xref: /openbmc/linux/kernel/profile.c (revision afb46f79)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	Nadia Yvette Chambers, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
14  *	Oracle, 2004
15  */
16 
17 #include <linux/export.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
21 #include <linux/mm.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <asm/sections.h>
29 #include <asm/irq_regs.h>
30 #include <asm/ptrace.h>
31 
32 struct profile_hit {
33 	u32 pc, hits;
34 };
35 #define PROFILE_GRPSHIFT	3
36 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
37 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
38 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
39 
40 static atomic_t *prof_buffer;
41 static unsigned long prof_len, prof_shift;
42 
43 int prof_on __read_mostly;
44 EXPORT_SYMBOL_GPL(prof_on);
45 
46 static cpumask_var_t prof_cpu_mask;
47 #ifdef CONFIG_SMP
48 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
49 static DEFINE_PER_CPU(int, cpu_profile_flip);
50 static DEFINE_MUTEX(profile_flip_mutex);
51 #endif /* CONFIG_SMP */
52 
53 int profile_setup(char *str)
54 {
55 	static char schedstr[] = "schedule";
56 	static char sleepstr[] = "sleep";
57 	static char kvmstr[] = "kvm";
58 	int par;
59 
60 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
61 #ifdef CONFIG_SCHEDSTATS
62 		prof_on = SLEEP_PROFILING;
63 		if (str[strlen(sleepstr)] == ',')
64 			str += strlen(sleepstr) + 1;
65 		if (get_option(&str, &par))
66 			prof_shift = par;
67 		printk(KERN_INFO
68 			"kernel sleep profiling enabled (shift: %ld)\n",
69 			prof_shift);
70 #else
71 		printk(KERN_WARNING
72 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
73 #endif /* CONFIG_SCHEDSTATS */
74 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
75 		prof_on = SCHED_PROFILING;
76 		if (str[strlen(schedstr)] == ',')
77 			str += strlen(schedstr) + 1;
78 		if (get_option(&str, &par))
79 			prof_shift = par;
80 		printk(KERN_INFO
81 			"kernel schedule profiling enabled (shift: %ld)\n",
82 			prof_shift);
83 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
84 		prof_on = KVM_PROFILING;
85 		if (str[strlen(kvmstr)] == ',')
86 			str += strlen(kvmstr) + 1;
87 		if (get_option(&str, &par))
88 			prof_shift = par;
89 		printk(KERN_INFO
90 			"kernel KVM profiling enabled (shift: %ld)\n",
91 			prof_shift);
92 	} else if (get_option(&str, &par)) {
93 		prof_shift = par;
94 		prof_on = CPU_PROFILING;
95 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
96 			prof_shift);
97 	}
98 	return 1;
99 }
100 __setup("profile=", profile_setup);
101 
102 
103 int __ref profile_init(void)
104 {
105 	int buffer_bytes;
106 	if (!prof_on)
107 		return 0;
108 
109 	/* only text is profiled */
110 	prof_len = (_etext - _stext) >> prof_shift;
111 	buffer_bytes = prof_len*sizeof(atomic_t);
112 
113 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
114 		return -ENOMEM;
115 
116 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
117 
118 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
119 	if (prof_buffer)
120 		return 0;
121 
122 	prof_buffer = alloc_pages_exact(buffer_bytes,
123 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
124 	if (prof_buffer)
125 		return 0;
126 
127 	prof_buffer = vzalloc(buffer_bytes);
128 	if (prof_buffer)
129 		return 0;
130 
131 	free_cpumask_var(prof_cpu_mask);
132 	return -ENOMEM;
133 }
134 
135 /* Profile event notifications */
136 
137 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
138 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
139 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
140 
141 void profile_task_exit(struct task_struct *task)
142 {
143 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
144 }
145 
146 int profile_handoff_task(struct task_struct *task)
147 {
148 	int ret;
149 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
150 	return (ret == NOTIFY_OK) ? 1 : 0;
151 }
152 
153 void profile_munmap(unsigned long addr)
154 {
155 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
156 }
157 
158 int task_handoff_register(struct notifier_block *n)
159 {
160 	return atomic_notifier_chain_register(&task_free_notifier, n);
161 }
162 EXPORT_SYMBOL_GPL(task_handoff_register);
163 
164 int task_handoff_unregister(struct notifier_block *n)
165 {
166 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
167 }
168 EXPORT_SYMBOL_GPL(task_handoff_unregister);
169 
170 int profile_event_register(enum profile_type type, struct notifier_block *n)
171 {
172 	int err = -EINVAL;
173 
174 	switch (type) {
175 	case PROFILE_TASK_EXIT:
176 		err = blocking_notifier_chain_register(
177 				&task_exit_notifier, n);
178 		break;
179 	case PROFILE_MUNMAP:
180 		err = blocking_notifier_chain_register(
181 				&munmap_notifier, n);
182 		break;
183 	}
184 
185 	return err;
186 }
187 EXPORT_SYMBOL_GPL(profile_event_register);
188 
189 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
190 {
191 	int err = -EINVAL;
192 
193 	switch (type) {
194 	case PROFILE_TASK_EXIT:
195 		err = blocking_notifier_chain_unregister(
196 				&task_exit_notifier, n);
197 		break;
198 	case PROFILE_MUNMAP:
199 		err = blocking_notifier_chain_unregister(
200 				&munmap_notifier, n);
201 		break;
202 	}
203 
204 	return err;
205 }
206 EXPORT_SYMBOL_GPL(profile_event_unregister);
207 
208 #ifdef CONFIG_SMP
209 /*
210  * Each cpu has a pair of open-addressed hashtables for pending
211  * profile hits. read_profile() IPI's all cpus to request them
212  * to flip buffers and flushes their contents to prof_buffer itself.
213  * Flip requests are serialized by the profile_flip_mutex. The sole
214  * use of having a second hashtable is for avoiding cacheline
215  * contention that would otherwise happen during flushes of pending
216  * profile hits required for the accuracy of reported profile hits
217  * and so resurrect the interrupt livelock issue.
218  *
219  * The open-addressed hashtables are indexed by profile buffer slot
220  * and hold the number of pending hits to that profile buffer slot on
221  * a cpu in an entry. When the hashtable overflows, all pending hits
222  * are accounted to their corresponding profile buffer slots with
223  * atomic_add() and the hashtable emptied. As numerous pending hits
224  * may be accounted to a profile buffer slot in a hashtable entry,
225  * this amortizes a number of atomic profile buffer increments likely
226  * to be far larger than the number of entries in the hashtable,
227  * particularly given that the number of distinct profile buffer
228  * positions to which hits are accounted during short intervals (e.g.
229  * several seconds) is usually very small. Exclusion from buffer
230  * flipping is provided by interrupt disablement (note that for
231  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
232  * process context).
233  * The hash function is meant to be lightweight as opposed to strong,
234  * and was vaguely inspired by ppc64 firmware-supported inverted
235  * pagetable hash functions, but uses a full hashtable full of finite
236  * collision chains, not just pairs of them.
237  *
238  * -- nyc
239  */
240 static void __profile_flip_buffers(void *unused)
241 {
242 	int cpu = smp_processor_id();
243 
244 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
245 }
246 
247 static void profile_flip_buffers(void)
248 {
249 	int i, j, cpu;
250 
251 	mutex_lock(&profile_flip_mutex);
252 	j = per_cpu(cpu_profile_flip, get_cpu());
253 	put_cpu();
254 	on_each_cpu(__profile_flip_buffers, NULL, 1);
255 	for_each_online_cpu(cpu) {
256 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
257 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
258 			if (!hits[i].hits) {
259 				if (hits[i].pc)
260 					hits[i].pc = 0;
261 				continue;
262 			}
263 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
264 			hits[i].hits = hits[i].pc = 0;
265 		}
266 	}
267 	mutex_unlock(&profile_flip_mutex);
268 }
269 
270 static void profile_discard_flip_buffers(void)
271 {
272 	int i, cpu;
273 
274 	mutex_lock(&profile_flip_mutex);
275 	i = per_cpu(cpu_profile_flip, get_cpu());
276 	put_cpu();
277 	on_each_cpu(__profile_flip_buffers, NULL, 1);
278 	for_each_online_cpu(cpu) {
279 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
280 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
281 	}
282 	mutex_unlock(&profile_flip_mutex);
283 }
284 
285 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
286 {
287 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
288 	int i, j, cpu;
289 	struct profile_hit *hits;
290 
291 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
292 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
293 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294 	cpu = get_cpu();
295 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
296 	if (!hits) {
297 		put_cpu();
298 		return;
299 	}
300 	/*
301 	 * We buffer the global profiler buffer into a per-CPU
302 	 * queue and thus reduce the number of global (and possibly
303 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
304 	 */
305 	local_irq_save(flags);
306 	do {
307 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
308 			if (hits[i + j].pc == pc) {
309 				hits[i + j].hits += nr_hits;
310 				goto out;
311 			} else if (!hits[i + j].hits) {
312 				hits[i + j].pc = pc;
313 				hits[i + j].hits = nr_hits;
314 				goto out;
315 			}
316 		}
317 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
318 	} while (i != primary);
319 
320 	/*
321 	 * Add the current hit(s) and flush the write-queue out
322 	 * to the global buffer:
323 	 */
324 	atomic_add(nr_hits, &prof_buffer[pc]);
325 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
326 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
327 		hits[i].pc = hits[i].hits = 0;
328 	}
329 out:
330 	local_irq_restore(flags);
331 	put_cpu();
332 }
333 
334 static int profile_cpu_callback(struct notifier_block *info,
335 					unsigned long action, void *__cpu)
336 {
337 	int node, cpu = (unsigned long)__cpu;
338 	struct page *page;
339 
340 	switch (action) {
341 	case CPU_UP_PREPARE:
342 	case CPU_UP_PREPARE_FROZEN:
343 		node = cpu_to_mem(cpu);
344 		per_cpu(cpu_profile_flip, cpu) = 0;
345 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
346 			page = alloc_pages_exact_node(node,
347 					GFP_KERNEL | __GFP_ZERO,
348 					0);
349 			if (!page)
350 				return notifier_from_errno(-ENOMEM);
351 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
352 		}
353 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
354 			page = alloc_pages_exact_node(node,
355 					GFP_KERNEL | __GFP_ZERO,
356 					0);
357 			if (!page)
358 				goto out_free;
359 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
360 		}
361 		break;
362 out_free:
363 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
364 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
365 		__free_page(page);
366 		return notifier_from_errno(-ENOMEM);
367 	case CPU_ONLINE:
368 	case CPU_ONLINE_FROZEN:
369 		if (prof_cpu_mask != NULL)
370 			cpumask_set_cpu(cpu, prof_cpu_mask);
371 		break;
372 	case CPU_UP_CANCELED:
373 	case CPU_UP_CANCELED_FROZEN:
374 	case CPU_DEAD:
375 	case CPU_DEAD_FROZEN:
376 		if (prof_cpu_mask != NULL)
377 			cpumask_clear_cpu(cpu, prof_cpu_mask);
378 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
379 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
380 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
381 			__free_page(page);
382 		}
383 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
384 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
385 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
386 			__free_page(page);
387 		}
388 		break;
389 	}
390 	return NOTIFY_OK;
391 }
392 #else /* !CONFIG_SMP */
393 #define profile_flip_buffers()		do { } while (0)
394 #define profile_discard_flip_buffers()	do { } while (0)
395 #define profile_cpu_callback		NULL
396 
397 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
398 {
399 	unsigned long pc;
400 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
401 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
402 }
403 #endif /* !CONFIG_SMP */
404 
405 void profile_hits(int type, void *__pc, unsigned int nr_hits)
406 {
407 	if (prof_on != type || !prof_buffer)
408 		return;
409 	do_profile_hits(type, __pc, nr_hits);
410 }
411 EXPORT_SYMBOL_GPL(profile_hits);
412 
413 void profile_tick(int type)
414 {
415 	struct pt_regs *regs = get_irq_regs();
416 
417 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
418 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
419 		profile_hit(type, (void *)profile_pc(regs));
420 }
421 
422 #ifdef CONFIG_PROC_FS
423 #include <linux/proc_fs.h>
424 #include <linux/seq_file.h>
425 #include <asm/uaccess.h>
426 
427 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
428 {
429 	seq_cpumask(m, prof_cpu_mask);
430 	seq_putc(m, '\n');
431 	return 0;
432 }
433 
434 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
435 {
436 	return single_open(file, prof_cpu_mask_proc_show, NULL);
437 }
438 
439 static ssize_t prof_cpu_mask_proc_write(struct file *file,
440 	const char __user *buffer, size_t count, loff_t *pos)
441 {
442 	cpumask_var_t new_value;
443 	int err;
444 
445 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
446 		return -ENOMEM;
447 
448 	err = cpumask_parse_user(buffer, count, new_value);
449 	if (!err) {
450 		cpumask_copy(prof_cpu_mask, new_value);
451 		err = count;
452 	}
453 	free_cpumask_var(new_value);
454 	return err;
455 }
456 
457 static const struct file_operations prof_cpu_mask_proc_fops = {
458 	.open		= prof_cpu_mask_proc_open,
459 	.read		= seq_read,
460 	.llseek		= seq_lseek,
461 	.release	= single_release,
462 	.write		= prof_cpu_mask_proc_write,
463 };
464 
465 void create_prof_cpu_mask(void)
466 {
467 	/* create /proc/irq/prof_cpu_mask */
468 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
469 }
470 
471 /*
472  * This function accesses profiling information. The returned data is
473  * binary: the sampling step and the actual contents of the profile
474  * buffer. Use of the program readprofile is recommended in order to
475  * get meaningful info out of these data.
476  */
477 static ssize_t
478 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
479 {
480 	unsigned long p = *ppos;
481 	ssize_t read;
482 	char *pnt;
483 	unsigned int sample_step = 1 << prof_shift;
484 
485 	profile_flip_buffers();
486 	if (p >= (prof_len+1)*sizeof(unsigned int))
487 		return 0;
488 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
489 		count = (prof_len+1)*sizeof(unsigned int) - p;
490 	read = 0;
491 
492 	while (p < sizeof(unsigned int) && count > 0) {
493 		if (put_user(*((char *)(&sample_step)+p), buf))
494 			return -EFAULT;
495 		buf++; p++; count--; read++;
496 	}
497 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
498 	if (copy_to_user(buf, (void *)pnt, count))
499 		return -EFAULT;
500 	read += count;
501 	*ppos += read;
502 	return read;
503 }
504 
505 /*
506  * Writing to /proc/profile resets the counters
507  *
508  * Writing a 'profiling multiplier' value into it also re-sets the profiling
509  * interrupt frequency, on architectures that support this.
510  */
511 static ssize_t write_profile(struct file *file, const char __user *buf,
512 			     size_t count, loff_t *ppos)
513 {
514 #ifdef CONFIG_SMP
515 	extern int setup_profiling_timer(unsigned int multiplier);
516 
517 	if (count == sizeof(int)) {
518 		unsigned int multiplier;
519 
520 		if (copy_from_user(&multiplier, buf, sizeof(int)))
521 			return -EFAULT;
522 
523 		if (setup_profiling_timer(multiplier))
524 			return -EINVAL;
525 	}
526 #endif
527 	profile_discard_flip_buffers();
528 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
529 	return count;
530 }
531 
532 static const struct file_operations proc_profile_operations = {
533 	.read		= read_profile,
534 	.write		= write_profile,
535 	.llseek		= default_llseek,
536 };
537 
538 #ifdef CONFIG_SMP
539 static void profile_nop(void *unused)
540 {
541 }
542 
543 static int create_hash_tables(void)
544 {
545 	int cpu;
546 
547 	for_each_online_cpu(cpu) {
548 		int node = cpu_to_mem(cpu);
549 		struct page *page;
550 
551 		page = alloc_pages_exact_node(node,
552 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
553 				0);
554 		if (!page)
555 			goto out_cleanup;
556 		per_cpu(cpu_profile_hits, cpu)[1]
557 				= (struct profile_hit *)page_address(page);
558 		page = alloc_pages_exact_node(node,
559 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
560 				0);
561 		if (!page)
562 			goto out_cleanup;
563 		per_cpu(cpu_profile_hits, cpu)[0]
564 				= (struct profile_hit *)page_address(page);
565 	}
566 	return 0;
567 out_cleanup:
568 	prof_on = 0;
569 	smp_mb();
570 	on_each_cpu(profile_nop, NULL, 1);
571 	for_each_online_cpu(cpu) {
572 		struct page *page;
573 
574 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
575 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
576 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
577 			__free_page(page);
578 		}
579 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
580 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
581 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
582 			__free_page(page);
583 		}
584 	}
585 	return -1;
586 }
587 #else
588 #define create_hash_tables()			({ 0; })
589 #endif
590 
591 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
592 {
593 	struct proc_dir_entry *entry;
594 	int err = 0;
595 
596 	if (!prof_on)
597 		return 0;
598 
599 	cpu_notifier_register_begin();
600 
601 	if (create_hash_tables()) {
602 		err = -ENOMEM;
603 		goto out;
604 	}
605 
606 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
607 			    NULL, &proc_profile_operations);
608 	if (!entry)
609 		goto out;
610 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
611 	__hotcpu_notifier(profile_cpu_callback, 0);
612 
613 out:
614 	cpu_notifier_register_done();
615 	return err;
616 }
617 subsys_initcall(create_proc_profile);
618 #endif /* CONFIG_PROC_FS */
619