1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * William Irwin, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 14 */ 15 16 #include <linux/export.h> 17 #include <linux/profile.h> 18 #include <linux/bootmem.h> 19 #include <linux/notifier.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/highmem.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/vmalloc.h> 27 #include <asm/sections.h> 28 #include <asm/irq_regs.h> 29 #include <asm/ptrace.h> 30 31 struct profile_hit { 32 u32 pc, hits; 33 }; 34 #define PROFILE_GRPSHIFT 3 35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 38 39 /* Oprofile timer tick hook */ 40 static int (*timer_hook)(struct pt_regs *) __read_mostly; 41 42 static atomic_t *prof_buffer; 43 static unsigned long prof_len, prof_shift; 44 45 int prof_on __read_mostly; 46 EXPORT_SYMBOL_GPL(prof_on); 47 48 static cpumask_var_t prof_cpu_mask; 49 #ifdef CONFIG_SMP 50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 51 static DEFINE_PER_CPU(int, cpu_profile_flip); 52 static DEFINE_MUTEX(profile_flip_mutex); 53 #endif /* CONFIG_SMP */ 54 55 int profile_setup(char *str) 56 { 57 static char schedstr[] = "schedule"; 58 static char sleepstr[] = "sleep"; 59 static char kvmstr[] = "kvm"; 60 int par; 61 62 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 63 #ifdef CONFIG_SCHEDSTATS 64 prof_on = SLEEP_PROFILING; 65 if (str[strlen(sleepstr)] == ',') 66 str += strlen(sleepstr) + 1; 67 if (get_option(&str, &par)) 68 prof_shift = par; 69 printk(KERN_INFO 70 "kernel sleep profiling enabled (shift: %ld)\n", 71 prof_shift); 72 #else 73 printk(KERN_WARNING 74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 75 #endif /* CONFIG_SCHEDSTATS */ 76 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 77 prof_on = SCHED_PROFILING; 78 if (str[strlen(schedstr)] == ',') 79 str += strlen(schedstr) + 1; 80 if (get_option(&str, &par)) 81 prof_shift = par; 82 printk(KERN_INFO 83 "kernel schedule profiling enabled (shift: %ld)\n", 84 prof_shift); 85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 86 prof_on = KVM_PROFILING; 87 if (str[strlen(kvmstr)] == ',') 88 str += strlen(kvmstr) + 1; 89 if (get_option(&str, &par)) 90 prof_shift = par; 91 printk(KERN_INFO 92 "kernel KVM profiling enabled (shift: %ld)\n", 93 prof_shift); 94 } else if (get_option(&str, &par)) { 95 prof_shift = par; 96 prof_on = CPU_PROFILING; 97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", 98 prof_shift); 99 } 100 return 1; 101 } 102 __setup("profile=", profile_setup); 103 104 105 int __ref profile_init(void) 106 { 107 int buffer_bytes; 108 if (!prof_on) 109 return 0; 110 111 /* only text is profiled */ 112 prof_len = (_etext - _stext) >> prof_shift; 113 buffer_bytes = prof_len*sizeof(atomic_t); 114 115 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 116 return -ENOMEM; 117 118 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 119 120 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); 121 if (prof_buffer) 122 return 0; 123 124 prof_buffer = alloc_pages_exact(buffer_bytes, 125 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); 126 if (prof_buffer) 127 return 0; 128 129 prof_buffer = vzalloc(buffer_bytes); 130 if (prof_buffer) 131 return 0; 132 133 free_cpumask_var(prof_cpu_mask); 134 return -ENOMEM; 135 } 136 137 /* Profile event notifications */ 138 139 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 140 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 141 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 142 143 void profile_task_exit(struct task_struct *task) 144 { 145 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 146 } 147 148 int profile_handoff_task(struct task_struct *task) 149 { 150 int ret; 151 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 152 return (ret == NOTIFY_OK) ? 1 : 0; 153 } 154 155 void profile_munmap(unsigned long addr) 156 { 157 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 158 } 159 160 int task_handoff_register(struct notifier_block *n) 161 { 162 return atomic_notifier_chain_register(&task_free_notifier, n); 163 } 164 EXPORT_SYMBOL_GPL(task_handoff_register); 165 166 int task_handoff_unregister(struct notifier_block *n) 167 { 168 return atomic_notifier_chain_unregister(&task_free_notifier, n); 169 } 170 EXPORT_SYMBOL_GPL(task_handoff_unregister); 171 172 int profile_event_register(enum profile_type type, struct notifier_block *n) 173 { 174 int err = -EINVAL; 175 176 switch (type) { 177 case PROFILE_TASK_EXIT: 178 err = blocking_notifier_chain_register( 179 &task_exit_notifier, n); 180 break; 181 case PROFILE_MUNMAP: 182 err = blocking_notifier_chain_register( 183 &munmap_notifier, n); 184 break; 185 } 186 187 return err; 188 } 189 EXPORT_SYMBOL_GPL(profile_event_register); 190 191 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 192 { 193 int err = -EINVAL; 194 195 switch (type) { 196 case PROFILE_TASK_EXIT: 197 err = blocking_notifier_chain_unregister( 198 &task_exit_notifier, n); 199 break; 200 case PROFILE_MUNMAP: 201 err = blocking_notifier_chain_unregister( 202 &munmap_notifier, n); 203 break; 204 } 205 206 return err; 207 } 208 EXPORT_SYMBOL_GPL(profile_event_unregister); 209 210 int register_timer_hook(int (*hook)(struct pt_regs *)) 211 { 212 if (timer_hook) 213 return -EBUSY; 214 timer_hook = hook; 215 return 0; 216 } 217 EXPORT_SYMBOL_GPL(register_timer_hook); 218 219 void unregister_timer_hook(int (*hook)(struct pt_regs *)) 220 { 221 WARN_ON(hook != timer_hook); 222 timer_hook = NULL; 223 /* make sure all CPUs see the NULL hook */ 224 synchronize_sched(); /* Allow ongoing interrupts to complete. */ 225 } 226 EXPORT_SYMBOL_GPL(unregister_timer_hook); 227 228 229 #ifdef CONFIG_SMP 230 /* 231 * Each cpu has a pair of open-addressed hashtables for pending 232 * profile hits. read_profile() IPI's all cpus to request them 233 * to flip buffers and flushes their contents to prof_buffer itself. 234 * Flip requests are serialized by the profile_flip_mutex. The sole 235 * use of having a second hashtable is for avoiding cacheline 236 * contention that would otherwise happen during flushes of pending 237 * profile hits required for the accuracy of reported profile hits 238 * and so resurrect the interrupt livelock issue. 239 * 240 * The open-addressed hashtables are indexed by profile buffer slot 241 * and hold the number of pending hits to that profile buffer slot on 242 * a cpu in an entry. When the hashtable overflows, all pending hits 243 * are accounted to their corresponding profile buffer slots with 244 * atomic_add() and the hashtable emptied. As numerous pending hits 245 * may be accounted to a profile buffer slot in a hashtable entry, 246 * this amortizes a number of atomic profile buffer increments likely 247 * to be far larger than the number of entries in the hashtable, 248 * particularly given that the number of distinct profile buffer 249 * positions to which hits are accounted during short intervals (e.g. 250 * several seconds) is usually very small. Exclusion from buffer 251 * flipping is provided by interrupt disablement (note that for 252 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 253 * process context). 254 * The hash function is meant to be lightweight as opposed to strong, 255 * and was vaguely inspired by ppc64 firmware-supported inverted 256 * pagetable hash functions, but uses a full hashtable full of finite 257 * collision chains, not just pairs of them. 258 * 259 * -- wli 260 */ 261 static void __profile_flip_buffers(void *unused) 262 { 263 int cpu = smp_processor_id(); 264 265 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 266 } 267 268 static void profile_flip_buffers(void) 269 { 270 int i, j, cpu; 271 272 mutex_lock(&profile_flip_mutex); 273 j = per_cpu(cpu_profile_flip, get_cpu()); 274 put_cpu(); 275 on_each_cpu(__profile_flip_buffers, NULL, 1); 276 for_each_online_cpu(cpu) { 277 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 278 for (i = 0; i < NR_PROFILE_HIT; ++i) { 279 if (!hits[i].hits) { 280 if (hits[i].pc) 281 hits[i].pc = 0; 282 continue; 283 } 284 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 285 hits[i].hits = hits[i].pc = 0; 286 } 287 } 288 mutex_unlock(&profile_flip_mutex); 289 } 290 291 static void profile_discard_flip_buffers(void) 292 { 293 int i, cpu; 294 295 mutex_lock(&profile_flip_mutex); 296 i = per_cpu(cpu_profile_flip, get_cpu()); 297 put_cpu(); 298 on_each_cpu(__profile_flip_buffers, NULL, 1); 299 for_each_online_cpu(cpu) { 300 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 301 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 302 } 303 mutex_unlock(&profile_flip_mutex); 304 } 305 306 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 307 { 308 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 309 int i, j, cpu; 310 struct profile_hit *hits; 311 312 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 313 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 314 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 315 cpu = get_cpu(); 316 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 317 if (!hits) { 318 put_cpu(); 319 return; 320 } 321 /* 322 * We buffer the global profiler buffer into a per-CPU 323 * queue and thus reduce the number of global (and possibly 324 * NUMA-alien) accesses. The write-queue is self-coalescing: 325 */ 326 local_irq_save(flags); 327 do { 328 for (j = 0; j < PROFILE_GRPSZ; ++j) { 329 if (hits[i + j].pc == pc) { 330 hits[i + j].hits += nr_hits; 331 goto out; 332 } else if (!hits[i + j].hits) { 333 hits[i + j].pc = pc; 334 hits[i + j].hits = nr_hits; 335 goto out; 336 } 337 } 338 i = (i + secondary) & (NR_PROFILE_HIT - 1); 339 } while (i != primary); 340 341 /* 342 * Add the current hit(s) and flush the write-queue out 343 * to the global buffer: 344 */ 345 atomic_add(nr_hits, &prof_buffer[pc]); 346 for (i = 0; i < NR_PROFILE_HIT; ++i) { 347 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 348 hits[i].pc = hits[i].hits = 0; 349 } 350 out: 351 local_irq_restore(flags); 352 put_cpu(); 353 } 354 355 static int __cpuinit profile_cpu_callback(struct notifier_block *info, 356 unsigned long action, void *__cpu) 357 { 358 int node, cpu = (unsigned long)__cpu; 359 struct page *page; 360 361 switch (action) { 362 case CPU_UP_PREPARE: 363 case CPU_UP_PREPARE_FROZEN: 364 node = cpu_to_mem(cpu); 365 per_cpu(cpu_profile_flip, cpu) = 0; 366 if (!per_cpu(cpu_profile_hits, cpu)[1]) { 367 page = alloc_pages_exact_node(node, 368 GFP_KERNEL | __GFP_ZERO, 369 0); 370 if (!page) 371 return notifier_from_errno(-ENOMEM); 372 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); 373 } 374 if (!per_cpu(cpu_profile_hits, cpu)[0]) { 375 page = alloc_pages_exact_node(node, 376 GFP_KERNEL | __GFP_ZERO, 377 0); 378 if (!page) 379 goto out_free; 380 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); 381 } 382 break; 383 out_free: 384 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 385 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 386 __free_page(page); 387 return notifier_from_errno(-ENOMEM); 388 case CPU_ONLINE: 389 case CPU_ONLINE_FROZEN: 390 if (prof_cpu_mask != NULL) 391 cpumask_set_cpu(cpu, prof_cpu_mask); 392 break; 393 case CPU_UP_CANCELED: 394 case CPU_UP_CANCELED_FROZEN: 395 case CPU_DEAD: 396 case CPU_DEAD_FROZEN: 397 if (prof_cpu_mask != NULL) 398 cpumask_clear_cpu(cpu, prof_cpu_mask); 399 if (per_cpu(cpu_profile_hits, cpu)[0]) { 400 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 401 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 402 __free_page(page); 403 } 404 if (per_cpu(cpu_profile_hits, cpu)[1]) { 405 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 406 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 407 __free_page(page); 408 } 409 break; 410 } 411 return NOTIFY_OK; 412 } 413 #else /* !CONFIG_SMP */ 414 #define profile_flip_buffers() do { } while (0) 415 #define profile_discard_flip_buffers() do { } while (0) 416 #define profile_cpu_callback NULL 417 418 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 419 { 420 unsigned long pc; 421 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 422 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 423 } 424 #endif /* !CONFIG_SMP */ 425 426 void profile_hits(int type, void *__pc, unsigned int nr_hits) 427 { 428 if (prof_on != type || !prof_buffer) 429 return; 430 do_profile_hits(type, __pc, nr_hits); 431 } 432 EXPORT_SYMBOL_GPL(profile_hits); 433 434 void profile_tick(int type) 435 { 436 struct pt_regs *regs = get_irq_regs(); 437 438 if (type == CPU_PROFILING && timer_hook) 439 timer_hook(regs); 440 if (!user_mode(regs) && prof_cpu_mask != NULL && 441 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 442 profile_hit(type, (void *)profile_pc(regs)); 443 } 444 445 #ifdef CONFIG_PROC_FS 446 #include <linux/proc_fs.h> 447 #include <linux/seq_file.h> 448 #include <asm/uaccess.h> 449 450 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) 451 { 452 seq_cpumask(m, prof_cpu_mask); 453 seq_putc(m, '\n'); 454 return 0; 455 } 456 457 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) 458 { 459 return single_open(file, prof_cpu_mask_proc_show, NULL); 460 } 461 462 static ssize_t prof_cpu_mask_proc_write(struct file *file, 463 const char __user *buffer, size_t count, loff_t *pos) 464 { 465 cpumask_var_t new_value; 466 int err; 467 468 if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) 469 return -ENOMEM; 470 471 err = cpumask_parse_user(buffer, count, new_value); 472 if (!err) { 473 cpumask_copy(prof_cpu_mask, new_value); 474 err = count; 475 } 476 free_cpumask_var(new_value); 477 return err; 478 } 479 480 static const struct file_operations prof_cpu_mask_proc_fops = { 481 .open = prof_cpu_mask_proc_open, 482 .read = seq_read, 483 .llseek = seq_lseek, 484 .release = single_release, 485 .write = prof_cpu_mask_proc_write, 486 }; 487 488 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 489 { 490 /* create /proc/irq/prof_cpu_mask */ 491 proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); 492 } 493 494 /* 495 * This function accesses profiling information. The returned data is 496 * binary: the sampling step and the actual contents of the profile 497 * buffer. Use of the program readprofile is recommended in order to 498 * get meaningful info out of these data. 499 */ 500 static ssize_t 501 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 502 { 503 unsigned long p = *ppos; 504 ssize_t read; 505 char *pnt; 506 unsigned int sample_step = 1 << prof_shift; 507 508 profile_flip_buffers(); 509 if (p >= (prof_len+1)*sizeof(unsigned int)) 510 return 0; 511 if (count > (prof_len+1)*sizeof(unsigned int) - p) 512 count = (prof_len+1)*sizeof(unsigned int) - p; 513 read = 0; 514 515 while (p < sizeof(unsigned int) && count > 0) { 516 if (put_user(*((char *)(&sample_step)+p), buf)) 517 return -EFAULT; 518 buf++; p++; count--; read++; 519 } 520 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 521 if (copy_to_user(buf, (void *)pnt, count)) 522 return -EFAULT; 523 read += count; 524 *ppos += read; 525 return read; 526 } 527 528 /* 529 * Writing to /proc/profile resets the counters 530 * 531 * Writing a 'profiling multiplier' value into it also re-sets the profiling 532 * interrupt frequency, on architectures that support this. 533 */ 534 static ssize_t write_profile(struct file *file, const char __user *buf, 535 size_t count, loff_t *ppos) 536 { 537 #ifdef CONFIG_SMP 538 extern int setup_profiling_timer(unsigned int multiplier); 539 540 if (count == sizeof(int)) { 541 unsigned int multiplier; 542 543 if (copy_from_user(&multiplier, buf, sizeof(int))) 544 return -EFAULT; 545 546 if (setup_profiling_timer(multiplier)) 547 return -EINVAL; 548 } 549 #endif 550 profile_discard_flip_buffers(); 551 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 552 return count; 553 } 554 555 static const struct file_operations proc_profile_operations = { 556 .read = read_profile, 557 .write = write_profile, 558 .llseek = default_llseek, 559 }; 560 561 #ifdef CONFIG_SMP 562 static void profile_nop(void *unused) 563 { 564 } 565 566 static int create_hash_tables(void) 567 { 568 int cpu; 569 570 for_each_online_cpu(cpu) { 571 int node = cpu_to_mem(cpu); 572 struct page *page; 573 574 page = alloc_pages_exact_node(node, 575 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 576 0); 577 if (!page) 578 goto out_cleanup; 579 per_cpu(cpu_profile_hits, cpu)[1] 580 = (struct profile_hit *)page_address(page); 581 page = alloc_pages_exact_node(node, 582 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 583 0); 584 if (!page) 585 goto out_cleanup; 586 per_cpu(cpu_profile_hits, cpu)[0] 587 = (struct profile_hit *)page_address(page); 588 } 589 return 0; 590 out_cleanup: 591 prof_on = 0; 592 smp_mb(); 593 on_each_cpu(profile_nop, NULL, 1); 594 for_each_online_cpu(cpu) { 595 struct page *page; 596 597 if (per_cpu(cpu_profile_hits, cpu)[0]) { 598 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 599 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 600 __free_page(page); 601 } 602 if (per_cpu(cpu_profile_hits, cpu)[1]) { 603 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 604 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 605 __free_page(page); 606 } 607 } 608 return -1; 609 } 610 #else 611 #define create_hash_tables() ({ 0; }) 612 #endif 613 614 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */ 615 { 616 struct proc_dir_entry *entry; 617 618 if (!prof_on) 619 return 0; 620 if (create_hash_tables()) 621 return -ENOMEM; 622 entry = proc_create("profile", S_IWUSR | S_IRUGO, 623 NULL, &proc_profile_operations); 624 if (!entry) 625 return 0; 626 entry->size = (1+prof_len) * sizeof(atomic_t); 627 hotcpu_notifier(profile_cpu_callback, 0); 628 return 0; 629 } 630 module_init(create_proc_profile); 631 #endif /* CONFIG_PROC_FS */ 632