xref: /openbmc/linux/kernel/profile.c (revision 83d3c4f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/profile.c
4  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
5  *  with configurable resolution, support for restricting the cpus on
6  *  which profiling is done, and switching between cpu time and
7  *  schedule() calls via kernel command line parameters passed at boot.
8  *
9  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10  *	Red Hat, July 2004
11  *  Consolidation of architecture support code for profiling,
12  *	Nadia Yvette Chambers, Oracle, July 2004
13  *  Amortized hit count accounting via per-cpu open-addressed hashtables
14  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15  *	Oracle, 2004
16  */
17 
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30 
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34 
35 struct profile_hit {
36 	u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT	3
39 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
42 
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len;
45 static unsigned short int prof_shift;
46 
47 int prof_on __read_mostly;
48 EXPORT_SYMBOL_GPL(prof_on);
49 
50 static cpumask_var_t prof_cpu_mask;
51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
53 static DEFINE_PER_CPU(int, cpu_profile_flip);
54 static DEFINE_MUTEX(profile_flip_mutex);
55 #endif /* CONFIG_SMP */
56 
57 int profile_setup(char *str)
58 {
59 	static const char schedstr[] = "schedule";
60 	static const char sleepstr[] = "sleep";
61 	static const char kvmstr[] = "kvm";
62 	int par;
63 
64 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
65 #ifdef CONFIG_SCHEDSTATS
66 		force_schedstat_enabled();
67 		prof_on = SLEEP_PROFILING;
68 		if (str[strlen(sleepstr)] == ',')
69 			str += strlen(sleepstr) + 1;
70 		if (get_option(&str, &par))
71 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
72 		pr_info("kernel sleep profiling enabled (shift: %u)\n",
73 			prof_shift);
74 #else
75 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
76 #endif /* CONFIG_SCHEDSTATS */
77 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
78 		prof_on = SCHED_PROFILING;
79 		if (str[strlen(schedstr)] == ',')
80 			str += strlen(schedstr) + 1;
81 		if (get_option(&str, &par))
82 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
83 		pr_info("kernel schedule profiling enabled (shift: %u)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
91 		pr_info("kernel KVM profiling enabled (shift: %u)\n",
92 			prof_shift);
93 	} else if (get_option(&str, &par)) {
94 		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
95 		prof_on = CPU_PROFILING;
96 		pr_info("kernel profiling enabled (shift: %u)\n",
97 			prof_shift);
98 	}
99 	return 1;
100 }
101 __setup("profile=", profile_setup);
102 
103 
104 int __ref profile_init(void)
105 {
106 	int buffer_bytes;
107 	if (!prof_on)
108 		return 0;
109 
110 	/* only text is profiled */
111 	prof_len = (_etext - _stext) >> prof_shift;
112 	buffer_bytes = prof_len*sizeof(atomic_t);
113 
114 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
115 		return -ENOMEM;
116 
117 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
118 
119 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
120 	if (prof_buffer)
121 		return 0;
122 
123 	prof_buffer = alloc_pages_exact(buffer_bytes,
124 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
125 	if (prof_buffer)
126 		return 0;
127 
128 	prof_buffer = vzalloc(buffer_bytes);
129 	if (prof_buffer)
130 		return 0;
131 
132 	free_cpumask_var(prof_cpu_mask);
133 	return -ENOMEM;
134 }
135 
136 /* Profile event notifications */
137 
138 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
139 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
140 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
141 
142 void profile_task_exit(struct task_struct *task)
143 {
144 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
145 }
146 
147 int profile_handoff_task(struct task_struct *task)
148 {
149 	int ret;
150 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
151 	return (ret == NOTIFY_OK) ? 1 : 0;
152 }
153 
154 void profile_munmap(unsigned long addr)
155 {
156 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
157 }
158 
159 int task_handoff_register(struct notifier_block *n)
160 {
161 	return atomic_notifier_chain_register(&task_free_notifier, n);
162 }
163 EXPORT_SYMBOL_GPL(task_handoff_register);
164 
165 int task_handoff_unregister(struct notifier_block *n)
166 {
167 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
168 }
169 EXPORT_SYMBOL_GPL(task_handoff_unregister);
170 
171 int profile_event_register(enum profile_type type, struct notifier_block *n)
172 {
173 	int err = -EINVAL;
174 
175 	switch (type) {
176 	case PROFILE_TASK_EXIT:
177 		err = blocking_notifier_chain_register(
178 				&task_exit_notifier, n);
179 		break;
180 	case PROFILE_MUNMAP:
181 		err = blocking_notifier_chain_register(
182 				&munmap_notifier, n);
183 		break;
184 	}
185 
186 	return err;
187 }
188 EXPORT_SYMBOL_GPL(profile_event_register);
189 
190 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
191 {
192 	int err = -EINVAL;
193 
194 	switch (type) {
195 	case PROFILE_TASK_EXIT:
196 		err = blocking_notifier_chain_unregister(
197 				&task_exit_notifier, n);
198 		break;
199 	case PROFILE_MUNMAP:
200 		err = blocking_notifier_chain_unregister(
201 				&munmap_notifier, n);
202 		break;
203 	}
204 
205 	return err;
206 }
207 EXPORT_SYMBOL_GPL(profile_event_unregister);
208 
209 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
210 /*
211  * Each cpu has a pair of open-addressed hashtables for pending
212  * profile hits. read_profile() IPI's all cpus to request them
213  * to flip buffers and flushes their contents to prof_buffer itself.
214  * Flip requests are serialized by the profile_flip_mutex. The sole
215  * use of having a second hashtable is for avoiding cacheline
216  * contention that would otherwise happen during flushes of pending
217  * profile hits required for the accuracy of reported profile hits
218  * and so resurrect the interrupt livelock issue.
219  *
220  * The open-addressed hashtables are indexed by profile buffer slot
221  * and hold the number of pending hits to that profile buffer slot on
222  * a cpu in an entry. When the hashtable overflows, all pending hits
223  * are accounted to their corresponding profile buffer slots with
224  * atomic_add() and the hashtable emptied. As numerous pending hits
225  * may be accounted to a profile buffer slot in a hashtable entry,
226  * this amortizes a number of atomic profile buffer increments likely
227  * to be far larger than the number of entries in the hashtable,
228  * particularly given that the number of distinct profile buffer
229  * positions to which hits are accounted during short intervals (e.g.
230  * several seconds) is usually very small. Exclusion from buffer
231  * flipping is provided by interrupt disablement (note that for
232  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
233  * process context).
234  * The hash function is meant to be lightweight as opposed to strong,
235  * and was vaguely inspired by ppc64 firmware-supported inverted
236  * pagetable hash functions, but uses a full hashtable full of finite
237  * collision chains, not just pairs of them.
238  *
239  * -- nyc
240  */
241 static void __profile_flip_buffers(void *unused)
242 {
243 	int cpu = smp_processor_id();
244 
245 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
246 }
247 
248 static void profile_flip_buffers(void)
249 {
250 	int i, j, cpu;
251 
252 	mutex_lock(&profile_flip_mutex);
253 	j = per_cpu(cpu_profile_flip, get_cpu());
254 	put_cpu();
255 	on_each_cpu(__profile_flip_buffers, NULL, 1);
256 	for_each_online_cpu(cpu) {
257 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
258 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
259 			if (!hits[i].hits) {
260 				if (hits[i].pc)
261 					hits[i].pc = 0;
262 				continue;
263 			}
264 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
265 			hits[i].hits = hits[i].pc = 0;
266 		}
267 	}
268 	mutex_unlock(&profile_flip_mutex);
269 }
270 
271 static void profile_discard_flip_buffers(void)
272 {
273 	int i, cpu;
274 
275 	mutex_lock(&profile_flip_mutex);
276 	i = per_cpu(cpu_profile_flip, get_cpu());
277 	put_cpu();
278 	on_each_cpu(__profile_flip_buffers, NULL, 1);
279 	for_each_online_cpu(cpu) {
280 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
281 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
282 	}
283 	mutex_unlock(&profile_flip_mutex);
284 }
285 
286 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
287 {
288 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
289 	int i, j, cpu;
290 	struct profile_hit *hits;
291 
292 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
293 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
295 	cpu = get_cpu();
296 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
297 	if (!hits) {
298 		put_cpu();
299 		return;
300 	}
301 	/*
302 	 * We buffer the global profiler buffer into a per-CPU
303 	 * queue and thus reduce the number of global (and possibly
304 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
305 	 */
306 	local_irq_save(flags);
307 	do {
308 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
309 			if (hits[i + j].pc == pc) {
310 				hits[i + j].hits += nr_hits;
311 				goto out;
312 			} else if (!hits[i + j].hits) {
313 				hits[i + j].pc = pc;
314 				hits[i + j].hits = nr_hits;
315 				goto out;
316 			}
317 		}
318 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
319 	} while (i != primary);
320 
321 	/*
322 	 * Add the current hit(s) and flush the write-queue out
323 	 * to the global buffer:
324 	 */
325 	atomic_add(nr_hits, &prof_buffer[pc]);
326 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
327 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
328 		hits[i].pc = hits[i].hits = 0;
329 	}
330 out:
331 	local_irq_restore(flags);
332 	put_cpu();
333 }
334 
335 static int profile_dead_cpu(unsigned int cpu)
336 {
337 	struct page *page;
338 	int i;
339 
340 	if (cpumask_available(prof_cpu_mask))
341 		cpumask_clear_cpu(cpu, prof_cpu_mask);
342 
343 	for (i = 0; i < 2; i++) {
344 		if (per_cpu(cpu_profile_hits, cpu)[i]) {
345 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
346 			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
347 			__free_page(page);
348 		}
349 	}
350 	return 0;
351 }
352 
353 static int profile_prepare_cpu(unsigned int cpu)
354 {
355 	int i, node = cpu_to_mem(cpu);
356 	struct page *page;
357 
358 	per_cpu(cpu_profile_flip, cpu) = 0;
359 
360 	for (i = 0; i < 2; i++) {
361 		if (per_cpu(cpu_profile_hits, cpu)[i])
362 			continue;
363 
364 		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
365 		if (!page) {
366 			profile_dead_cpu(cpu);
367 			return -ENOMEM;
368 		}
369 		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
370 
371 	}
372 	return 0;
373 }
374 
375 static int profile_online_cpu(unsigned int cpu)
376 {
377 	if (cpumask_available(prof_cpu_mask))
378 		cpumask_set_cpu(cpu, prof_cpu_mask);
379 
380 	return 0;
381 }
382 
383 #else /* !CONFIG_SMP */
384 #define profile_flip_buffers()		do { } while (0)
385 #define profile_discard_flip_buffers()	do { } while (0)
386 
387 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
388 {
389 	unsigned long pc;
390 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
391 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
392 }
393 #endif /* !CONFIG_SMP */
394 
395 void profile_hits(int type, void *__pc, unsigned int nr_hits)
396 {
397 	if (prof_on != type || !prof_buffer)
398 		return;
399 	do_profile_hits(type, __pc, nr_hits);
400 }
401 EXPORT_SYMBOL_GPL(profile_hits);
402 
403 void profile_tick(int type)
404 {
405 	struct pt_regs *regs = get_irq_regs();
406 
407 	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
408 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
409 		profile_hit(type, (void *)profile_pc(regs));
410 }
411 
412 #ifdef CONFIG_PROC_FS
413 #include <linux/proc_fs.h>
414 #include <linux/seq_file.h>
415 #include <linux/uaccess.h>
416 
417 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
418 {
419 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
420 	return 0;
421 }
422 
423 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
424 {
425 	return single_open(file, prof_cpu_mask_proc_show, NULL);
426 }
427 
428 static ssize_t prof_cpu_mask_proc_write(struct file *file,
429 	const char __user *buffer, size_t count, loff_t *pos)
430 {
431 	cpumask_var_t new_value;
432 	int err;
433 
434 	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
435 		return -ENOMEM;
436 
437 	err = cpumask_parse_user(buffer, count, new_value);
438 	if (!err) {
439 		cpumask_copy(prof_cpu_mask, new_value);
440 		err = count;
441 	}
442 	free_cpumask_var(new_value);
443 	return err;
444 }
445 
446 static const struct proc_ops prof_cpu_mask_proc_ops = {
447 	.proc_open	= prof_cpu_mask_proc_open,
448 	.proc_read	= seq_read,
449 	.proc_lseek	= seq_lseek,
450 	.proc_release	= single_release,
451 	.proc_write	= prof_cpu_mask_proc_write,
452 };
453 
454 void create_prof_cpu_mask(void)
455 {
456 	/* create /proc/irq/prof_cpu_mask */
457 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
458 }
459 
460 /*
461  * This function accesses profiling information. The returned data is
462  * binary: the sampling step and the actual contents of the profile
463  * buffer. Use of the program readprofile is recommended in order to
464  * get meaningful info out of these data.
465  */
466 static ssize_t
467 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
468 {
469 	unsigned long p = *ppos;
470 	ssize_t read;
471 	char *pnt;
472 	unsigned long sample_step = 1UL << prof_shift;
473 
474 	profile_flip_buffers();
475 	if (p >= (prof_len+1)*sizeof(unsigned int))
476 		return 0;
477 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
478 		count = (prof_len+1)*sizeof(unsigned int) - p;
479 	read = 0;
480 
481 	while (p < sizeof(unsigned int) && count > 0) {
482 		if (put_user(*((char *)(&sample_step)+p), buf))
483 			return -EFAULT;
484 		buf++; p++; count--; read++;
485 	}
486 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
487 	if (copy_to_user(buf, (void *)pnt, count))
488 		return -EFAULT;
489 	read += count;
490 	*ppos += read;
491 	return read;
492 }
493 
494 /*
495  * Writing to /proc/profile resets the counters
496  *
497  * Writing a 'profiling multiplier' value into it also re-sets the profiling
498  * interrupt frequency, on architectures that support this.
499  */
500 static ssize_t write_profile(struct file *file, const char __user *buf,
501 			     size_t count, loff_t *ppos)
502 {
503 #ifdef CONFIG_SMP
504 	extern int setup_profiling_timer(unsigned int multiplier);
505 
506 	if (count == sizeof(int)) {
507 		unsigned int multiplier;
508 
509 		if (copy_from_user(&multiplier, buf, sizeof(int)))
510 			return -EFAULT;
511 
512 		if (setup_profiling_timer(multiplier))
513 			return -EINVAL;
514 	}
515 #endif
516 	profile_discard_flip_buffers();
517 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
518 	return count;
519 }
520 
521 static const struct proc_ops profile_proc_ops = {
522 	.proc_read	= read_profile,
523 	.proc_write	= write_profile,
524 	.proc_lseek	= default_llseek,
525 };
526 
527 int __ref create_proc_profile(void)
528 {
529 	struct proc_dir_entry *entry;
530 #ifdef CONFIG_SMP
531 	enum cpuhp_state online_state;
532 #endif
533 
534 	int err = 0;
535 
536 	if (!prof_on)
537 		return 0;
538 #ifdef CONFIG_SMP
539 	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
540 				profile_prepare_cpu, profile_dead_cpu);
541 	if (err)
542 		return err;
543 
544 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
545 				profile_online_cpu, NULL);
546 	if (err < 0)
547 		goto err_state_prep;
548 	online_state = err;
549 	err = 0;
550 #endif
551 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
552 			    NULL, &profile_proc_ops);
553 	if (!entry)
554 		goto err_state_onl;
555 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
556 
557 	return err;
558 err_state_onl:
559 #ifdef CONFIG_SMP
560 	cpuhp_remove_state(online_state);
561 err_state_prep:
562 	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
563 #endif
564 	return err;
565 }
566 subsys_initcall(create_proc_profile);
567 #endif /* CONFIG_PROC_FS */
568