xref: /openbmc/linux/kernel/profile.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/profile.c
4  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
5  *  with configurable resolution, support for restricting the cpus on
6  *  which profiling is done, and switching between cpu time and
7  *  schedule() calls via kernel command line parameters passed at boot.
8  *
9  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10  *	Red Hat, July 2004
11  *  Consolidation of architecture support code for profiling,
12  *	Nadia Yvette Chambers, Oracle, July 2004
13  *  Amortized hit count accounting via per-cpu open-addressed hashtables
14  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15  *	Oracle, 2004
16  */
17 
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30 
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34 
35 struct profile_hit {
36 	u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT	3
39 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
42 
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len, prof_shift;
45 
46 int prof_on __read_mostly;
47 EXPORT_SYMBOL_GPL(prof_on);
48 
49 static cpumask_var_t prof_cpu_mask;
50 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
51 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
52 static DEFINE_PER_CPU(int, cpu_profile_flip);
53 static DEFINE_MUTEX(profile_flip_mutex);
54 #endif /* CONFIG_SMP */
55 
56 int profile_setup(char *str)
57 {
58 	static const char schedstr[] = "schedule";
59 	static const char sleepstr[] = "sleep";
60 	static const char kvmstr[] = "kvm";
61 	int par;
62 
63 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
64 #ifdef CONFIG_SCHEDSTATS
65 		force_schedstat_enabled();
66 		prof_on = SLEEP_PROFILING;
67 		if (str[strlen(sleepstr)] == ',')
68 			str += strlen(sleepstr) + 1;
69 		if (get_option(&str, &par))
70 			prof_shift = par;
71 		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
72 			prof_shift);
73 #else
74 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 		prof_on = SCHED_PROFILING;
78 		if (str[strlen(schedstr)] == ',')
79 			str += strlen(schedstr) + 1;
80 		if (get_option(&str, &par))
81 			prof_shift = par;
82 		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
83 			prof_shift);
84 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
85 		prof_on = KVM_PROFILING;
86 		if (str[strlen(kvmstr)] == ',')
87 			str += strlen(kvmstr) + 1;
88 		if (get_option(&str, &par))
89 			prof_shift = par;
90 		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
91 			prof_shift);
92 	} else if (get_option(&str, &par)) {
93 		prof_shift = par;
94 		prof_on = CPU_PROFILING;
95 		pr_info("kernel profiling enabled (shift: %ld)\n",
96 			prof_shift);
97 	}
98 	return 1;
99 }
100 __setup("profile=", profile_setup);
101 
102 
103 int __ref profile_init(void)
104 {
105 	int buffer_bytes;
106 	if (!prof_on)
107 		return 0;
108 
109 	/* only text is profiled */
110 	prof_len = (_etext - _stext) >> prof_shift;
111 	buffer_bytes = prof_len*sizeof(atomic_t);
112 
113 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
114 		return -ENOMEM;
115 
116 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
117 
118 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
119 	if (prof_buffer)
120 		return 0;
121 
122 	prof_buffer = alloc_pages_exact(buffer_bytes,
123 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
124 	if (prof_buffer)
125 		return 0;
126 
127 	prof_buffer = vzalloc(buffer_bytes);
128 	if (prof_buffer)
129 		return 0;
130 
131 	free_cpumask_var(prof_cpu_mask);
132 	return -ENOMEM;
133 }
134 
135 /* Profile event notifications */
136 
137 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
138 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
139 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
140 
141 void profile_task_exit(struct task_struct *task)
142 {
143 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
144 }
145 
146 int profile_handoff_task(struct task_struct *task)
147 {
148 	int ret;
149 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
150 	return (ret == NOTIFY_OK) ? 1 : 0;
151 }
152 
153 void profile_munmap(unsigned long addr)
154 {
155 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
156 }
157 
158 int task_handoff_register(struct notifier_block *n)
159 {
160 	return atomic_notifier_chain_register(&task_free_notifier, n);
161 }
162 EXPORT_SYMBOL_GPL(task_handoff_register);
163 
164 int task_handoff_unregister(struct notifier_block *n)
165 {
166 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
167 }
168 EXPORT_SYMBOL_GPL(task_handoff_unregister);
169 
170 int profile_event_register(enum profile_type type, struct notifier_block *n)
171 {
172 	int err = -EINVAL;
173 
174 	switch (type) {
175 	case PROFILE_TASK_EXIT:
176 		err = blocking_notifier_chain_register(
177 				&task_exit_notifier, n);
178 		break;
179 	case PROFILE_MUNMAP:
180 		err = blocking_notifier_chain_register(
181 				&munmap_notifier, n);
182 		break;
183 	}
184 
185 	return err;
186 }
187 EXPORT_SYMBOL_GPL(profile_event_register);
188 
189 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
190 {
191 	int err = -EINVAL;
192 
193 	switch (type) {
194 	case PROFILE_TASK_EXIT:
195 		err = blocking_notifier_chain_unregister(
196 				&task_exit_notifier, n);
197 		break;
198 	case PROFILE_MUNMAP:
199 		err = blocking_notifier_chain_unregister(
200 				&munmap_notifier, n);
201 		break;
202 	}
203 
204 	return err;
205 }
206 EXPORT_SYMBOL_GPL(profile_event_unregister);
207 
208 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
209 /*
210  * Each cpu has a pair of open-addressed hashtables for pending
211  * profile hits. read_profile() IPI's all cpus to request them
212  * to flip buffers and flushes their contents to prof_buffer itself.
213  * Flip requests are serialized by the profile_flip_mutex. The sole
214  * use of having a second hashtable is for avoiding cacheline
215  * contention that would otherwise happen during flushes of pending
216  * profile hits required for the accuracy of reported profile hits
217  * and so resurrect the interrupt livelock issue.
218  *
219  * The open-addressed hashtables are indexed by profile buffer slot
220  * and hold the number of pending hits to that profile buffer slot on
221  * a cpu in an entry. When the hashtable overflows, all pending hits
222  * are accounted to their corresponding profile buffer slots with
223  * atomic_add() and the hashtable emptied. As numerous pending hits
224  * may be accounted to a profile buffer slot in a hashtable entry,
225  * this amortizes a number of atomic profile buffer increments likely
226  * to be far larger than the number of entries in the hashtable,
227  * particularly given that the number of distinct profile buffer
228  * positions to which hits are accounted during short intervals (e.g.
229  * several seconds) is usually very small. Exclusion from buffer
230  * flipping is provided by interrupt disablement (note that for
231  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
232  * process context).
233  * The hash function is meant to be lightweight as opposed to strong,
234  * and was vaguely inspired by ppc64 firmware-supported inverted
235  * pagetable hash functions, but uses a full hashtable full of finite
236  * collision chains, not just pairs of them.
237  *
238  * -- nyc
239  */
240 static void __profile_flip_buffers(void *unused)
241 {
242 	int cpu = smp_processor_id();
243 
244 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
245 }
246 
247 static void profile_flip_buffers(void)
248 {
249 	int i, j, cpu;
250 
251 	mutex_lock(&profile_flip_mutex);
252 	j = per_cpu(cpu_profile_flip, get_cpu());
253 	put_cpu();
254 	on_each_cpu(__profile_flip_buffers, NULL, 1);
255 	for_each_online_cpu(cpu) {
256 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
257 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
258 			if (!hits[i].hits) {
259 				if (hits[i].pc)
260 					hits[i].pc = 0;
261 				continue;
262 			}
263 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
264 			hits[i].hits = hits[i].pc = 0;
265 		}
266 	}
267 	mutex_unlock(&profile_flip_mutex);
268 }
269 
270 static void profile_discard_flip_buffers(void)
271 {
272 	int i, cpu;
273 
274 	mutex_lock(&profile_flip_mutex);
275 	i = per_cpu(cpu_profile_flip, get_cpu());
276 	put_cpu();
277 	on_each_cpu(__profile_flip_buffers, NULL, 1);
278 	for_each_online_cpu(cpu) {
279 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
280 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
281 	}
282 	mutex_unlock(&profile_flip_mutex);
283 }
284 
285 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
286 {
287 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
288 	int i, j, cpu;
289 	struct profile_hit *hits;
290 
291 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
292 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
293 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294 	cpu = get_cpu();
295 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
296 	if (!hits) {
297 		put_cpu();
298 		return;
299 	}
300 	/*
301 	 * We buffer the global profiler buffer into a per-CPU
302 	 * queue and thus reduce the number of global (and possibly
303 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
304 	 */
305 	local_irq_save(flags);
306 	do {
307 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
308 			if (hits[i + j].pc == pc) {
309 				hits[i + j].hits += nr_hits;
310 				goto out;
311 			} else if (!hits[i + j].hits) {
312 				hits[i + j].pc = pc;
313 				hits[i + j].hits = nr_hits;
314 				goto out;
315 			}
316 		}
317 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
318 	} while (i != primary);
319 
320 	/*
321 	 * Add the current hit(s) and flush the write-queue out
322 	 * to the global buffer:
323 	 */
324 	atomic_add(nr_hits, &prof_buffer[pc]);
325 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
326 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
327 		hits[i].pc = hits[i].hits = 0;
328 	}
329 out:
330 	local_irq_restore(flags);
331 	put_cpu();
332 }
333 
334 static int profile_dead_cpu(unsigned int cpu)
335 {
336 	struct page *page;
337 	int i;
338 
339 	if (prof_cpu_mask != NULL)
340 		cpumask_clear_cpu(cpu, prof_cpu_mask);
341 
342 	for (i = 0; i < 2; i++) {
343 		if (per_cpu(cpu_profile_hits, cpu)[i]) {
344 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
345 			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
346 			__free_page(page);
347 		}
348 	}
349 	return 0;
350 }
351 
352 static int profile_prepare_cpu(unsigned int cpu)
353 {
354 	int i, node = cpu_to_mem(cpu);
355 	struct page *page;
356 
357 	per_cpu(cpu_profile_flip, cpu) = 0;
358 
359 	for (i = 0; i < 2; i++) {
360 		if (per_cpu(cpu_profile_hits, cpu)[i])
361 			continue;
362 
363 		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
364 		if (!page) {
365 			profile_dead_cpu(cpu);
366 			return -ENOMEM;
367 		}
368 		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
369 
370 	}
371 	return 0;
372 }
373 
374 static int profile_online_cpu(unsigned int cpu)
375 {
376 	if (prof_cpu_mask != NULL)
377 		cpumask_set_cpu(cpu, prof_cpu_mask);
378 
379 	return 0;
380 }
381 
382 #else /* !CONFIG_SMP */
383 #define profile_flip_buffers()		do { } while (0)
384 #define profile_discard_flip_buffers()	do { } while (0)
385 
386 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
387 {
388 	unsigned long pc;
389 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
390 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
391 }
392 #endif /* !CONFIG_SMP */
393 
394 void profile_hits(int type, void *__pc, unsigned int nr_hits)
395 {
396 	if (prof_on != type || !prof_buffer)
397 		return;
398 	do_profile_hits(type, __pc, nr_hits);
399 }
400 EXPORT_SYMBOL_GPL(profile_hits);
401 
402 void profile_tick(int type)
403 {
404 	struct pt_regs *regs = get_irq_regs();
405 
406 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
407 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
408 		profile_hit(type, (void *)profile_pc(regs));
409 }
410 
411 #ifdef CONFIG_PROC_FS
412 #include <linux/proc_fs.h>
413 #include <linux/seq_file.h>
414 #include <linux/uaccess.h>
415 
416 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
417 {
418 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
419 	return 0;
420 }
421 
422 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
423 {
424 	return single_open(file, prof_cpu_mask_proc_show, NULL);
425 }
426 
427 static ssize_t prof_cpu_mask_proc_write(struct file *file,
428 	const char __user *buffer, size_t count, loff_t *pos)
429 {
430 	cpumask_var_t new_value;
431 	int err;
432 
433 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
434 		return -ENOMEM;
435 
436 	err = cpumask_parse_user(buffer, count, new_value);
437 	if (!err) {
438 		cpumask_copy(prof_cpu_mask, new_value);
439 		err = count;
440 	}
441 	free_cpumask_var(new_value);
442 	return err;
443 }
444 
445 static const struct file_operations prof_cpu_mask_proc_fops = {
446 	.open		= prof_cpu_mask_proc_open,
447 	.read		= seq_read,
448 	.llseek		= seq_lseek,
449 	.release	= single_release,
450 	.write		= prof_cpu_mask_proc_write,
451 };
452 
453 void create_prof_cpu_mask(void)
454 {
455 	/* create /proc/irq/prof_cpu_mask */
456 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
457 }
458 
459 /*
460  * This function accesses profiling information. The returned data is
461  * binary: the sampling step and the actual contents of the profile
462  * buffer. Use of the program readprofile is recommended in order to
463  * get meaningful info out of these data.
464  */
465 static ssize_t
466 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
467 {
468 	unsigned long p = *ppos;
469 	ssize_t read;
470 	char *pnt;
471 	unsigned int sample_step = 1 << prof_shift;
472 
473 	profile_flip_buffers();
474 	if (p >= (prof_len+1)*sizeof(unsigned int))
475 		return 0;
476 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
477 		count = (prof_len+1)*sizeof(unsigned int) - p;
478 	read = 0;
479 
480 	while (p < sizeof(unsigned int) && count > 0) {
481 		if (put_user(*((char *)(&sample_step)+p), buf))
482 			return -EFAULT;
483 		buf++; p++; count--; read++;
484 	}
485 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
486 	if (copy_to_user(buf, (void *)pnt, count))
487 		return -EFAULT;
488 	read += count;
489 	*ppos += read;
490 	return read;
491 }
492 
493 /*
494  * Writing to /proc/profile resets the counters
495  *
496  * Writing a 'profiling multiplier' value into it also re-sets the profiling
497  * interrupt frequency, on architectures that support this.
498  */
499 static ssize_t write_profile(struct file *file, const char __user *buf,
500 			     size_t count, loff_t *ppos)
501 {
502 #ifdef CONFIG_SMP
503 	extern int setup_profiling_timer(unsigned int multiplier);
504 
505 	if (count == sizeof(int)) {
506 		unsigned int multiplier;
507 
508 		if (copy_from_user(&multiplier, buf, sizeof(int)))
509 			return -EFAULT;
510 
511 		if (setup_profiling_timer(multiplier))
512 			return -EINVAL;
513 	}
514 #endif
515 	profile_discard_flip_buffers();
516 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
517 	return count;
518 }
519 
520 static const struct file_operations proc_profile_operations = {
521 	.read		= read_profile,
522 	.write		= write_profile,
523 	.llseek		= default_llseek,
524 };
525 
526 int __ref create_proc_profile(void)
527 {
528 	struct proc_dir_entry *entry;
529 #ifdef CONFIG_SMP
530 	enum cpuhp_state online_state;
531 #endif
532 
533 	int err = 0;
534 
535 	if (!prof_on)
536 		return 0;
537 #ifdef CONFIG_SMP
538 	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
539 				profile_prepare_cpu, profile_dead_cpu);
540 	if (err)
541 		return err;
542 
543 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
544 				profile_online_cpu, NULL);
545 	if (err < 0)
546 		goto err_state_prep;
547 	online_state = err;
548 	err = 0;
549 #endif
550 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
551 			    NULL, &proc_profile_operations);
552 	if (!entry)
553 		goto err_state_onl;
554 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
555 
556 	return err;
557 err_state_onl:
558 #ifdef CONFIG_SMP
559 	cpuhp_remove_state(online_state);
560 err_state_prep:
561 	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
562 #endif
563 	return err;
564 }
565 subsys_initcall(create_proc_profile);
566 #endif /* CONFIG_PROC_FS */
567