1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * William Irwin, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 14 */ 15 16 #include <linux/module.h> 17 #include <linux/profile.h> 18 #include <linux/bootmem.h> 19 #include <linux/notifier.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/highmem.h> 24 #include <linux/mutex.h> 25 #include <asm/sections.h> 26 #include <asm/semaphore.h> 27 #include <asm/irq_regs.h> 28 #include <asm/ptrace.h> 29 30 struct profile_hit { 31 u32 pc, hits; 32 }; 33 #define PROFILE_GRPSHIFT 3 34 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 35 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 36 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 37 38 /* Oprofile timer tick hook */ 39 static int (*timer_hook)(struct pt_regs *) __read_mostly; 40 41 static atomic_t *prof_buffer; 42 static unsigned long prof_len, prof_shift; 43 44 int prof_on __read_mostly; 45 EXPORT_SYMBOL_GPL(prof_on); 46 47 static cpumask_t prof_cpu_mask = CPU_MASK_ALL; 48 #ifdef CONFIG_SMP 49 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 50 static DEFINE_PER_CPU(int, cpu_profile_flip); 51 static DEFINE_MUTEX(profile_flip_mutex); 52 #endif /* CONFIG_SMP */ 53 54 static int __init profile_setup(char *str) 55 { 56 static char __initdata schedstr[] = "schedule"; 57 static char __initdata sleepstr[] = "sleep"; 58 static char __initdata kvmstr[] = "kvm"; 59 int par; 60 61 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 62 #ifdef CONFIG_SCHEDSTATS 63 prof_on = SLEEP_PROFILING; 64 if (str[strlen(sleepstr)] == ',') 65 str += strlen(sleepstr) + 1; 66 if (get_option(&str, &par)) 67 prof_shift = par; 68 printk(KERN_INFO 69 "kernel sleep profiling enabled (shift: %ld)\n", 70 prof_shift); 71 #else 72 printk(KERN_WARNING 73 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 74 #endif /* CONFIG_SCHEDSTATS */ 75 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 76 prof_on = SCHED_PROFILING; 77 if (str[strlen(schedstr)] == ',') 78 str += strlen(schedstr) + 1; 79 if (get_option(&str, &par)) 80 prof_shift = par; 81 printk(KERN_INFO 82 "kernel schedule profiling enabled (shift: %ld)\n", 83 prof_shift); 84 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 85 prof_on = KVM_PROFILING; 86 if (str[strlen(kvmstr)] == ',') 87 str += strlen(kvmstr) + 1; 88 if (get_option(&str, &par)) 89 prof_shift = par; 90 printk(KERN_INFO 91 "kernel KVM profiling enabled (shift: %ld)\n", 92 prof_shift); 93 } else if (get_option(&str, &par)) { 94 prof_shift = par; 95 prof_on = CPU_PROFILING; 96 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", 97 prof_shift); 98 } 99 return 1; 100 } 101 __setup("profile=", profile_setup); 102 103 104 void __init profile_init(void) 105 { 106 if (!prof_on) 107 return; 108 109 /* only text is profiled */ 110 prof_len = (_etext - _stext) >> prof_shift; 111 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); 112 } 113 114 /* Profile event notifications */ 115 116 #ifdef CONFIG_PROFILING 117 118 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 119 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 120 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 121 122 void profile_task_exit(struct task_struct *task) 123 { 124 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 125 } 126 127 int profile_handoff_task(struct task_struct *task) 128 { 129 int ret; 130 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 131 return (ret == NOTIFY_OK) ? 1 : 0; 132 } 133 134 void profile_munmap(unsigned long addr) 135 { 136 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 137 } 138 139 int task_handoff_register(struct notifier_block *n) 140 { 141 return atomic_notifier_chain_register(&task_free_notifier, n); 142 } 143 EXPORT_SYMBOL_GPL(task_handoff_register); 144 145 int task_handoff_unregister(struct notifier_block *n) 146 { 147 return atomic_notifier_chain_unregister(&task_free_notifier, n); 148 } 149 EXPORT_SYMBOL_GPL(task_handoff_unregister); 150 151 int profile_event_register(enum profile_type type, struct notifier_block *n) 152 { 153 int err = -EINVAL; 154 155 switch (type) { 156 case PROFILE_TASK_EXIT: 157 err = blocking_notifier_chain_register( 158 &task_exit_notifier, n); 159 break; 160 case PROFILE_MUNMAP: 161 err = blocking_notifier_chain_register( 162 &munmap_notifier, n); 163 break; 164 } 165 166 return err; 167 } 168 EXPORT_SYMBOL_GPL(profile_event_register); 169 170 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 171 { 172 int err = -EINVAL; 173 174 switch (type) { 175 case PROFILE_TASK_EXIT: 176 err = blocking_notifier_chain_unregister( 177 &task_exit_notifier, n); 178 break; 179 case PROFILE_MUNMAP: 180 err = blocking_notifier_chain_unregister( 181 &munmap_notifier, n); 182 break; 183 } 184 185 return err; 186 } 187 EXPORT_SYMBOL_GPL(profile_event_unregister); 188 189 int register_timer_hook(int (*hook)(struct pt_regs *)) 190 { 191 if (timer_hook) 192 return -EBUSY; 193 timer_hook = hook; 194 return 0; 195 } 196 EXPORT_SYMBOL_GPL(register_timer_hook); 197 198 void unregister_timer_hook(int (*hook)(struct pt_regs *)) 199 { 200 WARN_ON(hook != timer_hook); 201 timer_hook = NULL; 202 /* make sure all CPUs see the NULL hook */ 203 synchronize_sched(); /* Allow ongoing interrupts to complete. */ 204 } 205 EXPORT_SYMBOL_GPL(unregister_timer_hook); 206 207 #endif /* CONFIG_PROFILING */ 208 209 210 #ifdef CONFIG_SMP 211 /* 212 * Each cpu has a pair of open-addressed hashtables for pending 213 * profile hits. read_profile() IPI's all cpus to request them 214 * to flip buffers and flushes their contents to prof_buffer itself. 215 * Flip requests are serialized by the profile_flip_mutex. The sole 216 * use of having a second hashtable is for avoiding cacheline 217 * contention that would otherwise happen during flushes of pending 218 * profile hits required for the accuracy of reported profile hits 219 * and so resurrect the interrupt livelock issue. 220 * 221 * The open-addressed hashtables are indexed by profile buffer slot 222 * and hold the number of pending hits to that profile buffer slot on 223 * a cpu in an entry. When the hashtable overflows, all pending hits 224 * are accounted to their corresponding profile buffer slots with 225 * atomic_add() and the hashtable emptied. As numerous pending hits 226 * may be accounted to a profile buffer slot in a hashtable entry, 227 * this amortizes a number of atomic profile buffer increments likely 228 * to be far larger than the number of entries in the hashtable, 229 * particularly given that the number of distinct profile buffer 230 * positions to which hits are accounted during short intervals (e.g. 231 * several seconds) is usually very small. Exclusion from buffer 232 * flipping is provided by interrupt disablement (note that for 233 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 234 * process context). 235 * The hash function is meant to be lightweight as opposed to strong, 236 * and was vaguely inspired by ppc64 firmware-supported inverted 237 * pagetable hash functions, but uses a full hashtable full of finite 238 * collision chains, not just pairs of them. 239 * 240 * -- wli 241 */ 242 static void __profile_flip_buffers(void *unused) 243 { 244 int cpu = smp_processor_id(); 245 246 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 247 } 248 249 static void profile_flip_buffers(void) 250 { 251 int i, j, cpu; 252 253 mutex_lock(&profile_flip_mutex); 254 j = per_cpu(cpu_profile_flip, get_cpu()); 255 put_cpu(); 256 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 257 for_each_online_cpu(cpu) { 258 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 259 for (i = 0; i < NR_PROFILE_HIT; ++i) { 260 if (!hits[i].hits) { 261 if (hits[i].pc) 262 hits[i].pc = 0; 263 continue; 264 } 265 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 266 hits[i].hits = hits[i].pc = 0; 267 } 268 } 269 mutex_unlock(&profile_flip_mutex); 270 } 271 272 static void profile_discard_flip_buffers(void) 273 { 274 int i, cpu; 275 276 mutex_lock(&profile_flip_mutex); 277 i = per_cpu(cpu_profile_flip, get_cpu()); 278 put_cpu(); 279 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 280 for_each_online_cpu(cpu) { 281 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 282 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 283 } 284 mutex_unlock(&profile_flip_mutex); 285 } 286 287 void profile_hits(int type, void *__pc, unsigned int nr_hits) 288 { 289 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 290 int i, j, cpu; 291 struct profile_hit *hits; 292 293 if (prof_on != type || !prof_buffer) 294 return; 295 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 296 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 297 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 298 cpu = get_cpu(); 299 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 300 if (!hits) { 301 put_cpu(); 302 return; 303 } 304 /* 305 * We buffer the global profiler buffer into a per-CPU 306 * queue and thus reduce the number of global (and possibly 307 * NUMA-alien) accesses. The write-queue is self-coalescing: 308 */ 309 local_irq_save(flags); 310 do { 311 for (j = 0; j < PROFILE_GRPSZ; ++j) { 312 if (hits[i + j].pc == pc) { 313 hits[i + j].hits += nr_hits; 314 goto out; 315 } else if (!hits[i + j].hits) { 316 hits[i + j].pc = pc; 317 hits[i + j].hits = nr_hits; 318 goto out; 319 } 320 } 321 i = (i + secondary) & (NR_PROFILE_HIT - 1); 322 } while (i != primary); 323 324 /* 325 * Add the current hit(s) and flush the write-queue out 326 * to the global buffer: 327 */ 328 atomic_add(nr_hits, &prof_buffer[pc]); 329 for (i = 0; i < NR_PROFILE_HIT; ++i) { 330 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 331 hits[i].pc = hits[i].hits = 0; 332 } 333 out: 334 local_irq_restore(flags); 335 put_cpu(); 336 } 337 338 static int __devinit profile_cpu_callback(struct notifier_block *info, 339 unsigned long action, void *__cpu) 340 { 341 int node, cpu = (unsigned long)__cpu; 342 struct page *page; 343 344 switch (action) { 345 case CPU_UP_PREPARE: 346 case CPU_UP_PREPARE_FROZEN: 347 node = cpu_to_node(cpu); 348 per_cpu(cpu_profile_flip, cpu) = 0; 349 if (!per_cpu(cpu_profile_hits, cpu)[1]) { 350 page = alloc_pages_node(node, 351 GFP_KERNEL | __GFP_ZERO, 352 0); 353 if (!page) 354 return NOTIFY_BAD; 355 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); 356 } 357 if (!per_cpu(cpu_profile_hits, cpu)[0]) { 358 page = alloc_pages_node(node, 359 GFP_KERNEL | __GFP_ZERO, 360 0); 361 if (!page) 362 goto out_free; 363 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); 364 } 365 break; 366 out_free: 367 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 368 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 369 __free_page(page); 370 return NOTIFY_BAD; 371 case CPU_ONLINE: 372 case CPU_ONLINE_FROZEN: 373 cpu_set(cpu, prof_cpu_mask); 374 break; 375 case CPU_UP_CANCELED: 376 case CPU_UP_CANCELED_FROZEN: 377 case CPU_DEAD: 378 case CPU_DEAD_FROZEN: 379 cpu_clear(cpu, prof_cpu_mask); 380 if (per_cpu(cpu_profile_hits, cpu)[0]) { 381 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 382 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 383 __free_page(page); 384 } 385 if (per_cpu(cpu_profile_hits, cpu)[1]) { 386 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 387 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 388 __free_page(page); 389 } 390 break; 391 } 392 return NOTIFY_OK; 393 } 394 #else /* !CONFIG_SMP */ 395 #define profile_flip_buffers() do { } while (0) 396 #define profile_discard_flip_buffers() do { } while (0) 397 #define profile_cpu_callback NULL 398 399 void profile_hits(int type, void *__pc, unsigned int nr_hits) 400 { 401 unsigned long pc; 402 403 if (prof_on != type || !prof_buffer) 404 return; 405 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 406 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 407 } 408 #endif /* !CONFIG_SMP */ 409 EXPORT_SYMBOL_GPL(profile_hits); 410 411 void profile_tick(int type) 412 { 413 struct pt_regs *regs = get_irq_regs(); 414 415 if (type == CPU_PROFILING && timer_hook) 416 timer_hook(regs); 417 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) 418 profile_hit(type, (void *)profile_pc(regs)); 419 } 420 421 #ifdef CONFIG_PROC_FS 422 #include <linux/proc_fs.h> 423 #include <asm/uaccess.h> 424 #include <asm/ptrace.h> 425 426 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, 427 int count, int *eof, void *data) 428 { 429 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); 430 if (count - len < 2) 431 return -EINVAL; 432 len += sprintf(page + len, "\n"); 433 return len; 434 } 435 436 static int prof_cpu_mask_write_proc(struct file *file, 437 const char __user *buffer, unsigned long count, void *data) 438 { 439 cpumask_t *mask = (cpumask_t *)data; 440 unsigned long full_count = count, err; 441 cpumask_t new_value; 442 443 err = cpumask_parse_user(buffer, count, new_value); 444 if (err) 445 return err; 446 447 *mask = new_value; 448 return full_count; 449 } 450 451 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 452 { 453 struct proc_dir_entry *entry; 454 455 /* create /proc/irq/prof_cpu_mask */ 456 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); 457 if (!entry) 458 return; 459 entry->data = (void *)&prof_cpu_mask; 460 entry->read_proc = prof_cpu_mask_read_proc; 461 entry->write_proc = prof_cpu_mask_write_proc; 462 } 463 464 /* 465 * This function accesses profiling information. The returned data is 466 * binary: the sampling step and the actual contents of the profile 467 * buffer. Use of the program readprofile is recommended in order to 468 * get meaningful info out of these data. 469 */ 470 static ssize_t 471 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 472 { 473 unsigned long p = *ppos; 474 ssize_t read; 475 char *pnt; 476 unsigned int sample_step = 1 << prof_shift; 477 478 profile_flip_buffers(); 479 if (p >= (prof_len+1)*sizeof(unsigned int)) 480 return 0; 481 if (count > (prof_len+1)*sizeof(unsigned int) - p) 482 count = (prof_len+1)*sizeof(unsigned int) - p; 483 read = 0; 484 485 while (p < sizeof(unsigned int) && count > 0) { 486 if (put_user(*((char *)(&sample_step)+p), buf)) 487 return -EFAULT; 488 buf++; p++; count--; read++; 489 } 490 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 491 if (copy_to_user(buf, (void *)pnt, count)) 492 return -EFAULT; 493 read += count; 494 *ppos += read; 495 return read; 496 } 497 498 /* 499 * Writing to /proc/profile resets the counters 500 * 501 * Writing a 'profiling multiplier' value into it also re-sets the profiling 502 * interrupt frequency, on architectures that support this. 503 */ 504 static ssize_t write_profile(struct file *file, const char __user *buf, 505 size_t count, loff_t *ppos) 506 { 507 #ifdef CONFIG_SMP 508 extern int setup_profiling_timer(unsigned int multiplier); 509 510 if (count == sizeof(int)) { 511 unsigned int multiplier; 512 513 if (copy_from_user(&multiplier, buf, sizeof(int))) 514 return -EFAULT; 515 516 if (setup_profiling_timer(multiplier)) 517 return -EINVAL; 518 } 519 #endif 520 profile_discard_flip_buffers(); 521 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 522 return count; 523 } 524 525 static const struct file_operations proc_profile_operations = { 526 .read = read_profile, 527 .write = write_profile, 528 }; 529 530 #ifdef CONFIG_SMP 531 static void __init profile_nop(void *unused) 532 { 533 } 534 535 static int __init create_hash_tables(void) 536 { 537 int cpu; 538 539 for_each_online_cpu(cpu) { 540 int node = cpu_to_node(cpu); 541 struct page *page; 542 543 page = alloc_pages_node(node, 544 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 545 0); 546 if (!page) 547 goto out_cleanup; 548 per_cpu(cpu_profile_hits, cpu)[1] 549 = (struct profile_hit *)page_address(page); 550 page = alloc_pages_node(node, 551 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 552 0); 553 if (!page) 554 goto out_cleanup; 555 per_cpu(cpu_profile_hits, cpu)[0] 556 = (struct profile_hit *)page_address(page); 557 } 558 return 0; 559 out_cleanup: 560 prof_on = 0; 561 smp_mb(); 562 on_each_cpu(profile_nop, NULL, 0, 1); 563 for_each_online_cpu(cpu) { 564 struct page *page; 565 566 if (per_cpu(cpu_profile_hits, cpu)[0]) { 567 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 568 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 569 __free_page(page); 570 } 571 if (per_cpu(cpu_profile_hits, cpu)[1]) { 572 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 573 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 574 __free_page(page); 575 } 576 } 577 return -1; 578 } 579 #else 580 #define create_hash_tables() ({ 0; }) 581 #endif 582 583 static int __init create_proc_profile(void) 584 { 585 struct proc_dir_entry *entry; 586 587 if (!prof_on) 588 return 0; 589 if (create_hash_tables()) 590 return -1; 591 entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL); 592 if (!entry) 593 return 0; 594 entry->proc_fops = &proc_profile_operations; 595 entry->size = (1+prof_len) * sizeof(atomic_t); 596 hotcpu_notifier(profile_cpu_callback, 0); 597 return 0; 598 } 599 module_init(create_proc_profile); 600 #endif /* CONFIG_PROC_FS */ 601