1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * William Irwin, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 14 */ 15 16 #include <linux/module.h> 17 #include <linux/profile.h> 18 #include <linux/bootmem.h> 19 #include <linux/notifier.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/highmem.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/vmalloc.h> 27 #include <asm/sections.h> 28 #include <asm/irq_regs.h> 29 #include <asm/ptrace.h> 30 31 struct profile_hit { 32 u32 pc, hits; 33 }; 34 #define PROFILE_GRPSHIFT 3 35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 38 39 /* Oprofile timer tick hook */ 40 static int (*timer_hook)(struct pt_regs *) __read_mostly; 41 42 static atomic_t *prof_buffer; 43 static unsigned long prof_len, prof_shift; 44 45 int prof_on __read_mostly; 46 EXPORT_SYMBOL_GPL(prof_on); 47 48 static cpumask_var_t prof_cpu_mask; 49 #ifdef CONFIG_SMP 50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 51 static DEFINE_PER_CPU(int, cpu_profile_flip); 52 static DEFINE_MUTEX(profile_flip_mutex); 53 #endif /* CONFIG_SMP */ 54 55 int profile_setup(char *str) 56 { 57 static char schedstr[] = "schedule"; 58 static char sleepstr[] = "sleep"; 59 static char kvmstr[] = "kvm"; 60 int par; 61 62 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 63 #ifdef CONFIG_SCHEDSTATS 64 prof_on = SLEEP_PROFILING; 65 if (str[strlen(sleepstr)] == ',') 66 str += strlen(sleepstr) + 1; 67 if (get_option(&str, &par)) 68 prof_shift = par; 69 printk(KERN_INFO 70 "kernel sleep profiling enabled (shift: %ld)\n", 71 prof_shift); 72 #else 73 printk(KERN_WARNING 74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 75 #endif /* CONFIG_SCHEDSTATS */ 76 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 77 prof_on = SCHED_PROFILING; 78 if (str[strlen(schedstr)] == ',') 79 str += strlen(schedstr) + 1; 80 if (get_option(&str, &par)) 81 prof_shift = par; 82 printk(KERN_INFO 83 "kernel schedule profiling enabled (shift: %ld)\n", 84 prof_shift); 85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 86 prof_on = KVM_PROFILING; 87 if (str[strlen(kvmstr)] == ',') 88 str += strlen(kvmstr) + 1; 89 if (get_option(&str, &par)) 90 prof_shift = par; 91 printk(KERN_INFO 92 "kernel KVM profiling enabled (shift: %ld)\n", 93 prof_shift); 94 } else if (get_option(&str, &par)) { 95 prof_shift = par; 96 prof_on = CPU_PROFILING; 97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", 98 prof_shift); 99 } 100 return 1; 101 } 102 __setup("profile=", profile_setup); 103 104 105 int __ref profile_init(void) 106 { 107 int buffer_bytes; 108 if (!prof_on) 109 return 0; 110 111 /* only text is profiled */ 112 prof_len = (_etext - _stext) >> prof_shift; 113 buffer_bytes = prof_len*sizeof(atomic_t); 114 if (!slab_is_available()) { 115 prof_buffer = alloc_bootmem(buffer_bytes); 116 alloc_bootmem_cpumask_var(&prof_cpu_mask); 117 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 118 return 0; 119 } 120 121 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 122 return -ENOMEM; 123 124 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 125 126 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL); 127 if (prof_buffer) 128 return 0; 129 130 prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO); 131 if (prof_buffer) 132 return 0; 133 134 prof_buffer = vmalloc(buffer_bytes); 135 if (prof_buffer) 136 return 0; 137 138 free_cpumask_var(prof_cpu_mask); 139 return -ENOMEM; 140 } 141 142 /* Profile event notifications */ 143 144 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 145 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 146 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 147 148 void profile_task_exit(struct task_struct *task) 149 { 150 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 151 } 152 153 int profile_handoff_task(struct task_struct *task) 154 { 155 int ret; 156 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 157 return (ret == NOTIFY_OK) ? 1 : 0; 158 } 159 160 void profile_munmap(unsigned long addr) 161 { 162 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 163 } 164 165 int task_handoff_register(struct notifier_block *n) 166 { 167 return atomic_notifier_chain_register(&task_free_notifier, n); 168 } 169 EXPORT_SYMBOL_GPL(task_handoff_register); 170 171 int task_handoff_unregister(struct notifier_block *n) 172 { 173 return atomic_notifier_chain_unregister(&task_free_notifier, n); 174 } 175 EXPORT_SYMBOL_GPL(task_handoff_unregister); 176 177 int profile_event_register(enum profile_type type, struct notifier_block *n) 178 { 179 int err = -EINVAL; 180 181 switch (type) { 182 case PROFILE_TASK_EXIT: 183 err = blocking_notifier_chain_register( 184 &task_exit_notifier, n); 185 break; 186 case PROFILE_MUNMAP: 187 err = blocking_notifier_chain_register( 188 &munmap_notifier, n); 189 break; 190 } 191 192 return err; 193 } 194 EXPORT_SYMBOL_GPL(profile_event_register); 195 196 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 197 { 198 int err = -EINVAL; 199 200 switch (type) { 201 case PROFILE_TASK_EXIT: 202 err = blocking_notifier_chain_unregister( 203 &task_exit_notifier, n); 204 break; 205 case PROFILE_MUNMAP: 206 err = blocking_notifier_chain_unregister( 207 &munmap_notifier, n); 208 break; 209 } 210 211 return err; 212 } 213 EXPORT_SYMBOL_GPL(profile_event_unregister); 214 215 int register_timer_hook(int (*hook)(struct pt_regs *)) 216 { 217 if (timer_hook) 218 return -EBUSY; 219 timer_hook = hook; 220 return 0; 221 } 222 EXPORT_SYMBOL_GPL(register_timer_hook); 223 224 void unregister_timer_hook(int (*hook)(struct pt_regs *)) 225 { 226 WARN_ON(hook != timer_hook); 227 timer_hook = NULL; 228 /* make sure all CPUs see the NULL hook */ 229 synchronize_sched(); /* Allow ongoing interrupts to complete. */ 230 } 231 EXPORT_SYMBOL_GPL(unregister_timer_hook); 232 233 234 #ifdef CONFIG_SMP 235 /* 236 * Each cpu has a pair of open-addressed hashtables for pending 237 * profile hits. read_profile() IPI's all cpus to request them 238 * to flip buffers and flushes their contents to prof_buffer itself. 239 * Flip requests are serialized by the profile_flip_mutex. The sole 240 * use of having a second hashtable is for avoiding cacheline 241 * contention that would otherwise happen during flushes of pending 242 * profile hits required for the accuracy of reported profile hits 243 * and so resurrect the interrupt livelock issue. 244 * 245 * The open-addressed hashtables are indexed by profile buffer slot 246 * and hold the number of pending hits to that profile buffer slot on 247 * a cpu in an entry. When the hashtable overflows, all pending hits 248 * are accounted to their corresponding profile buffer slots with 249 * atomic_add() and the hashtable emptied. As numerous pending hits 250 * may be accounted to a profile buffer slot in a hashtable entry, 251 * this amortizes a number of atomic profile buffer increments likely 252 * to be far larger than the number of entries in the hashtable, 253 * particularly given that the number of distinct profile buffer 254 * positions to which hits are accounted during short intervals (e.g. 255 * several seconds) is usually very small. Exclusion from buffer 256 * flipping is provided by interrupt disablement (note that for 257 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 258 * process context). 259 * The hash function is meant to be lightweight as opposed to strong, 260 * and was vaguely inspired by ppc64 firmware-supported inverted 261 * pagetable hash functions, but uses a full hashtable full of finite 262 * collision chains, not just pairs of them. 263 * 264 * -- wli 265 */ 266 static void __profile_flip_buffers(void *unused) 267 { 268 int cpu = smp_processor_id(); 269 270 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 271 } 272 273 static void profile_flip_buffers(void) 274 { 275 int i, j, cpu; 276 277 mutex_lock(&profile_flip_mutex); 278 j = per_cpu(cpu_profile_flip, get_cpu()); 279 put_cpu(); 280 on_each_cpu(__profile_flip_buffers, NULL, 1); 281 for_each_online_cpu(cpu) { 282 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 283 for (i = 0; i < NR_PROFILE_HIT; ++i) { 284 if (!hits[i].hits) { 285 if (hits[i].pc) 286 hits[i].pc = 0; 287 continue; 288 } 289 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 290 hits[i].hits = hits[i].pc = 0; 291 } 292 } 293 mutex_unlock(&profile_flip_mutex); 294 } 295 296 static void profile_discard_flip_buffers(void) 297 { 298 int i, cpu; 299 300 mutex_lock(&profile_flip_mutex); 301 i = per_cpu(cpu_profile_flip, get_cpu()); 302 put_cpu(); 303 on_each_cpu(__profile_flip_buffers, NULL, 1); 304 for_each_online_cpu(cpu) { 305 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 306 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 307 } 308 mutex_unlock(&profile_flip_mutex); 309 } 310 311 void profile_hits(int type, void *__pc, unsigned int nr_hits) 312 { 313 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 314 int i, j, cpu; 315 struct profile_hit *hits; 316 317 if (prof_on != type || !prof_buffer) 318 return; 319 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 320 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 321 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 322 cpu = get_cpu(); 323 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 324 if (!hits) { 325 put_cpu(); 326 return; 327 } 328 /* 329 * We buffer the global profiler buffer into a per-CPU 330 * queue and thus reduce the number of global (and possibly 331 * NUMA-alien) accesses. The write-queue is self-coalescing: 332 */ 333 local_irq_save(flags); 334 do { 335 for (j = 0; j < PROFILE_GRPSZ; ++j) { 336 if (hits[i + j].pc == pc) { 337 hits[i + j].hits += nr_hits; 338 goto out; 339 } else if (!hits[i + j].hits) { 340 hits[i + j].pc = pc; 341 hits[i + j].hits = nr_hits; 342 goto out; 343 } 344 } 345 i = (i + secondary) & (NR_PROFILE_HIT - 1); 346 } while (i != primary); 347 348 /* 349 * Add the current hit(s) and flush the write-queue out 350 * to the global buffer: 351 */ 352 atomic_add(nr_hits, &prof_buffer[pc]); 353 for (i = 0; i < NR_PROFILE_HIT; ++i) { 354 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 355 hits[i].pc = hits[i].hits = 0; 356 } 357 out: 358 local_irq_restore(flags); 359 put_cpu(); 360 } 361 362 static int __cpuinit profile_cpu_callback(struct notifier_block *info, 363 unsigned long action, void *__cpu) 364 { 365 int node, cpu = (unsigned long)__cpu; 366 struct page *page; 367 368 switch (action) { 369 case CPU_UP_PREPARE: 370 case CPU_UP_PREPARE_FROZEN: 371 node = cpu_to_node(cpu); 372 per_cpu(cpu_profile_flip, cpu) = 0; 373 if (!per_cpu(cpu_profile_hits, cpu)[1]) { 374 page = alloc_pages_node(node, 375 GFP_KERNEL | __GFP_ZERO, 376 0); 377 if (!page) 378 return NOTIFY_BAD; 379 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); 380 } 381 if (!per_cpu(cpu_profile_hits, cpu)[0]) { 382 page = alloc_pages_node(node, 383 GFP_KERNEL | __GFP_ZERO, 384 0); 385 if (!page) 386 goto out_free; 387 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); 388 } 389 break; 390 out_free: 391 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 392 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 393 __free_page(page); 394 return NOTIFY_BAD; 395 case CPU_ONLINE: 396 case CPU_ONLINE_FROZEN: 397 if (prof_cpu_mask != NULL) 398 cpumask_set_cpu(cpu, prof_cpu_mask); 399 break; 400 case CPU_UP_CANCELED: 401 case CPU_UP_CANCELED_FROZEN: 402 case CPU_DEAD: 403 case CPU_DEAD_FROZEN: 404 if (prof_cpu_mask != NULL) 405 cpumask_clear_cpu(cpu, prof_cpu_mask); 406 if (per_cpu(cpu_profile_hits, cpu)[0]) { 407 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 408 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 409 __free_page(page); 410 } 411 if (per_cpu(cpu_profile_hits, cpu)[1]) { 412 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 413 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 414 __free_page(page); 415 } 416 break; 417 } 418 return NOTIFY_OK; 419 } 420 #else /* !CONFIG_SMP */ 421 #define profile_flip_buffers() do { } while (0) 422 #define profile_discard_flip_buffers() do { } while (0) 423 #define profile_cpu_callback NULL 424 425 void profile_hits(int type, void *__pc, unsigned int nr_hits) 426 { 427 unsigned long pc; 428 429 if (prof_on != type || !prof_buffer) 430 return; 431 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 432 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 433 } 434 #endif /* !CONFIG_SMP */ 435 EXPORT_SYMBOL_GPL(profile_hits); 436 437 void profile_tick(int type) 438 { 439 struct pt_regs *regs = get_irq_regs(); 440 441 if (type == CPU_PROFILING && timer_hook) 442 timer_hook(regs); 443 if (!user_mode(regs) && prof_cpu_mask != NULL && 444 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 445 profile_hit(type, (void *)profile_pc(regs)); 446 } 447 448 #ifdef CONFIG_PROC_FS 449 #include <linux/proc_fs.h> 450 #include <asm/uaccess.h> 451 452 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, 453 int count, int *eof, void *data) 454 { 455 int len = cpumask_scnprintf(page, count, data); 456 if (count - len < 2) 457 return -EINVAL; 458 len += sprintf(page + len, "\n"); 459 return len; 460 } 461 462 static int prof_cpu_mask_write_proc(struct file *file, 463 const char __user *buffer, unsigned long count, void *data) 464 { 465 struct cpumask *mask = data; 466 unsigned long full_count = count, err; 467 cpumask_var_t new_value; 468 469 if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) 470 return -ENOMEM; 471 472 err = cpumask_parse_user(buffer, count, new_value); 473 if (!err) { 474 cpumask_copy(mask, new_value); 475 err = full_count; 476 } 477 free_cpumask_var(new_value); 478 return err; 479 } 480 481 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 482 { 483 struct proc_dir_entry *entry; 484 485 /* create /proc/irq/prof_cpu_mask */ 486 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); 487 if (!entry) 488 return; 489 entry->data = prof_cpu_mask; 490 entry->read_proc = prof_cpu_mask_read_proc; 491 entry->write_proc = prof_cpu_mask_write_proc; 492 } 493 494 /* 495 * This function accesses profiling information. The returned data is 496 * binary: the sampling step and the actual contents of the profile 497 * buffer. Use of the program readprofile is recommended in order to 498 * get meaningful info out of these data. 499 */ 500 static ssize_t 501 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 502 { 503 unsigned long p = *ppos; 504 ssize_t read; 505 char *pnt; 506 unsigned int sample_step = 1 << prof_shift; 507 508 profile_flip_buffers(); 509 if (p >= (prof_len+1)*sizeof(unsigned int)) 510 return 0; 511 if (count > (prof_len+1)*sizeof(unsigned int) - p) 512 count = (prof_len+1)*sizeof(unsigned int) - p; 513 read = 0; 514 515 while (p < sizeof(unsigned int) && count > 0) { 516 if (put_user(*((char *)(&sample_step)+p), buf)) 517 return -EFAULT; 518 buf++; p++; count--; read++; 519 } 520 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 521 if (copy_to_user(buf, (void *)pnt, count)) 522 return -EFAULT; 523 read += count; 524 *ppos += read; 525 return read; 526 } 527 528 /* 529 * Writing to /proc/profile resets the counters 530 * 531 * Writing a 'profiling multiplier' value into it also re-sets the profiling 532 * interrupt frequency, on architectures that support this. 533 */ 534 static ssize_t write_profile(struct file *file, const char __user *buf, 535 size_t count, loff_t *ppos) 536 { 537 #ifdef CONFIG_SMP 538 extern int setup_profiling_timer(unsigned int multiplier); 539 540 if (count == sizeof(int)) { 541 unsigned int multiplier; 542 543 if (copy_from_user(&multiplier, buf, sizeof(int))) 544 return -EFAULT; 545 546 if (setup_profiling_timer(multiplier)) 547 return -EINVAL; 548 } 549 #endif 550 profile_discard_flip_buffers(); 551 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 552 return count; 553 } 554 555 static const struct file_operations proc_profile_operations = { 556 .read = read_profile, 557 .write = write_profile, 558 }; 559 560 #ifdef CONFIG_SMP 561 static void profile_nop(void *unused) 562 { 563 } 564 565 static int create_hash_tables(void) 566 { 567 int cpu; 568 569 for_each_online_cpu(cpu) { 570 int node = cpu_to_node(cpu); 571 struct page *page; 572 573 page = alloc_pages_node(node, 574 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 575 0); 576 if (!page) 577 goto out_cleanup; 578 per_cpu(cpu_profile_hits, cpu)[1] 579 = (struct profile_hit *)page_address(page); 580 page = alloc_pages_node(node, 581 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 582 0); 583 if (!page) 584 goto out_cleanup; 585 per_cpu(cpu_profile_hits, cpu)[0] 586 = (struct profile_hit *)page_address(page); 587 } 588 return 0; 589 out_cleanup: 590 prof_on = 0; 591 smp_mb(); 592 on_each_cpu(profile_nop, NULL, 1); 593 for_each_online_cpu(cpu) { 594 struct page *page; 595 596 if (per_cpu(cpu_profile_hits, cpu)[0]) { 597 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 598 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 599 __free_page(page); 600 } 601 if (per_cpu(cpu_profile_hits, cpu)[1]) { 602 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 603 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 604 __free_page(page); 605 } 606 } 607 return -1; 608 } 609 #else 610 #define create_hash_tables() ({ 0; }) 611 #endif 612 613 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */ 614 { 615 struct proc_dir_entry *entry; 616 617 if (!prof_on) 618 return 0; 619 if (create_hash_tables()) 620 return -ENOMEM; 621 entry = proc_create("profile", S_IWUSR | S_IRUGO, 622 NULL, &proc_profile_operations); 623 if (!entry) 624 return 0; 625 entry->size = (1+prof_len) * sizeof(atomic_t); 626 hotcpu_notifier(profile_cpu_callback, 0); 627 return 0; 628 } 629 module_init(create_proc_profile); 630 #endif /* CONFIG_PROC_FS */ 631