xref: /openbmc/linux/kernel/profile.c (revision b04b4f78)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30 
31 struct profile_hit {
32 	u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT	3
35 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
38 
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47 
48 static cpumask_var_t prof_cpu_mask;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 int profile_setup(char *str)
56 {
57 	static char schedstr[] = "schedule";
58 	static char sleepstr[] = "sleep";
59 	static char kvmstr[] = "kvm";
60 	int par;
61 
62 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 		prof_on = SLEEP_PROFILING;
65 		if (str[strlen(sleepstr)] == ',')
66 			str += strlen(sleepstr) + 1;
67 		if (get_option(&str, &par))
68 			prof_shift = par;
69 		printk(KERN_INFO
70 			"kernel sleep profiling enabled (shift: %ld)\n",
71 			prof_shift);
72 #else
73 		printk(KERN_WARNING
74 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 		prof_on = SCHED_PROFILING;
78 		if (str[strlen(schedstr)] == ',')
79 			str += strlen(schedstr) + 1;
80 		if (get_option(&str, &par))
81 			prof_shift = par;
82 		printk(KERN_INFO
83 			"kernel schedule profiling enabled (shift: %ld)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = par;
91 		printk(KERN_INFO
92 			"kernel KVM profiling enabled (shift: %ld)\n",
93 			prof_shift);
94 	} else if (get_option(&str, &par)) {
95 		prof_shift = par;
96 		prof_on = CPU_PROFILING;
97 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 			prof_shift);
99 	}
100 	return 1;
101 }
102 __setup("profile=", profile_setup);
103 
104 
105 int __ref profile_init(void)
106 {
107 	int buffer_bytes;
108 	if (!prof_on)
109 		return 0;
110 
111 	/* only text is profiled */
112 	prof_len = (_etext - _stext) >> prof_shift;
113 	buffer_bytes = prof_len*sizeof(atomic_t);
114 	if (!slab_is_available()) {
115 		prof_buffer = alloc_bootmem(buffer_bytes);
116 		alloc_bootmem_cpumask_var(&prof_cpu_mask);
117 		cpumask_copy(prof_cpu_mask, cpu_possible_mask);
118 		return 0;
119 	}
120 
121 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
122 		return -ENOMEM;
123 
124 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
125 
126 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL);
127 	if (prof_buffer)
128 		return 0;
129 
130 	prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO);
131 	if (prof_buffer)
132 		return 0;
133 
134 	prof_buffer = vmalloc(buffer_bytes);
135 	if (prof_buffer)
136 		return 0;
137 
138 	free_cpumask_var(prof_cpu_mask);
139 	return -ENOMEM;
140 }
141 
142 /* Profile event notifications */
143 
144 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
145 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
146 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
147 
148 void profile_task_exit(struct task_struct *task)
149 {
150 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
151 }
152 
153 int profile_handoff_task(struct task_struct *task)
154 {
155 	int ret;
156 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
157 	return (ret == NOTIFY_OK) ? 1 : 0;
158 }
159 
160 void profile_munmap(unsigned long addr)
161 {
162 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
163 }
164 
165 int task_handoff_register(struct notifier_block *n)
166 {
167 	return atomic_notifier_chain_register(&task_free_notifier, n);
168 }
169 EXPORT_SYMBOL_GPL(task_handoff_register);
170 
171 int task_handoff_unregister(struct notifier_block *n)
172 {
173 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
174 }
175 EXPORT_SYMBOL_GPL(task_handoff_unregister);
176 
177 int profile_event_register(enum profile_type type, struct notifier_block *n)
178 {
179 	int err = -EINVAL;
180 
181 	switch (type) {
182 	case PROFILE_TASK_EXIT:
183 		err = blocking_notifier_chain_register(
184 				&task_exit_notifier, n);
185 		break;
186 	case PROFILE_MUNMAP:
187 		err = blocking_notifier_chain_register(
188 				&munmap_notifier, n);
189 		break;
190 	}
191 
192 	return err;
193 }
194 EXPORT_SYMBOL_GPL(profile_event_register);
195 
196 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
197 {
198 	int err = -EINVAL;
199 
200 	switch (type) {
201 	case PROFILE_TASK_EXIT:
202 		err = blocking_notifier_chain_unregister(
203 				&task_exit_notifier, n);
204 		break;
205 	case PROFILE_MUNMAP:
206 		err = blocking_notifier_chain_unregister(
207 				&munmap_notifier, n);
208 		break;
209 	}
210 
211 	return err;
212 }
213 EXPORT_SYMBOL_GPL(profile_event_unregister);
214 
215 int register_timer_hook(int (*hook)(struct pt_regs *))
216 {
217 	if (timer_hook)
218 		return -EBUSY;
219 	timer_hook = hook;
220 	return 0;
221 }
222 EXPORT_SYMBOL_GPL(register_timer_hook);
223 
224 void unregister_timer_hook(int (*hook)(struct pt_regs *))
225 {
226 	WARN_ON(hook != timer_hook);
227 	timer_hook = NULL;
228 	/* make sure all CPUs see the NULL hook */
229 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
230 }
231 EXPORT_SYMBOL_GPL(unregister_timer_hook);
232 
233 
234 #ifdef CONFIG_SMP
235 /*
236  * Each cpu has a pair of open-addressed hashtables for pending
237  * profile hits. read_profile() IPI's all cpus to request them
238  * to flip buffers and flushes their contents to prof_buffer itself.
239  * Flip requests are serialized by the profile_flip_mutex. The sole
240  * use of having a second hashtable is for avoiding cacheline
241  * contention that would otherwise happen during flushes of pending
242  * profile hits required for the accuracy of reported profile hits
243  * and so resurrect the interrupt livelock issue.
244  *
245  * The open-addressed hashtables are indexed by profile buffer slot
246  * and hold the number of pending hits to that profile buffer slot on
247  * a cpu in an entry. When the hashtable overflows, all pending hits
248  * are accounted to their corresponding profile buffer slots with
249  * atomic_add() and the hashtable emptied. As numerous pending hits
250  * may be accounted to a profile buffer slot in a hashtable entry,
251  * this amortizes a number of atomic profile buffer increments likely
252  * to be far larger than the number of entries in the hashtable,
253  * particularly given that the number of distinct profile buffer
254  * positions to which hits are accounted during short intervals (e.g.
255  * several seconds) is usually very small. Exclusion from buffer
256  * flipping is provided by interrupt disablement (note that for
257  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
258  * process context).
259  * The hash function is meant to be lightweight as opposed to strong,
260  * and was vaguely inspired by ppc64 firmware-supported inverted
261  * pagetable hash functions, but uses a full hashtable full of finite
262  * collision chains, not just pairs of them.
263  *
264  * -- wli
265  */
266 static void __profile_flip_buffers(void *unused)
267 {
268 	int cpu = smp_processor_id();
269 
270 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
271 }
272 
273 static void profile_flip_buffers(void)
274 {
275 	int i, j, cpu;
276 
277 	mutex_lock(&profile_flip_mutex);
278 	j = per_cpu(cpu_profile_flip, get_cpu());
279 	put_cpu();
280 	on_each_cpu(__profile_flip_buffers, NULL, 1);
281 	for_each_online_cpu(cpu) {
282 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
283 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
284 			if (!hits[i].hits) {
285 				if (hits[i].pc)
286 					hits[i].pc = 0;
287 				continue;
288 			}
289 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
290 			hits[i].hits = hits[i].pc = 0;
291 		}
292 	}
293 	mutex_unlock(&profile_flip_mutex);
294 }
295 
296 static void profile_discard_flip_buffers(void)
297 {
298 	int i, cpu;
299 
300 	mutex_lock(&profile_flip_mutex);
301 	i = per_cpu(cpu_profile_flip, get_cpu());
302 	put_cpu();
303 	on_each_cpu(__profile_flip_buffers, NULL, 1);
304 	for_each_online_cpu(cpu) {
305 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
306 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
307 	}
308 	mutex_unlock(&profile_flip_mutex);
309 }
310 
311 void profile_hits(int type, void *__pc, unsigned int nr_hits)
312 {
313 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
314 	int i, j, cpu;
315 	struct profile_hit *hits;
316 
317 	if (prof_on != type || !prof_buffer)
318 		return;
319 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
320 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
321 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
322 	cpu = get_cpu();
323 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
324 	if (!hits) {
325 		put_cpu();
326 		return;
327 	}
328 	/*
329 	 * We buffer the global profiler buffer into a per-CPU
330 	 * queue and thus reduce the number of global (and possibly
331 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
332 	 */
333 	local_irq_save(flags);
334 	do {
335 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
336 			if (hits[i + j].pc == pc) {
337 				hits[i + j].hits += nr_hits;
338 				goto out;
339 			} else if (!hits[i + j].hits) {
340 				hits[i + j].pc = pc;
341 				hits[i + j].hits = nr_hits;
342 				goto out;
343 			}
344 		}
345 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
346 	} while (i != primary);
347 
348 	/*
349 	 * Add the current hit(s) and flush the write-queue out
350 	 * to the global buffer:
351 	 */
352 	atomic_add(nr_hits, &prof_buffer[pc]);
353 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
354 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
355 		hits[i].pc = hits[i].hits = 0;
356 	}
357 out:
358 	local_irq_restore(flags);
359 	put_cpu();
360 }
361 
362 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
363 					unsigned long action, void *__cpu)
364 {
365 	int node, cpu = (unsigned long)__cpu;
366 	struct page *page;
367 
368 	switch (action) {
369 	case CPU_UP_PREPARE:
370 	case CPU_UP_PREPARE_FROZEN:
371 		node = cpu_to_node(cpu);
372 		per_cpu(cpu_profile_flip, cpu) = 0;
373 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
374 			page = alloc_pages_node(node,
375 					GFP_KERNEL | __GFP_ZERO,
376 					0);
377 			if (!page)
378 				return NOTIFY_BAD;
379 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
380 		}
381 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
382 			page = alloc_pages_node(node,
383 					GFP_KERNEL | __GFP_ZERO,
384 					0);
385 			if (!page)
386 				goto out_free;
387 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
388 		}
389 		break;
390 out_free:
391 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
392 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
393 		__free_page(page);
394 		return NOTIFY_BAD;
395 	case CPU_ONLINE:
396 	case CPU_ONLINE_FROZEN:
397 		if (prof_cpu_mask != NULL)
398 			cpumask_set_cpu(cpu, prof_cpu_mask);
399 		break;
400 	case CPU_UP_CANCELED:
401 	case CPU_UP_CANCELED_FROZEN:
402 	case CPU_DEAD:
403 	case CPU_DEAD_FROZEN:
404 		if (prof_cpu_mask != NULL)
405 			cpumask_clear_cpu(cpu, prof_cpu_mask);
406 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
407 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
408 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
409 			__free_page(page);
410 		}
411 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
412 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
413 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
414 			__free_page(page);
415 		}
416 		break;
417 	}
418 	return NOTIFY_OK;
419 }
420 #else /* !CONFIG_SMP */
421 #define profile_flip_buffers()		do { } while (0)
422 #define profile_discard_flip_buffers()	do { } while (0)
423 #define profile_cpu_callback		NULL
424 
425 void profile_hits(int type, void *__pc, unsigned int nr_hits)
426 {
427 	unsigned long pc;
428 
429 	if (prof_on != type || !prof_buffer)
430 		return;
431 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
432 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
433 }
434 #endif /* !CONFIG_SMP */
435 EXPORT_SYMBOL_GPL(profile_hits);
436 
437 void profile_tick(int type)
438 {
439 	struct pt_regs *regs = get_irq_regs();
440 
441 	if (type == CPU_PROFILING && timer_hook)
442 		timer_hook(regs);
443 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
444 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
445 		profile_hit(type, (void *)profile_pc(regs));
446 }
447 
448 #ifdef CONFIG_PROC_FS
449 #include <linux/proc_fs.h>
450 #include <asm/uaccess.h>
451 
452 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
453 			int count, int *eof, void *data)
454 {
455 	int len = cpumask_scnprintf(page, count, data);
456 	if (count - len < 2)
457 		return -EINVAL;
458 	len += sprintf(page + len, "\n");
459 	return len;
460 }
461 
462 static int prof_cpu_mask_write_proc(struct file *file,
463 	const char __user *buffer,  unsigned long count, void *data)
464 {
465 	struct cpumask *mask = data;
466 	unsigned long full_count = count, err;
467 	cpumask_var_t new_value;
468 
469 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
470 		return -ENOMEM;
471 
472 	err = cpumask_parse_user(buffer, count, new_value);
473 	if (!err) {
474 		cpumask_copy(mask, new_value);
475 		err = full_count;
476 	}
477 	free_cpumask_var(new_value);
478 	return err;
479 }
480 
481 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
482 {
483 	struct proc_dir_entry *entry;
484 
485 	/* create /proc/irq/prof_cpu_mask */
486 	entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
487 	if (!entry)
488 		return;
489 	entry->data = prof_cpu_mask;
490 	entry->read_proc = prof_cpu_mask_read_proc;
491 	entry->write_proc = prof_cpu_mask_write_proc;
492 }
493 
494 /*
495  * This function accesses profiling information. The returned data is
496  * binary: the sampling step and the actual contents of the profile
497  * buffer. Use of the program readprofile is recommended in order to
498  * get meaningful info out of these data.
499  */
500 static ssize_t
501 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
502 {
503 	unsigned long p = *ppos;
504 	ssize_t read;
505 	char *pnt;
506 	unsigned int sample_step = 1 << prof_shift;
507 
508 	profile_flip_buffers();
509 	if (p >= (prof_len+1)*sizeof(unsigned int))
510 		return 0;
511 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
512 		count = (prof_len+1)*sizeof(unsigned int) - p;
513 	read = 0;
514 
515 	while (p < sizeof(unsigned int) && count > 0) {
516 		if (put_user(*((char *)(&sample_step)+p), buf))
517 			return -EFAULT;
518 		buf++; p++; count--; read++;
519 	}
520 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
521 	if (copy_to_user(buf, (void *)pnt, count))
522 		return -EFAULT;
523 	read += count;
524 	*ppos += read;
525 	return read;
526 }
527 
528 /*
529  * Writing to /proc/profile resets the counters
530  *
531  * Writing a 'profiling multiplier' value into it also re-sets the profiling
532  * interrupt frequency, on architectures that support this.
533  */
534 static ssize_t write_profile(struct file *file, const char __user *buf,
535 			     size_t count, loff_t *ppos)
536 {
537 #ifdef CONFIG_SMP
538 	extern int setup_profiling_timer(unsigned int multiplier);
539 
540 	if (count == sizeof(int)) {
541 		unsigned int multiplier;
542 
543 		if (copy_from_user(&multiplier, buf, sizeof(int)))
544 			return -EFAULT;
545 
546 		if (setup_profiling_timer(multiplier))
547 			return -EINVAL;
548 	}
549 #endif
550 	profile_discard_flip_buffers();
551 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
552 	return count;
553 }
554 
555 static const struct file_operations proc_profile_operations = {
556 	.read		= read_profile,
557 	.write		= write_profile,
558 };
559 
560 #ifdef CONFIG_SMP
561 static void profile_nop(void *unused)
562 {
563 }
564 
565 static int create_hash_tables(void)
566 {
567 	int cpu;
568 
569 	for_each_online_cpu(cpu) {
570 		int node = cpu_to_node(cpu);
571 		struct page *page;
572 
573 		page = alloc_pages_node(node,
574 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
575 				0);
576 		if (!page)
577 			goto out_cleanup;
578 		per_cpu(cpu_profile_hits, cpu)[1]
579 				= (struct profile_hit *)page_address(page);
580 		page = alloc_pages_node(node,
581 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
582 				0);
583 		if (!page)
584 			goto out_cleanup;
585 		per_cpu(cpu_profile_hits, cpu)[0]
586 				= (struct profile_hit *)page_address(page);
587 	}
588 	return 0;
589 out_cleanup:
590 	prof_on = 0;
591 	smp_mb();
592 	on_each_cpu(profile_nop, NULL, 1);
593 	for_each_online_cpu(cpu) {
594 		struct page *page;
595 
596 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
597 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
598 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
599 			__free_page(page);
600 		}
601 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
602 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
603 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
604 			__free_page(page);
605 		}
606 	}
607 	return -1;
608 }
609 #else
610 #define create_hash_tables()			({ 0; })
611 #endif
612 
613 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
614 {
615 	struct proc_dir_entry *entry;
616 
617 	if (!prof_on)
618 		return 0;
619 	if (create_hash_tables())
620 		return -ENOMEM;
621 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
622 			    NULL, &proc_profile_operations);
623 	if (!entry)
624 		return 0;
625 	entry->size = (1+prof_len) * sizeof(atomic_t);
626 	hotcpu_notifier(profile_cpu_callback, 0);
627 	return 0;
628 }
629 module_init(create_proc_profile);
630 #endif /* CONFIG_PROC_FS */
631