1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/profile.c 4 * Simple profiling. Manages a direct-mapped profile hit count buffer, 5 * with configurable resolution, support for restricting the cpus on 6 * which profiling is done, and switching between cpu time and 7 * schedule() calls via kernel command line parameters passed at boot. 8 * 9 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 10 * Red Hat, July 2004 11 * Consolidation of architecture support code for profiling, 12 * Nadia Yvette Chambers, Oracle, July 2004 13 * Amortized hit count accounting via per-cpu open-addressed hashtables 14 * to resolve timer interrupt livelocks, Nadia Yvette Chambers, 15 * Oracle, 2004 16 */ 17 18 #include <linux/export.h> 19 #include <linux/profile.h> 20 #include <linux/memblock.h> 21 #include <linux/notifier.h> 22 #include <linux/mm.h> 23 #include <linux/cpumask.h> 24 #include <linux/cpu.h> 25 #include <linux/highmem.h> 26 #include <linux/mutex.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sched/stat.h> 30 31 #include <asm/sections.h> 32 #include <asm/irq_regs.h> 33 #include <asm/ptrace.h> 34 35 struct profile_hit { 36 u32 pc, hits; 37 }; 38 #define PROFILE_GRPSHIFT 3 39 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 40 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 41 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 42 43 static atomic_t *prof_buffer; 44 static unsigned long prof_len; 45 static unsigned short int prof_shift; 46 47 int prof_on __read_mostly; 48 EXPORT_SYMBOL_GPL(prof_on); 49 50 static cpumask_var_t prof_cpu_mask; 51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 53 static DEFINE_PER_CPU(int, cpu_profile_flip); 54 static DEFINE_MUTEX(profile_flip_mutex); 55 #endif /* CONFIG_SMP */ 56 57 int profile_setup(char *str) 58 { 59 static const char schedstr[] = "schedule"; 60 static const char kvmstr[] = "kvm"; 61 const char *select = NULL; 62 int par; 63 64 if (!strncmp(str, schedstr, strlen(schedstr))) { 65 prof_on = SCHED_PROFILING; 66 select = schedstr; 67 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 68 prof_on = KVM_PROFILING; 69 select = kvmstr; 70 } else if (get_option(&str, &par)) { 71 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 72 prof_on = CPU_PROFILING; 73 pr_info("kernel profiling enabled (shift: %u)\n", 74 prof_shift); 75 } 76 77 if (select) { 78 if (str[strlen(select)] == ',') 79 str += strlen(select) + 1; 80 if (get_option(&str, &par)) 81 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 82 pr_info("kernel %s profiling enabled (shift: %u)\n", 83 select, prof_shift); 84 } 85 86 return 1; 87 } 88 __setup("profile=", profile_setup); 89 90 91 int __ref profile_init(void) 92 { 93 int buffer_bytes; 94 if (!prof_on) 95 return 0; 96 97 /* only text is profiled */ 98 prof_len = (_etext - _stext) >> prof_shift; 99 100 if (!prof_len) { 101 pr_warn("profiling shift: %u too large\n", prof_shift); 102 prof_on = 0; 103 return -EINVAL; 104 } 105 106 buffer_bytes = prof_len*sizeof(atomic_t); 107 108 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 109 return -ENOMEM; 110 111 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 112 113 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); 114 if (prof_buffer) 115 return 0; 116 117 prof_buffer = alloc_pages_exact(buffer_bytes, 118 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); 119 if (prof_buffer) 120 return 0; 121 122 prof_buffer = vzalloc(buffer_bytes); 123 if (prof_buffer) 124 return 0; 125 126 free_cpumask_var(prof_cpu_mask); 127 return -ENOMEM; 128 } 129 130 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 131 /* 132 * Each cpu has a pair of open-addressed hashtables for pending 133 * profile hits. read_profile() IPI's all cpus to request them 134 * to flip buffers and flushes their contents to prof_buffer itself. 135 * Flip requests are serialized by the profile_flip_mutex. The sole 136 * use of having a second hashtable is for avoiding cacheline 137 * contention that would otherwise happen during flushes of pending 138 * profile hits required for the accuracy of reported profile hits 139 * and so resurrect the interrupt livelock issue. 140 * 141 * The open-addressed hashtables are indexed by profile buffer slot 142 * and hold the number of pending hits to that profile buffer slot on 143 * a cpu in an entry. When the hashtable overflows, all pending hits 144 * are accounted to their corresponding profile buffer slots with 145 * atomic_add() and the hashtable emptied. As numerous pending hits 146 * may be accounted to a profile buffer slot in a hashtable entry, 147 * this amortizes a number of atomic profile buffer increments likely 148 * to be far larger than the number of entries in the hashtable, 149 * particularly given that the number of distinct profile buffer 150 * positions to which hits are accounted during short intervals (e.g. 151 * several seconds) is usually very small. Exclusion from buffer 152 * flipping is provided by interrupt disablement (note that for 153 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 154 * process context). 155 * The hash function is meant to be lightweight as opposed to strong, 156 * and was vaguely inspired by ppc64 firmware-supported inverted 157 * pagetable hash functions, but uses a full hashtable full of finite 158 * collision chains, not just pairs of them. 159 * 160 * -- nyc 161 */ 162 static void __profile_flip_buffers(void *unused) 163 { 164 int cpu = smp_processor_id(); 165 166 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 167 } 168 169 static void profile_flip_buffers(void) 170 { 171 int i, j, cpu; 172 173 mutex_lock(&profile_flip_mutex); 174 j = per_cpu(cpu_profile_flip, get_cpu()); 175 put_cpu(); 176 on_each_cpu(__profile_flip_buffers, NULL, 1); 177 for_each_online_cpu(cpu) { 178 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 179 for (i = 0; i < NR_PROFILE_HIT; ++i) { 180 if (!hits[i].hits) { 181 if (hits[i].pc) 182 hits[i].pc = 0; 183 continue; 184 } 185 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 186 hits[i].hits = hits[i].pc = 0; 187 } 188 } 189 mutex_unlock(&profile_flip_mutex); 190 } 191 192 static void profile_discard_flip_buffers(void) 193 { 194 int i, cpu; 195 196 mutex_lock(&profile_flip_mutex); 197 i = per_cpu(cpu_profile_flip, get_cpu()); 198 put_cpu(); 199 on_each_cpu(__profile_flip_buffers, NULL, 1); 200 for_each_online_cpu(cpu) { 201 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 202 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 203 } 204 mutex_unlock(&profile_flip_mutex); 205 } 206 207 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 208 { 209 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 210 int i, j, cpu; 211 struct profile_hit *hits; 212 213 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 214 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 215 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 216 cpu = get_cpu(); 217 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 218 if (!hits) { 219 put_cpu(); 220 return; 221 } 222 /* 223 * We buffer the global profiler buffer into a per-CPU 224 * queue and thus reduce the number of global (and possibly 225 * NUMA-alien) accesses. The write-queue is self-coalescing: 226 */ 227 local_irq_save(flags); 228 do { 229 for (j = 0; j < PROFILE_GRPSZ; ++j) { 230 if (hits[i + j].pc == pc) { 231 hits[i + j].hits += nr_hits; 232 goto out; 233 } else if (!hits[i + j].hits) { 234 hits[i + j].pc = pc; 235 hits[i + j].hits = nr_hits; 236 goto out; 237 } 238 } 239 i = (i + secondary) & (NR_PROFILE_HIT - 1); 240 } while (i != primary); 241 242 /* 243 * Add the current hit(s) and flush the write-queue out 244 * to the global buffer: 245 */ 246 atomic_add(nr_hits, &prof_buffer[pc]); 247 for (i = 0; i < NR_PROFILE_HIT; ++i) { 248 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 249 hits[i].pc = hits[i].hits = 0; 250 } 251 out: 252 local_irq_restore(flags); 253 put_cpu(); 254 } 255 256 static int profile_dead_cpu(unsigned int cpu) 257 { 258 struct page *page; 259 int i; 260 261 if (cpumask_available(prof_cpu_mask)) 262 cpumask_clear_cpu(cpu, prof_cpu_mask); 263 264 for (i = 0; i < 2; i++) { 265 if (per_cpu(cpu_profile_hits, cpu)[i]) { 266 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); 267 per_cpu(cpu_profile_hits, cpu)[i] = NULL; 268 __free_page(page); 269 } 270 } 271 return 0; 272 } 273 274 static int profile_prepare_cpu(unsigned int cpu) 275 { 276 int i, node = cpu_to_mem(cpu); 277 struct page *page; 278 279 per_cpu(cpu_profile_flip, cpu) = 0; 280 281 for (i = 0; i < 2; i++) { 282 if (per_cpu(cpu_profile_hits, cpu)[i]) 283 continue; 284 285 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 286 if (!page) { 287 profile_dead_cpu(cpu); 288 return -ENOMEM; 289 } 290 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); 291 292 } 293 return 0; 294 } 295 296 static int profile_online_cpu(unsigned int cpu) 297 { 298 if (cpumask_available(prof_cpu_mask)) 299 cpumask_set_cpu(cpu, prof_cpu_mask); 300 301 return 0; 302 } 303 304 #else /* !CONFIG_SMP */ 305 #define profile_flip_buffers() do { } while (0) 306 #define profile_discard_flip_buffers() do { } while (0) 307 308 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 309 { 310 unsigned long pc; 311 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 312 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 313 } 314 #endif /* !CONFIG_SMP */ 315 316 void profile_hits(int type, void *__pc, unsigned int nr_hits) 317 { 318 if (prof_on != type || !prof_buffer) 319 return; 320 do_profile_hits(type, __pc, nr_hits); 321 } 322 EXPORT_SYMBOL_GPL(profile_hits); 323 324 void profile_tick(int type) 325 { 326 struct pt_regs *regs = get_irq_regs(); 327 328 if (!user_mode(regs) && cpumask_available(prof_cpu_mask) && 329 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 330 profile_hit(type, (void *)profile_pc(regs)); 331 } 332 333 #ifdef CONFIG_PROC_FS 334 #include <linux/proc_fs.h> 335 #include <linux/seq_file.h> 336 #include <linux/uaccess.h> 337 338 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) 339 { 340 seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); 341 return 0; 342 } 343 344 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) 345 { 346 return single_open(file, prof_cpu_mask_proc_show, NULL); 347 } 348 349 static ssize_t prof_cpu_mask_proc_write(struct file *file, 350 const char __user *buffer, size_t count, loff_t *pos) 351 { 352 cpumask_var_t new_value; 353 int err; 354 355 if (!zalloc_cpumask_var(&new_value, GFP_KERNEL)) 356 return -ENOMEM; 357 358 err = cpumask_parse_user(buffer, count, new_value); 359 if (!err) { 360 cpumask_copy(prof_cpu_mask, new_value); 361 err = count; 362 } 363 free_cpumask_var(new_value); 364 return err; 365 } 366 367 static const struct proc_ops prof_cpu_mask_proc_ops = { 368 .proc_open = prof_cpu_mask_proc_open, 369 .proc_read = seq_read, 370 .proc_lseek = seq_lseek, 371 .proc_release = single_release, 372 .proc_write = prof_cpu_mask_proc_write, 373 }; 374 375 void create_prof_cpu_mask(void) 376 { 377 /* create /proc/irq/prof_cpu_mask */ 378 proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops); 379 } 380 381 /* 382 * This function accesses profiling information. The returned data is 383 * binary: the sampling step and the actual contents of the profile 384 * buffer. Use of the program readprofile is recommended in order to 385 * get meaningful info out of these data. 386 */ 387 static ssize_t 388 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 389 { 390 unsigned long p = *ppos; 391 ssize_t read; 392 char *pnt; 393 unsigned long sample_step = 1UL << prof_shift; 394 395 profile_flip_buffers(); 396 if (p >= (prof_len+1)*sizeof(unsigned int)) 397 return 0; 398 if (count > (prof_len+1)*sizeof(unsigned int) - p) 399 count = (prof_len+1)*sizeof(unsigned int) - p; 400 read = 0; 401 402 while (p < sizeof(unsigned int) && count > 0) { 403 if (put_user(*((char *)(&sample_step)+p), buf)) 404 return -EFAULT; 405 buf++; p++; count--; read++; 406 } 407 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 408 if (copy_to_user(buf, (void *)pnt, count)) 409 return -EFAULT; 410 read += count; 411 *ppos += read; 412 return read; 413 } 414 415 /* default is to not implement this call */ 416 int __weak setup_profiling_timer(unsigned mult) 417 { 418 return -EINVAL; 419 } 420 421 /* 422 * Writing to /proc/profile resets the counters 423 * 424 * Writing a 'profiling multiplier' value into it also re-sets the profiling 425 * interrupt frequency, on architectures that support this. 426 */ 427 static ssize_t write_profile(struct file *file, const char __user *buf, 428 size_t count, loff_t *ppos) 429 { 430 #ifdef CONFIG_SMP 431 if (count == sizeof(int)) { 432 unsigned int multiplier; 433 434 if (copy_from_user(&multiplier, buf, sizeof(int))) 435 return -EFAULT; 436 437 if (setup_profiling_timer(multiplier)) 438 return -EINVAL; 439 } 440 #endif 441 profile_discard_flip_buffers(); 442 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 443 return count; 444 } 445 446 static const struct proc_ops profile_proc_ops = { 447 .proc_read = read_profile, 448 .proc_write = write_profile, 449 .proc_lseek = default_llseek, 450 }; 451 452 int __ref create_proc_profile(void) 453 { 454 struct proc_dir_entry *entry; 455 #ifdef CONFIG_SMP 456 enum cpuhp_state online_state; 457 #endif 458 459 int err = 0; 460 461 if (!prof_on) 462 return 0; 463 #ifdef CONFIG_SMP 464 err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", 465 profile_prepare_cpu, profile_dead_cpu); 466 if (err) 467 return err; 468 469 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", 470 profile_online_cpu, NULL); 471 if (err < 0) 472 goto err_state_prep; 473 online_state = err; 474 err = 0; 475 #endif 476 entry = proc_create("profile", S_IWUSR | S_IRUGO, 477 NULL, &profile_proc_ops); 478 if (!entry) 479 goto err_state_onl; 480 proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); 481 482 return err; 483 err_state_onl: 484 #ifdef CONFIG_SMP 485 cpuhp_remove_state(online_state); 486 err_state_prep: 487 cpuhp_remove_state(CPUHP_PROFILE_PREPARE); 488 #endif 489 return err; 490 } 491 subsys_initcall(create_proc_profile); 492 #endif /* CONFIG_PROC_FS */ 493