xref: /openbmc/linux/kernel/profile.c (revision 95e9fd10)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/export.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30 
31 struct profile_hit {
32 	u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT	3
35 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
38 
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47 
48 static cpumask_var_t prof_cpu_mask;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 int profile_setup(char *str)
56 {
57 	static char schedstr[] = "schedule";
58 	static char sleepstr[] = "sleep";
59 	static char kvmstr[] = "kvm";
60 	int par;
61 
62 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 		prof_on = SLEEP_PROFILING;
65 		if (str[strlen(sleepstr)] == ',')
66 			str += strlen(sleepstr) + 1;
67 		if (get_option(&str, &par))
68 			prof_shift = par;
69 		printk(KERN_INFO
70 			"kernel sleep profiling enabled (shift: %ld)\n",
71 			prof_shift);
72 #else
73 		printk(KERN_WARNING
74 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 		prof_on = SCHED_PROFILING;
78 		if (str[strlen(schedstr)] == ',')
79 			str += strlen(schedstr) + 1;
80 		if (get_option(&str, &par))
81 			prof_shift = par;
82 		printk(KERN_INFO
83 			"kernel schedule profiling enabled (shift: %ld)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = par;
91 		printk(KERN_INFO
92 			"kernel KVM profiling enabled (shift: %ld)\n",
93 			prof_shift);
94 	} else if (get_option(&str, &par)) {
95 		prof_shift = par;
96 		prof_on = CPU_PROFILING;
97 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 			prof_shift);
99 	}
100 	return 1;
101 }
102 __setup("profile=", profile_setup);
103 
104 
105 int __ref profile_init(void)
106 {
107 	int buffer_bytes;
108 	if (!prof_on)
109 		return 0;
110 
111 	/* only text is profiled */
112 	prof_len = (_etext - _stext) >> prof_shift;
113 	buffer_bytes = prof_len*sizeof(atomic_t);
114 
115 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
116 		return -ENOMEM;
117 
118 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
119 
120 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
121 	if (prof_buffer)
122 		return 0;
123 
124 	prof_buffer = alloc_pages_exact(buffer_bytes,
125 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
126 	if (prof_buffer)
127 		return 0;
128 
129 	prof_buffer = vzalloc(buffer_bytes);
130 	if (prof_buffer)
131 		return 0;
132 
133 	free_cpumask_var(prof_cpu_mask);
134 	return -ENOMEM;
135 }
136 
137 /* Profile event notifications */
138 
139 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
140 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
141 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
142 
143 void profile_task_exit(struct task_struct *task)
144 {
145 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
146 }
147 
148 int profile_handoff_task(struct task_struct *task)
149 {
150 	int ret;
151 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
152 	return (ret == NOTIFY_OK) ? 1 : 0;
153 }
154 
155 void profile_munmap(unsigned long addr)
156 {
157 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
158 }
159 
160 int task_handoff_register(struct notifier_block *n)
161 {
162 	return atomic_notifier_chain_register(&task_free_notifier, n);
163 }
164 EXPORT_SYMBOL_GPL(task_handoff_register);
165 
166 int task_handoff_unregister(struct notifier_block *n)
167 {
168 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
169 }
170 EXPORT_SYMBOL_GPL(task_handoff_unregister);
171 
172 int profile_event_register(enum profile_type type, struct notifier_block *n)
173 {
174 	int err = -EINVAL;
175 
176 	switch (type) {
177 	case PROFILE_TASK_EXIT:
178 		err = blocking_notifier_chain_register(
179 				&task_exit_notifier, n);
180 		break;
181 	case PROFILE_MUNMAP:
182 		err = blocking_notifier_chain_register(
183 				&munmap_notifier, n);
184 		break;
185 	}
186 
187 	return err;
188 }
189 EXPORT_SYMBOL_GPL(profile_event_register);
190 
191 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
192 {
193 	int err = -EINVAL;
194 
195 	switch (type) {
196 	case PROFILE_TASK_EXIT:
197 		err = blocking_notifier_chain_unregister(
198 				&task_exit_notifier, n);
199 		break;
200 	case PROFILE_MUNMAP:
201 		err = blocking_notifier_chain_unregister(
202 				&munmap_notifier, n);
203 		break;
204 	}
205 
206 	return err;
207 }
208 EXPORT_SYMBOL_GPL(profile_event_unregister);
209 
210 int register_timer_hook(int (*hook)(struct pt_regs *))
211 {
212 	if (timer_hook)
213 		return -EBUSY;
214 	timer_hook = hook;
215 	return 0;
216 }
217 EXPORT_SYMBOL_GPL(register_timer_hook);
218 
219 void unregister_timer_hook(int (*hook)(struct pt_regs *))
220 {
221 	WARN_ON(hook != timer_hook);
222 	timer_hook = NULL;
223 	/* make sure all CPUs see the NULL hook */
224 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
225 }
226 EXPORT_SYMBOL_GPL(unregister_timer_hook);
227 
228 
229 #ifdef CONFIG_SMP
230 /*
231  * Each cpu has a pair of open-addressed hashtables for pending
232  * profile hits. read_profile() IPI's all cpus to request them
233  * to flip buffers and flushes their contents to prof_buffer itself.
234  * Flip requests are serialized by the profile_flip_mutex. The sole
235  * use of having a second hashtable is for avoiding cacheline
236  * contention that would otherwise happen during flushes of pending
237  * profile hits required for the accuracy of reported profile hits
238  * and so resurrect the interrupt livelock issue.
239  *
240  * The open-addressed hashtables are indexed by profile buffer slot
241  * and hold the number of pending hits to that profile buffer slot on
242  * a cpu in an entry. When the hashtable overflows, all pending hits
243  * are accounted to their corresponding profile buffer slots with
244  * atomic_add() and the hashtable emptied. As numerous pending hits
245  * may be accounted to a profile buffer slot in a hashtable entry,
246  * this amortizes a number of atomic profile buffer increments likely
247  * to be far larger than the number of entries in the hashtable,
248  * particularly given that the number of distinct profile buffer
249  * positions to which hits are accounted during short intervals (e.g.
250  * several seconds) is usually very small. Exclusion from buffer
251  * flipping is provided by interrupt disablement (note that for
252  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
253  * process context).
254  * The hash function is meant to be lightweight as opposed to strong,
255  * and was vaguely inspired by ppc64 firmware-supported inverted
256  * pagetable hash functions, but uses a full hashtable full of finite
257  * collision chains, not just pairs of them.
258  *
259  * -- wli
260  */
261 static void __profile_flip_buffers(void *unused)
262 {
263 	int cpu = smp_processor_id();
264 
265 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
266 }
267 
268 static void profile_flip_buffers(void)
269 {
270 	int i, j, cpu;
271 
272 	mutex_lock(&profile_flip_mutex);
273 	j = per_cpu(cpu_profile_flip, get_cpu());
274 	put_cpu();
275 	on_each_cpu(__profile_flip_buffers, NULL, 1);
276 	for_each_online_cpu(cpu) {
277 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
278 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
279 			if (!hits[i].hits) {
280 				if (hits[i].pc)
281 					hits[i].pc = 0;
282 				continue;
283 			}
284 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
285 			hits[i].hits = hits[i].pc = 0;
286 		}
287 	}
288 	mutex_unlock(&profile_flip_mutex);
289 }
290 
291 static void profile_discard_flip_buffers(void)
292 {
293 	int i, cpu;
294 
295 	mutex_lock(&profile_flip_mutex);
296 	i = per_cpu(cpu_profile_flip, get_cpu());
297 	put_cpu();
298 	on_each_cpu(__profile_flip_buffers, NULL, 1);
299 	for_each_online_cpu(cpu) {
300 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
301 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
302 	}
303 	mutex_unlock(&profile_flip_mutex);
304 }
305 
306 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
307 {
308 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
309 	int i, j, cpu;
310 	struct profile_hit *hits;
311 
312 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
313 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
314 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
315 	cpu = get_cpu();
316 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
317 	if (!hits) {
318 		put_cpu();
319 		return;
320 	}
321 	/*
322 	 * We buffer the global profiler buffer into a per-CPU
323 	 * queue and thus reduce the number of global (and possibly
324 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
325 	 */
326 	local_irq_save(flags);
327 	do {
328 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
329 			if (hits[i + j].pc == pc) {
330 				hits[i + j].hits += nr_hits;
331 				goto out;
332 			} else if (!hits[i + j].hits) {
333 				hits[i + j].pc = pc;
334 				hits[i + j].hits = nr_hits;
335 				goto out;
336 			}
337 		}
338 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
339 	} while (i != primary);
340 
341 	/*
342 	 * Add the current hit(s) and flush the write-queue out
343 	 * to the global buffer:
344 	 */
345 	atomic_add(nr_hits, &prof_buffer[pc]);
346 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
347 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
348 		hits[i].pc = hits[i].hits = 0;
349 	}
350 out:
351 	local_irq_restore(flags);
352 	put_cpu();
353 }
354 
355 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
356 					unsigned long action, void *__cpu)
357 {
358 	int node, cpu = (unsigned long)__cpu;
359 	struct page *page;
360 
361 	switch (action) {
362 	case CPU_UP_PREPARE:
363 	case CPU_UP_PREPARE_FROZEN:
364 		node = cpu_to_mem(cpu);
365 		per_cpu(cpu_profile_flip, cpu) = 0;
366 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
367 			page = alloc_pages_exact_node(node,
368 					GFP_KERNEL | __GFP_ZERO,
369 					0);
370 			if (!page)
371 				return notifier_from_errno(-ENOMEM);
372 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
373 		}
374 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
375 			page = alloc_pages_exact_node(node,
376 					GFP_KERNEL | __GFP_ZERO,
377 					0);
378 			if (!page)
379 				goto out_free;
380 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
381 		}
382 		break;
383 out_free:
384 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
385 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
386 		__free_page(page);
387 		return notifier_from_errno(-ENOMEM);
388 	case CPU_ONLINE:
389 	case CPU_ONLINE_FROZEN:
390 		if (prof_cpu_mask != NULL)
391 			cpumask_set_cpu(cpu, prof_cpu_mask);
392 		break;
393 	case CPU_UP_CANCELED:
394 	case CPU_UP_CANCELED_FROZEN:
395 	case CPU_DEAD:
396 	case CPU_DEAD_FROZEN:
397 		if (prof_cpu_mask != NULL)
398 			cpumask_clear_cpu(cpu, prof_cpu_mask);
399 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
400 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
401 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
402 			__free_page(page);
403 		}
404 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
405 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
406 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
407 			__free_page(page);
408 		}
409 		break;
410 	}
411 	return NOTIFY_OK;
412 }
413 #else /* !CONFIG_SMP */
414 #define profile_flip_buffers()		do { } while (0)
415 #define profile_discard_flip_buffers()	do { } while (0)
416 #define profile_cpu_callback		NULL
417 
418 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
419 {
420 	unsigned long pc;
421 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
422 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
423 }
424 #endif /* !CONFIG_SMP */
425 
426 void profile_hits(int type, void *__pc, unsigned int nr_hits)
427 {
428 	if (prof_on != type || !prof_buffer)
429 		return;
430 	do_profile_hits(type, __pc, nr_hits);
431 }
432 EXPORT_SYMBOL_GPL(profile_hits);
433 
434 void profile_tick(int type)
435 {
436 	struct pt_regs *regs = get_irq_regs();
437 
438 	if (type == CPU_PROFILING && timer_hook)
439 		timer_hook(regs);
440 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
441 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
442 		profile_hit(type, (void *)profile_pc(regs));
443 }
444 
445 #ifdef CONFIG_PROC_FS
446 #include <linux/proc_fs.h>
447 #include <linux/seq_file.h>
448 #include <asm/uaccess.h>
449 
450 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
451 {
452 	seq_cpumask(m, prof_cpu_mask);
453 	seq_putc(m, '\n');
454 	return 0;
455 }
456 
457 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
458 {
459 	return single_open(file, prof_cpu_mask_proc_show, NULL);
460 }
461 
462 static ssize_t prof_cpu_mask_proc_write(struct file *file,
463 	const char __user *buffer, size_t count, loff_t *pos)
464 {
465 	cpumask_var_t new_value;
466 	int err;
467 
468 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
469 		return -ENOMEM;
470 
471 	err = cpumask_parse_user(buffer, count, new_value);
472 	if (!err) {
473 		cpumask_copy(prof_cpu_mask, new_value);
474 		err = count;
475 	}
476 	free_cpumask_var(new_value);
477 	return err;
478 }
479 
480 static const struct file_operations prof_cpu_mask_proc_fops = {
481 	.open		= prof_cpu_mask_proc_open,
482 	.read		= seq_read,
483 	.llseek		= seq_lseek,
484 	.release	= single_release,
485 	.write		= prof_cpu_mask_proc_write,
486 };
487 
488 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
489 {
490 	/* create /proc/irq/prof_cpu_mask */
491 	proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
492 }
493 
494 /*
495  * This function accesses profiling information. The returned data is
496  * binary: the sampling step and the actual contents of the profile
497  * buffer. Use of the program readprofile is recommended in order to
498  * get meaningful info out of these data.
499  */
500 static ssize_t
501 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
502 {
503 	unsigned long p = *ppos;
504 	ssize_t read;
505 	char *pnt;
506 	unsigned int sample_step = 1 << prof_shift;
507 
508 	profile_flip_buffers();
509 	if (p >= (prof_len+1)*sizeof(unsigned int))
510 		return 0;
511 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
512 		count = (prof_len+1)*sizeof(unsigned int) - p;
513 	read = 0;
514 
515 	while (p < sizeof(unsigned int) && count > 0) {
516 		if (put_user(*((char *)(&sample_step)+p), buf))
517 			return -EFAULT;
518 		buf++; p++; count--; read++;
519 	}
520 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
521 	if (copy_to_user(buf, (void *)pnt, count))
522 		return -EFAULT;
523 	read += count;
524 	*ppos += read;
525 	return read;
526 }
527 
528 /*
529  * Writing to /proc/profile resets the counters
530  *
531  * Writing a 'profiling multiplier' value into it also re-sets the profiling
532  * interrupt frequency, on architectures that support this.
533  */
534 static ssize_t write_profile(struct file *file, const char __user *buf,
535 			     size_t count, loff_t *ppos)
536 {
537 #ifdef CONFIG_SMP
538 	extern int setup_profiling_timer(unsigned int multiplier);
539 
540 	if (count == sizeof(int)) {
541 		unsigned int multiplier;
542 
543 		if (copy_from_user(&multiplier, buf, sizeof(int)))
544 			return -EFAULT;
545 
546 		if (setup_profiling_timer(multiplier))
547 			return -EINVAL;
548 	}
549 #endif
550 	profile_discard_flip_buffers();
551 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
552 	return count;
553 }
554 
555 static const struct file_operations proc_profile_operations = {
556 	.read		= read_profile,
557 	.write		= write_profile,
558 	.llseek		= default_llseek,
559 };
560 
561 #ifdef CONFIG_SMP
562 static void profile_nop(void *unused)
563 {
564 }
565 
566 static int create_hash_tables(void)
567 {
568 	int cpu;
569 
570 	for_each_online_cpu(cpu) {
571 		int node = cpu_to_mem(cpu);
572 		struct page *page;
573 
574 		page = alloc_pages_exact_node(node,
575 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
576 				0);
577 		if (!page)
578 			goto out_cleanup;
579 		per_cpu(cpu_profile_hits, cpu)[1]
580 				= (struct profile_hit *)page_address(page);
581 		page = alloc_pages_exact_node(node,
582 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
583 				0);
584 		if (!page)
585 			goto out_cleanup;
586 		per_cpu(cpu_profile_hits, cpu)[0]
587 				= (struct profile_hit *)page_address(page);
588 	}
589 	return 0;
590 out_cleanup:
591 	prof_on = 0;
592 	smp_mb();
593 	on_each_cpu(profile_nop, NULL, 1);
594 	for_each_online_cpu(cpu) {
595 		struct page *page;
596 
597 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
598 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
599 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
600 			__free_page(page);
601 		}
602 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
603 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
604 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
605 			__free_page(page);
606 		}
607 	}
608 	return -1;
609 }
610 #else
611 #define create_hash_tables()			({ 0; })
612 #endif
613 
614 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
615 {
616 	struct proc_dir_entry *entry;
617 
618 	if (!prof_on)
619 		return 0;
620 	if (create_hash_tables())
621 		return -ENOMEM;
622 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
623 			    NULL, &proc_profile_operations);
624 	if (!entry)
625 		return 0;
626 	entry->size = (1+prof_len) * sizeof(atomic_t);
627 	hotcpu_notifier(profile_cpu_callback, 0);
628 	return 0;
629 }
630 module_init(create_proc_profile);
631 #endif /* CONFIG_PROC_FS */
632