xref: /openbmc/linux/kernel/profile.c (revision a1e58bbd)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <asm/sections.h>
26 #include <asm/semaphore.h>
27 #include <asm/irq_regs.h>
28 #include <asm/ptrace.h>
29 
30 struct profile_hit {
31 	u32 pc, hits;
32 };
33 #define PROFILE_GRPSHIFT	3
34 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
35 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
36 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
37 
38 /* Oprofile timer tick hook */
39 static int (*timer_hook)(struct pt_regs *) __read_mostly;
40 
41 static atomic_t *prof_buffer;
42 static unsigned long prof_len, prof_shift;
43 
44 int prof_on __read_mostly;
45 EXPORT_SYMBOL_GPL(prof_on);
46 
47 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
48 #ifdef CONFIG_SMP
49 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
50 static DEFINE_PER_CPU(int, cpu_profile_flip);
51 static DEFINE_MUTEX(profile_flip_mutex);
52 #endif /* CONFIG_SMP */
53 
54 static int __init profile_setup(char *str)
55 {
56 	static char __initdata schedstr[] = "schedule";
57 	static char __initdata sleepstr[] = "sleep";
58 	static char __initdata kvmstr[] = "kvm";
59 	int par;
60 
61 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
62 #ifdef CONFIG_SCHEDSTATS
63 		prof_on = SLEEP_PROFILING;
64 		if (str[strlen(sleepstr)] == ',')
65 			str += strlen(sleepstr) + 1;
66 		if (get_option(&str, &par))
67 			prof_shift = par;
68 		printk(KERN_INFO
69 			"kernel sleep profiling enabled (shift: %ld)\n",
70 			prof_shift);
71 #else
72 		printk(KERN_WARNING
73 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
74 #endif /* CONFIG_SCHEDSTATS */
75 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
76 		prof_on = SCHED_PROFILING;
77 		if (str[strlen(schedstr)] == ',')
78 			str += strlen(schedstr) + 1;
79 		if (get_option(&str, &par))
80 			prof_shift = par;
81 		printk(KERN_INFO
82 			"kernel schedule profiling enabled (shift: %ld)\n",
83 			prof_shift);
84 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
85 		prof_on = KVM_PROFILING;
86 		if (str[strlen(kvmstr)] == ',')
87 			str += strlen(kvmstr) + 1;
88 		if (get_option(&str, &par))
89 			prof_shift = par;
90 		printk(KERN_INFO
91 			"kernel KVM profiling enabled (shift: %ld)\n",
92 			prof_shift);
93 	} else if (get_option(&str, &par)) {
94 		prof_shift = par;
95 		prof_on = CPU_PROFILING;
96 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
97 			prof_shift);
98 	}
99 	return 1;
100 }
101 __setup("profile=", profile_setup);
102 
103 
104 void __init profile_init(void)
105 {
106 	if (!prof_on)
107 		return;
108 
109 	/* only text is profiled */
110 	prof_len = (_etext - _stext) >> prof_shift;
111 	prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
112 }
113 
114 /* Profile event notifications */
115 
116 #ifdef CONFIG_PROFILING
117 
118 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
119 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
120 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
121 
122 void profile_task_exit(struct task_struct *task)
123 {
124 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
125 }
126 
127 int profile_handoff_task(struct task_struct *task)
128 {
129 	int ret;
130 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
131 	return (ret == NOTIFY_OK) ? 1 : 0;
132 }
133 
134 void profile_munmap(unsigned long addr)
135 {
136 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
137 }
138 
139 int task_handoff_register(struct notifier_block *n)
140 {
141 	return atomic_notifier_chain_register(&task_free_notifier, n);
142 }
143 EXPORT_SYMBOL_GPL(task_handoff_register);
144 
145 int task_handoff_unregister(struct notifier_block *n)
146 {
147 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
148 }
149 EXPORT_SYMBOL_GPL(task_handoff_unregister);
150 
151 int profile_event_register(enum profile_type type, struct notifier_block *n)
152 {
153 	int err = -EINVAL;
154 
155 	switch (type) {
156 	case PROFILE_TASK_EXIT:
157 		err = blocking_notifier_chain_register(
158 				&task_exit_notifier, n);
159 		break;
160 	case PROFILE_MUNMAP:
161 		err = blocking_notifier_chain_register(
162 				&munmap_notifier, n);
163 		break;
164 	}
165 
166 	return err;
167 }
168 EXPORT_SYMBOL_GPL(profile_event_register);
169 
170 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
171 {
172 	int err = -EINVAL;
173 
174 	switch (type) {
175 	case PROFILE_TASK_EXIT:
176 		err = blocking_notifier_chain_unregister(
177 				&task_exit_notifier, n);
178 		break;
179 	case PROFILE_MUNMAP:
180 		err = blocking_notifier_chain_unregister(
181 				&munmap_notifier, n);
182 		break;
183 	}
184 
185 	return err;
186 }
187 EXPORT_SYMBOL_GPL(profile_event_unregister);
188 
189 int register_timer_hook(int (*hook)(struct pt_regs *))
190 {
191 	if (timer_hook)
192 		return -EBUSY;
193 	timer_hook = hook;
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(register_timer_hook);
197 
198 void unregister_timer_hook(int (*hook)(struct pt_regs *))
199 {
200 	WARN_ON(hook != timer_hook);
201 	timer_hook = NULL;
202 	/* make sure all CPUs see the NULL hook */
203 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
204 }
205 EXPORT_SYMBOL_GPL(unregister_timer_hook);
206 
207 #endif /* CONFIG_PROFILING */
208 
209 
210 #ifdef CONFIG_SMP
211 /*
212  * Each cpu has a pair of open-addressed hashtables for pending
213  * profile hits. read_profile() IPI's all cpus to request them
214  * to flip buffers and flushes their contents to prof_buffer itself.
215  * Flip requests are serialized by the profile_flip_mutex. The sole
216  * use of having a second hashtable is for avoiding cacheline
217  * contention that would otherwise happen during flushes of pending
218  * profile hits required for the accuracy of reported profile hits
219  * and so resurrect the interrupt livelock issue.
220  *
221  * The open-addressed hashtables are indexed by profile buffer slot
222  * and hold the number of pending hits to that profile buffer slot on
223  * a cpu in an entry. When the hashtable overflows, all pending hits
224  * are accounted to their corresponding profile buffer slots with
225  * atomic_add() and the hashtable emptied. As numerous pending hits
226  * may be accounted to a profile buffer slot in a hashtable entry,
227  * this amortizes a number of atomic profile buffer increments likely
228  * to be far larger than the number of entries in the hashtable,
229  * particularly given that the number of distinct profile buffer
230  * positions to which hits are accounted during short intervals (e.g.
231  * several seconds) is usually very small. Exclusion from buffer
232  * flipping is provided by interrupt disablement (note that for
233  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
234  * process context).
235  * The hash function is meant to be lightweight as opposed to strong,
236  * and was vaguely inspired by ppc64 firmware-supported inverted
237  * pagetable hash functions, but uses a full hashtable full of finite
238  * collision chains, not just pairs of them.
239  *
240  * -- wli
241  */
242 static void __profile_flip_buffers(void *unused)
243 {
244 	int cpu = smp_processor_id();
245 
246 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
247 }
248 
249 static void profile_flip_buffers(void)
250 {
251 	int i, j, cpu;
252 
253 	mutex_lock(&profile_flip_mutex);
254 	j = per_cpu(cpu_profile_flip, get_cpu());
255 	put_cpu();
256 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
257 	for_each_online_cpu(cpu) {
258 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
259 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
260 			if (!hits[i].hits) {
261 				if (hits[i].pc)
262 					hits[i].pc = 0;
263 				continue;
264 			}
265 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
266 			hits[i].hits = hits[i].pc = 0;
267 		}
268 	}
269 	mutex_unlock(&profile_flip_mutex);
270 }
271 
272 static void profile_discard_flip_buffers(void)
273 {
274 	int i, cpu;
275 
276 	mutex_lock(&profile_flip_mutex);
277 	i = per_cpu(cpu_profile_flip, get_cpu());
278 	put_cpu();
279 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
280 	for_each_online_cpu(cpu) {
281 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
282 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
283 	}
284 	mutex_unlock(&profile_flip_mutex);
285 }
286 
287 void profile_hits(int type, void *__pc, unsigned int nr_hits)
288 {
289 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
290 	int i, j, cpu;
291 	struct profile_hit *hits;
292 
293 	if (prof_on != type || !prof_buffer)
294 		return;
295 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
296 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
297 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
298 	cpu = get_cpu();
299 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
300 	if (!hits) {
301 		put_cpu();
302 		return;
303 	}
304 	/*
305 	 * We buffer the global profiler buffer into a per-CPU
306 	 * queue and thus reduce the number of global (and possibly
307 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
308 	 */
309 	local_irq_save(flags);
310 	do {
311 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
312 			if (hits[i + j].pc == pc) {
313 				hits[i + j].hits += nr_hits;
314 				goto out;
315 			} else if (!hits[i + j].hits) {
316 				hits[i + j].pc = pc;
317 				hits[i + j].hits = nr_hits;
318 				goto out;
319 			}
320 		}
321 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
322 	} while (i != primary);
323 
324 	/*
325 	 * Add the current hit(s) and flush the write-queue out
326 	 * to the global buffer:
327 	 */
328 	atomic_add(nr_hits, &prof_buffer[pc]);
329 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
330 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
331 		hits[i].pc = hits[i].hits = 0;
332 	}
333 out:
334 	local_irq_restore(flags);
335 	put_cpu();
336 }
337 
338 static int __devinit profile_cpu_callback(struct notifier_block *info,
339 					unsigned long action, void *__cpu)
340 {
341 	int node, cpu = (unsigned long)__cpu;
342 	struct page *page;
343 
344 	switch (action) {
345 	case CPU_UP_PREPARE:
346 	case CPU_UP_PREPARE_FROZEN:
347 		node = cpu_to_node(cpu);
348 		per_cpu(cpu_profile_flip, cpu) = 0;
349 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
350 			page = alloc_pages_node(node,
351 					GFP_KERNEL | __GFP_ZERO,
352 					0);
353 			if (!page)
354 				return NOTIFY_BAD;
355 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
356 		}
357 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
358 			page = alloc_pages_node(node,
359 					GFP_KERNEL | __GFP_ZERO,
360 					0);
361 			if (!page)
362 				goto out_free;
363 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
364 		}
365 		break;
366 out_free:
367 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
368 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
369 		__free_page(page);
370 		return NOTIFY_BAD;
371 	case CPU_ONLINE:
372 	case CPU_ONLINE_FROZEN:
373 		cpu_set(cpu, prof_cpu_mask);
374 		break;
375 	case CPU_UP_CANCELED:
376 	case CPU_UP_CANCELED_FROZEN:
377 	case CPU_DEAD:
378 	case CPU_DEAD_FROZEN:
379 		cpu_clear(cpu, prof_cpu_mask);
380 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
381 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
382 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
383 			__free_page(page);
384 		}
385 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
386 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
387 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
388 			__free_page(page);
389 		}
390 		break;
391 	}
392 	return NOTIFY_OK;
393 }
394 #else /* !CONFIG_SMP */
395 #define profile_flip_buffers()		do { } while (0)
396 #define profile_discard_flip_buffers()	do { } while (0)
397 #define profile_cpu_callback		NULL
398 
399 void profile_hits(int type, void *__pc, unsigned int nr_hits)
400 {
401 	unsigned long pc;
402 
403 	if (prof_on != type || !prof_buffer)
404 		return;
405 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
406 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
407 }
408 #endif /* !CONFIG_SMP */
409 EXPORT_SYMBOL_GPL(profile_hits);
410 
411 void profile_tick(int type)
412 {
413 	struct pt_regs *regs = get_irq_regs();
414 
415 	if (type == CPU_PROFILING && timer_hook)
416 		timer_hook(regs);
417 	if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
418 		profile_hit(type, (void *)profile_pc(regs));
419 }
420 
421 #ifdef CONFIG_PROC_FS
422 #include <linux/proc_fs.h>
423 #include <asm/uaccess.h>
424 #include <asm/ptrace.h>
425 
426 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
427 			int count, int *eof, void *data)
428 {
429 	int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
430 	if (count - len < 2)
431 		return -EINVAL;
432 	len += sprintf(page + len, "\n");
433 	return len;
434 }
435 
436 static int prof_cpu_mask_write_proc(struct file *file,
437 	const char __user *buffer,  unsigned long count, void *data)
438 {
439 	cpumask_t *mask = (cpumask_t *)data;
440 	unsigned long full_count = count, err;
441 	cpumask_t new_value;
442 
443 	err = cpumask_parse_user(buffer, count, new_value);
444 	if (err)
445 		return err;
446 
447 	*mask = new_value;
448 	return full_count;
449 }
450 
451 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
452 {
453 	struct proc_dir_entry *entry;
454 
455 	/* create /proc/irq/prof_cpu_mask */
456 	entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
457 	if (!entry)
458 		return;
459 	entry->data = (void *)&prof_cpu_mask;
460 	entry->read_proc = prof_cpu_mask_read_proc;
461 	entry->write_proc = prof_cpu_mask_write_proc;
462 }
463 
464 /*
465  * This function accesses profiling information. The returned data is
466  * binary: the sampling step and the actual contents of the profile
467  * buffer. Use of the program readprofile is recommended in order to
468  * get meaningful info out of these data.
469  */
470 static ssize_t
471 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
472 {
473 	unsigned long p = *ppos;
474 	ssize_t read;
475 	char *pnt;
476 	unsigned int sample_step = 1 << prof_shift;
477 
478 	profile_flip_buffers();
479 	if (p >= (prof_len+1)*sizeof(unsigned int))
480 		return 0;
481 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
482 		count = (prof_len+1)*sizeof(unsigned int) - p;
483 	read = 0;
484 
485 	while (p < sizeof(unsigned int) && count > 0) {
486 		if (put_user(*((char *)(&sample_step)+p), buf))
487 			return -EFAULT;
488 		buf++; p++; count--; read++;
489 	}
490 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
491 	if (copy_to_user(buf, (void *)pnt, count))
492 		return -EFAULT;
493 	read += count;
494 	*ppos += read;
495 	return read;
496 }
497 
498 /*
499  * Writing to /proc/profile resets the counters
500  *
501  * Writing a 'profiling multiplier' value into it also re-sets the profiling
502  * interrupt frequency, on architectures that support this.
503  */
504 static ssize_t write_profile(struct file *file, const char __user *buf,
505 			     size_t count, loff_t *ppos)
506 {
507 #ifdef CONFIG_SMP
508 	extern int setup_profiling_timer(unsigned int multiplier);
509 
510 	if (count == sizeof(int)) {
511 		unsigned int multiplier;
512 
513 		if (copy_from_user(&multiplier, buf, sizeof(int)))
514 			return -EFAULT;
515 
516 		if (setup_profiling_timer(multiplier))
517 			return -EINVAL;
518 	}
519 #endif
520 	profile_discard_flip_buffers();
521 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
522 	return count;
523 }
524 
525 static const struct file_operations proc_profile_operations = {
526 	.read		= read_profile,
527 	.write		= write_profile,
528 };
529 
530 #ifdef CONFIG_SMP
531 static void __init profile_nop(void *unused)
532 {
533 }
534 
535 static int __init create_hash_tables(void)
536 {
537 	int cpu;
538 
539 	for_each_online_cpu(cpu) {
540 		int node = cpu_to_node(cpu);
541 		struct page *page;
542 
543 		page = alloc_pages_node(node,
544 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
545 				0);
546 		if (!page)
547 			goto out_cleanup;
548 		per_cpu(cpu_profile_hits, cpu)[1]
549 				= (struct profile_hit *)page_address(page);
550 		page = alloc_pages_node(node,
551 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
552 				0);
553 		if (!page)
554 			goto out_cleanup;
555 		per_cpu(cpu_profile_hits, cpu)[0]
556 				= (struct profile_hit *)page_address(page);
557 	}
558 	return 0;
559 out_cleanup:
560 	prof_on = 0;
561 	smp_mb();
562 	on_each_cpu(profile_nop, NULL, 0, 1);
563 	for_each_online_cpu(cpu) {
564 		struct page *page;
565 
566 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
567 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
568 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
569 			__free_page(page);
570 		}
571 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
572 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
573 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
574 			__free_page(page);
575 		}
576 	}
577 	return -1;
578 }
579 #else
580 #define create_hash_tables()			({ 0; })
581 #endif
582 
583 static int __init create_proc_profile(void)
584 {
585 	struct proc_dir_entry *entry;
586 
587 	if (!prof_on)
588 		return 0;
589 	if (create_hash_tables())
590 		return -1;
591 	entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL);
592 	if (!entry)
593 		return 0;
594 	entry->proc_fops = &proc_profile_operations;
595 	entry->size = (1+prof_len) * sizeof(atomic_t);
596 	hotcpu_notifier(profile_cpu_callback, 0);
597 	return 0;
598 }
599 module_init(create_proc_profile);
600 #endif /* CONFIG_PROC_FS */
601