1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/profile.c 4 * Simple profiling. Manages a direct-mapped profile hit count buffer, 5 * with configurable resolution, support for restricting the cpus on 6 * which profiling is done, and switching between cpu time and 7 * schedule() calls via kernel command line parameters passed at boot. 8 * 9 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 10 * Red Hat, July 2004 11 * Consolidation of architecture support code for profiling, 12 * Nadia Yvette Chambers, Oracle, July 2004 13 * Amortized hit count accounting via per-cpu open-addressed hashtables 14 * to resolve timer interrupt livelocks, Nadia Yvette Chambers, 15 * Oracle, 2004 16 */ 17 18 #include <linux/export.h> 19 #include <linux/profile.h> 20 #include <linux/memblock.h> 21 #include <linux/notifier.h> 22 #include <linux/mm.h> 23 #include <linux/cpumask.h> 24 #include <linux/cpu.h> 25 #include <linux/highmem.h> 26 #include <linux/mutex.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sched/stat.h> 30 31 #include <asm/sections.h> 32 #include <asm/irq_regs.h> 33 #include <asm/ptrace.h> 34 35 struct profile_hit { 36 u32 pc, hits; 37 }; 38 #define PROFILE_GRPSHIFT 3 39 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 40 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 41 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 42 43 static atomic_t *prof_buffer; 44 static unsigned long prof_len; 45 static unsigned short int prof_shift; 46 47 int prof_on __read_mostly; 48 EXPORT_SYMBOL_GPL(prof_on); 49 50 static cpumask_var_t prof_cpu_mask; 51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 53 static DEFINE_PER_CPU(int, cpu_profile_flip); 54 static DEFINE_MUTEX(profile_flip_mutex); 55 #endif /* CONFIG_SMP */ 56 57 int profile_setup(char *str) 58 { 59 static const char schedstr[] = "schedule"; 60 static const char sleepstr[] = "sleep"; 61 static const char kvmstr[] = "kvm"; 62 int par; 63 64 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 65 #ifdef CONFIG_SCHEDSTATS 66 force_schedstat_enabled(); 67 prof_on = SLEEP_PROFILING; 68 if (str[strlen(sleepstr)] == ',') 69 str += strlen(sleepstr) + 1; 70 if (get_option(&str, &par)) 71 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 72 pr_info("kernel sleep profiling enabled (shift: %u)\n", 73 prof_shift); 74 #else 75 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 76 #endif /* CONFIG_SCHEDSTATS */ 77 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 78 prof_on = SCHED_PROFILING; 79 if (str[strlen(schedstr)] == ',') 80 str += strlen(schedstr) + 1; 81 if (get_option(&str, &par)) 82 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 83 pr_info("kernel schedule profiling enabled (shift: %u)\n", 84 prof_shift); 85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 86 prof_on = KVM_PROFILING; 87 if (str[strlen(kvmstr)] == ',') 88 str += strlen(kvmstr) + 1; 89 if (get_option(&str, &par)) 90 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 91 pr_info("kernel KVM profiling enabled (shift: %u)\n", 92 prof_shift); 93 } else if (get_option(&str, &par)) { 94 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 95 prof_on = CPU_PROFILING; 96 pr_info("kernel profiling enabled (shift: %u)\n", 97 prof_shift); 98 } 99 return 1; 100 } 101 __setup("profile=", profile_setup); 102 103 104 int __ref profile_init(void) 105 { 106 int buffer_bytes; 107 if (!prof_on) 108 return 0; 109 110 /* only text is profiled */ 111 prof_len = (_etext - _stext) >> prof_shift; 112 113 if (!prof_len) { 114 pr_warn("profiling shift: %u too large\n", prof_shift); 115 prof_on = 0; 116 return -EINVAL; 117 } 118 119 buffer_bytes = prof_len*sizeof(atomic_t); 120 121 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 122 return -ENOMEM; 123 124 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 125 126 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); 127 if (prof_buffer) 128 return 0; 129 130 prof_buffer = alloc_pages_exact(buffer_bytes, 131 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); 132 if (prof_buffer) 133 return 0; 134 135 prof_buffer = vzalloc(buffer_bytes); 136 if (prof_buffer) 137 return 0; 138 139 free_cpumask_var(prof_cpu_mask); 140 return -ENOMEM; 141 } 142 143 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 144 /* 145 * Each cpu has a pair of open-addressed hashtables for pending 146 * profile hits. read_profile() IPI's all cpus to request them 147 * to flip buffers and flushes their contents to prof_buffer itself. 148 * Flip requests are serialized by the profile_flip_mutex. The sole 149 * use of having a second hashtable is for avoiding cacheline 150 * contention that would otherwise happen during flushes of pending 151 * profile hits required for the accuracy of reported profile hits 152 * and so resurrect the interrupt livelock issue. 153 * 154 * The open-addressed hashtables are indexed by profile buffer slot 155 * and hold the number of pending hits to that profile buffer slot on 156 * a cpu in an entry. When the hashtable overflows, all pending hits 157 * are accounted to their corresponding profile buffer slots with 158 * atomic_add() and the hashtable emptied. As numerous pending hits 159 * may be accounted to a profile buffer slot in a hashtable entry, 160 * this amortizes a number of atomic profile buffer increments likely 161 * to be far larger than the number of entries in the hashtable, 162 * particularly given that the number of distinct profile buffer 163 * positions to which hits are accounted during short intervals (e.g. 164 * several seconds) is usually very small. Exclusion from buffer 165 * flipping is provided by interrupt disablement (note that for 166 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 167 * process context). 168 * The hash function is meant to be lightweight as opposed to strong, 169 * and was vaguely inspired by ppc64 firmware-supported inverted 170 * pagetable hash functions, but uses a full hashtable full of finite 171 * collision chains, not just pairs of them. 172 * 173 * -- nyc 174 */ 175 static void __profile_flip_buffers(void *unused) 176 { 177 int cpu = smp_processor_id(); 178 179 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 180 } 181 182 static void profile_flip_buffers(void) 183 { 184 int i, j, cpu; 185 186 mutex_lock(&profile_flip_mutex); 187 j = per_cpu(cpu_profile_flip, get_cpu()); 188 put_cpu(); 189 on_each_cpu(__profile_flip_buffers, NULL, 1); 190 for_each_online_cpu(cpu) { 191 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 192 for (i = 0; i < NR_PROFILE_HIT; ++i) { 193 if (!hits[i].hits) { 194 if (hits[i].pc) 195 hits[i].pc = 0; 196 continue; 197 } 198 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 199 hits[i].hits = hits[i].pc = 0; 200 } 201 } 202 mutex_unlock(&profile_flip_mutex); 203 } 204 205 static void profile_discard_flip_buffers(void) 206 { 207 int i, cpu; 208 209 mutex_lock(&profile_flip_mutex); 210 i = per_cpu(cpu_profile_flip, get_cpu()); 211 put_cpu(); 212 on_each_cpu(__profile_flip_buffers, NULL, 1); 213 for_each_online_cpu(cpu) { 214 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 215 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 216 } 217 mutex_unlock(&profile_flip_mutex); 218 } 219 220 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 221 { 222 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 223 int i, j, cpu; 224 struct profile_hit *hits; 225 226 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 227 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 228 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 229 cpu = get_cpu(); 230 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 231 if (!hits) { 232 put_cpu(); 233 return; 234 } 235 /* 236 * We buffer the global profiler buffer into a per-CPU 237 * queue and thus reduce the number of global (and possibly 238 * NUMA-alien) accesses. The write-queue is self-coalescing: 239 */ 240 local_irq_save(flags); 241 do { 242 for (j = 0; j < PROFILE_GRPSZ; ++j) { 243 if (hits[i + j].pc == pc) { 244 hits[i + j].hits += nr_hits; 245 goto out; 246 } else if (!hits[i + j].hits) { 247 hits[i + j].pc = pc; 248 hits[i + j].hits = nr_hits; 249 goto out; 250 } 251 } 252 i = (i + secondary) & (NR_PROFILE_HIT - 1); 253 } while (i != primary); 254 255 /* 256 * Add the current hit(s) and flush the write-queue out 257 * to the global buffer: 258 */ 259 atomic_add(nr_hits, &prof_buffer[pc]); 260 for (i = 0; i < NR_PROFILE_HIT; ++i) { 261 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 262 hits[i].pc = hits[i].hits = 0; 263 } 264 out: 265 local_irq_restore(flags); 266 put_cpu(); 267 } 268 269 static int profile_dead_cpu(unsigned int cpu) 270 { 271 struct page *page; 272 int i; 273 274 if (cpumask_available(prof_cpu_mask)) 275 cpumask_clear_cpu(cpu, prof_cpu_mask); 276 277 for (i = 0; i < 2; i++) { 278 if (per_cpu(cpu_profile_hits, cpu)[i]) { 279 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); 280 per_cpu(cpu_profile_hits, cpu)[i] = NULL; 281 __free_page(page); 282 } 283 } 284 return 0; 285 } 286 287 static int profile_prepare_cpu(unsigned int cpu) 288 { 289 int i, node = cpu_to_mem(cpu); 290 struct page *page; 291 292 per_cpu(cpu_profile_flip, cpu) = 0; 293 294 for (i = 0; i < 2; i++) { 295 if (per_cpu(cpu_profile_hits, cpu)[i]) 296 continue; 297 298 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 299 if (!page) { 300 profile_dead_cpu(cpu); 301 return -ENOMEM; 302 } 303 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); 304 305 } 306 return 0; 307 } 308 309 static int profile_online_cpu(unsigned int cpu) 310 { 311 if (cpumask_available(prof_cpu_mask)) 312 cpumask_set_cpu(cpu, prof_cpu_mask); 313 314 return 0; 315 } 316 317 #else /* !CONFIG_SMP */ 318 #define profile_flip_buffers() do { } while (0) 319 #define profile_discard_flip_buffers() do { } while (0) 320 321 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 322 { 323 unsigned long pc; 324 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 325 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 326 } 327 #endif /* !CONFIG_SMP */ 328 329 void profile_hits(int type, void *__pc, unsigned int nr_hits) 330 { 331 if (prof_on != type || !prof_buffer) 332 return; 333 do_profile_hits(type, __pc, nr_hits); 334 } 335 EXPORT_SYMBOL_GPL(profile_hits); 336 337 void profile_tick(int type) 338 { 339 struct pt_regs *regs = get_irq_regs(); 340 341 if (!user_mode(regs) && cpumask_available(prof_cpu_mask) && 342 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 343 profile_hit(type, (void *)profile_pc(regs)); 344 } 345 346 #ifdef CONFIG_PROC_FS 347 #include <linux/proc_fs.h> 348 #include <linux/seq_file.h> 349 #include <linux/uaccess.h> 350 351 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) 352 { 353 seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); 354 return 0; 355 } 356 357 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) 358 { 359 return single_open(file, prof_cpu_mask_proc_show, NULL); 360 } 361 362 static ssize_t prof_cpu_mask_proc_write(struct file *file, 363 const char __user *buffer, size_t count, loff_t *pos) 364 { 365 cpumask_var_t new_value; 366 int err; 367 368 if (!zalloc_cpumask_var(&new_value, GFP_KERNEL)) 369 return -ENOMEM; 370 371 err = cpumask_parse_user(buffer, count, new_value); 372 if (!err) { 373 cpumask_copy(prof_cpu_mask, new_value); 374 err = count; 375 } 376 free_cpumask_var(new_value); 377 return err; 378 } 379 380 static const struct proc_ops prof_cpu_mask_proc_ops = { 381 .proc_open = prof_cpu_mask_proc_open, 382 .proc_read = seq_read, 383 .proc_lseek = seq_lseek, 384 .proc_release = single_release, 385 .proc_write = prof_cpu_mask_proc_write, 386 }; 387 388 void create_prof_cpu_mask(void) 389 { 390 /* create /proc/irq/prof_cpu_mask */ 391 proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops); 392 } 393 394 /* 395 * This function accesses profiling information. The returned data is 396 * binary: the sampling step and the actual contents of the profile 397 * buffer. Use of the program readprofile is recommended in order to 398 * get meaningful info out of these data. 399 */ 400 static ssize_t 401 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 402 { 403 unsigned long p = *ppos; 404 ssize_t read; 405 char *pnt; 406 unsigned long sample_step = 1UL << prof_shift; 407 408 profile_flip_buffers(); 409 if (p >= (prof_len+1)*sizeof(unsigned int)) 410 return 0; 411 if (count > (prof_len+1)*sizeof(unsigned int) - p) 412 count = (prof_len+1)*sizeof(unsigned int) - p; 413 read = 0; 414 415 while (p < sizeof(unsigned int) && count > 0) { 416 if (put_user(*((char *)(&sample_step)+p), buf)) 417 return -EFAULT; 418 buf++; p++; count--; read++; 419 } 420 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 421 if (copy_to_user(buf, (void *)pnt, count)) 422 return -EFAULT; 423 read += count; 424 *ppos += read; 425 return read; 426 } 427 428 /* default is to not implement this call */ 429 int __weak setup_profiling_timer(unsigned mult) 430 { 431 return -EINVAL; 432 } 433 434 /* 435 * Writing to /proc/profile resets the counters 436 * 437 * Writing a 'profiling multiplier' value into it also re-sets the profiling 438 * interrupt frequency, on architectures that support this. 439 */ 440 static ssize_t write_profile(struct file *file, const char __user *buf, 441 size_t count, loff_t *ppos) 442 { 443 #ifdef CONFIG_SMP 444 if (count == sizeof(int)) { 445 unsigned int multiplier; 446 447 if (copy_from_user(&multiplier, buf, sizeof(int))) 448 return -EFAULT; 449 450 if (setup_profiling_timer(multiplier)) 451 return -EINVAL; 452 } 453 #endif 454 profile_discard_flip_buffers(); 455 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 456 return count; 457 } 458 459 static const struct proc_ops profile_proc_ops = { 460 .proc_read = read_profile, 461 .proc_write = write_profile, 462 .proc_lseek = default_llseek, 463 }; 464 465 int __ref create_proc_profile(void) 466 { 467 struct proc_dir_entry *entry; 468 #ifdef CONFIG_SMP 469 enum cpuhp_state online_state; 470 #endif 471 472 int err = 0; 473 474 if (!prof_on) 475 return 0; 476 #ifdef CONFIG_SMP 477 err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", 478 profile_prepare_cpu, profile_dead_cpu); 479 if (err) 480 return err; 481 482 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", 483 profile_online_cpu, NULL); 484 if (err < 0) 485 goto err_state_prep; 486 online_state = err; 487 err = 0; 488 #endif 489 entry = proc_create("profile", S_IWUSR | S_IRUGO, 490 NULL, &profile_proc_ops); 491 if (!entry) 492 goto err_state_onl; 493 proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); 494 495 return err; 496 err_state_onl: 497 #ifdef CONFIG_SMP 498 cpuhp_remove_state(online_state); 499 err_state_prep: 500 cpuhp_remove_state(CPUHP_PROFILE_PREPARE); 501 #endif 502 return err; 503 } 504 subsys_initcall(create_proc_profile); 505 #endif /* CONFIG_PROC_FS */ 506