of these data.
461  */
462 static ssize_t
463 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
464 {
465 	unsigned long p = *ppos;
466 	ssize_t read;
467 	char *pnt;
468 	unsigned int sample_step = 1 << prof_shift;
469 
470 	profile_flip_buffers();
471 	if (p >= (prof_len+1)*sizeof(unsigned int))
472 		return 0;
473 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
474 		count = (prof_len+1)*sizeof(unsigned int) - p;
475 	read = 0;
476 
477 	while (p < sizeof(unsigned int) && count > 0) {
478 		if (put_user(*((char *)(&sample_step)+p), buf))
479 			return -EFAULT;
480 		buf++; p++; count--; read++;
481 	}
482 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
483 	if (copy_to_user(buf, (void *)pnt, count))
484 		return -EFAULT;
485 	read += count;
486 	*ppos += read;
487 	return read;
488 }
489 
490 /*
491  * Writing to /proc/profile resets the counters
492  *
493  * Writing a 'profiling multiplier' value into it also re-sets the profiling
494  * interrupt frequency, on architectures that support this.
495  */
496 static ssize_t write_profile(struct file *file, const char __user *buf,
497 			     size_t count, loff_t *ppos)
498 {
499 #ifdef CONFIG_SMP
500 	extern int setup_profiling_timer(unsigned int multiplier);
501 
502 	if (count == sizeof(int)) {
503 		unsigned int multiplier;
504 
505 		if (copy_from_user(&multiplier, buf, sizeof(int)))
506 			return -EFAULT;
507 
508 		if (setup_profiling_timer(multiplier))
509 			return -EINVAL;
510 	}
511 #endif
512 	profile_discard_flip_buffers();
513 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
514 	return count;
515 }
516 
517 static const struct file_operations proc_profile_operations = {
518 	.read		= read_profile,
519 	.write		= write_profile,
520 	.llseek		= default_llseek,
521 };
522 
523 int __ref create_proc_profile(void)
524 {
525 	struct proc_dir_entry *entry;
526 #ifdef CONFIG_SMP
527 	enum cpuhp_state online_state;
528 #endif
529 
530 	int err = 0;
531 
532 	if (!prof_on)
533 		return 0;
534 #ifdef CONFIG_SMP
535 	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
536 				profile_prepare_cpu, profile_dead_cpu);
537 	if (err)
538 		return err;
539 
540 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
541 				profile_online_cpu, NULL);
542 	if (err < 0)
543 		goto err_state_prep;
544 	online_state = err;
545 	err = 0;
546 #endif
547 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
548 			    NULL, &proc_profile_operations);
549 	if (!entry)
550 		goto err_state_onl;
551 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
552 
553 	return err;
554 err_state_onl:
555 #ifdef CONFIG_SMP
556 	cpuhp_remove_state(online_state);
557 err_state_prep:
558 	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
559 #endif
560 	return err;
561 }
562 subsys_initcall(create_proc_profile);
563 #endif /* CONFIG_PROC_FS */
564