1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * Nadia Yvette Chambers, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, Nadia Yvette Chambers, 14 * Oracle, 2004 15 */ 16 17 #include <linux/export.h> 18 #include <linux/profile.h> 19 #include <linux/bootmem.h> 20 #include <linux/notifier.h> 21 #include <linux/mm.h> 22 #include <linux/cpumask.h> 23 #include <linux/cpu.h> 24 #include <linux/highmem.h> 25 #include <linux/mutex.h> 26 #include <linux/slab.h> 27 #include <linux/vmalloc.h> 28 #include <asm/sections.h> 29 #include <asm/irq_regs.h> 30 #include <asm/ptrace.h> 31 32 struct profile_hit { 33 u32 pc, hits; 34 }; 35 #define PROFILE_GRPSHIFT 3 36 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 37 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 38 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 39 40 static atomic_t *prof_buffer; 41 static unsigned long prof_len, prof_shift; 42 43 int prof_on __read_mostly; 44 EXPORT_SYMBOL_GPL(prof_on); 45 46 static cpumask_var_t prof_cpu_mask; 47 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 48 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 49 static DEFINE_PER_CPU(int, cpu_profile_flip); 50 static DEFINE_MUTEX(profile_flip_mutex); 51 #endif /* CONFIG_SMP */ 52 53 int profile_setup(char *str) 54 { 55 static const char schedstr[] = "schedule"; 56 static const char sleepstr[] = "sleep"; 57 static const char kvmstr[] = "kvm"; 58 int par; 59 60 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 61 #ifdef CONFIG_SCHEDSTATS 62 force_schedstat_enabled(); 63 prof_on = SLEEP_PROFILING; 64 if (str[strlen(sleepstr)] == ',') 65 str += strlen(sleepstr) + 1; 66 if (get_option(&str, &par)) 67 prof_shift = par; 68 pr_info("kernel sleep profiling enabled (shift: %ld)\n", 69 prof_shift); 70 #else 71 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 72 #endif /* CONFIG_SCHEDSTATS */ 73 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 74 prof_on = SCHED_PROFILING; 75 if (str[strlen(schedstr)] == ',') 76 str += strlen(schedstr) + 1; 77 if (get_option(&str, &par)) 78 prof_shift = par; 79 pr_info("kernel schedule profiling enabled (shift: %ld)\n", 80 prof_shift); 81 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 82 prof_on = KVM_PROFILING; 83 if (str[strlen(kvmstr)] == ',') 84 str += strlen(kvmstr) + 1; 85 if (get_option(&str, &par)) 86 prof_shift = par; 87 pr_info("kernel KVM profiling enabled (shift: %ld)\n", 88 prof_shift); 89 } else if (get_option(&str, &par)) { 90 prof_shift = par; 91 prof_on = CPU_PROFILING; 92 pr_info("kernel profiling enabled (shift: %ld)\n", 93 prof_shift); 94 } 95 return 1; 96 } 97 __setup("profile=", profile_setup); 98 99 100 int __ref profile_init(void) 101 { 102 int buffer_bytes; 103 if (!prof_on) 104 return 0; 105 106 /* only text is profiled */ 107 prof_len = (_etext - _stext) >> prof_shift; 108 buffer_bytes = prof_len*sizeof(atomic_t); 109 110 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 111 return -ENOMEM; 112 113 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 114 115 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); 116 if (prof_buffer) 117 return 0; 118 119 prof_buffer = alloc_pages_exact(buffer_bytes, 120 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); 121 if (prof_buffer) 122 return 0; 123 124 prof_buffer = vzalloc(buffer_bytes); 125 if (prof_buffer) 126 return 0; 127 128 free_cpumask_var(prof_cpu_mask); 129 return -ENOMEM; 130 } 131 132 /* Profile event notifications */ 133 134 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 135 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 136 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 137 138 void profile_task_exit(struct task_struct *task) 139 { 140 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 141 } 142 143 int profile_handoff_task(struct task_struct *task) 144 { 145 int ret; 146 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 147 return (ret == NOTIFY_OK) ? 1 : 0; 148 } 149 150 void profile_munmap(unsigned long addr) 151 { 152 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 153 } 154 155 int task_handoff_register(struct notifier_block *n) 156 { 157 return atomic_notifier_chain_register(&task_free_notifier, n); 158 } 159 EXPORT_SYMBOL_GPL(task_handoff_register); 160 161 int task_handoff_unregister(struct notifier_block *n) 162 { 163 return atomic_notifier_chain_unregister(&task_free_notifier, n); 164 } 165 EXPORT_SYMBOL_GPL(task_handoff_unregister); 166 167 int profile_event_register(enum profile_type type, struct notifier_block *n) 168 { 169 int err = -EINVAL; 170 171 switch (type) { 172 case PROFILE_TASK_EXIT: 173 err = blocking_notifier_chain_register( 174 &task_exit_notifier, n); 175 break; 176 case PROFILE_MUNMAP: 177 err = blocking_notifier_chain_register( 178 &munmap_notifier, n); 179 break; 180 } 181 182 return err; 183 } 184 EXPORT_SYMBOL_GPL(profile_event_register); 185 186 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 187 { 188 int err = -EINVAL; 189 190 switch (type) { 191 case PROFILE_TASK_EXIT: 192 err = blocking_notifier_chain_unregister( 193 &task_exit_notifier, n); 194 break; 195 case PROFILE_MUNMAP: 196 err = blocking_notifier_chain_unregister( 197 &munmap_notifier, n); 198 break; 199 } 200 201 return err; 202 } 203 EXPORT_SYMBOL_GPL(profile_event_unregister); 204 205 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 206 /* 207 * Each cpu has a pair of open-addressed hashtables for pending 208 * profile hits. read_profile() IPI's all cpus to request them 209 * to flip buffers and flushes their contents to prof_buffer itself. 210 * Flip requests are serialized by the profile_flip_mutex. The sole 211 * use of having a second hashtable is for avoiding cacheline 212 * contention that would otherwise happen during flushes of pending 213 * profile hits required for the accuracy of reported profile hits 214 * and so resurrect the interrupt livelock issue. 215 * 216 * The open-addressed hashtables are indexed by profile buffer slot 217 * and hold the number of pending hits to that profile buffer slot on 218 * a cpu in an entry. When the hashtable overflows, all pending hits 219 * are accounted to their corresponding profile buffer slots with 220 * atomic_add() and the hashtable emptied. As numerous pending hits 221 * may be accounted to a profile buffer slot in a hashtable entry, 222 * this amortizes a number of atomic profile buffer increments likely 223 * to be far larger than the number of entries in the hashtable, 224 * particularly given that the number of distinct profile buffer 225 * positions to which hits are accounted during short intervals (e.g. 226 * several seconds) is usually very small. Exclusion from buffer 227 * flipping is provided by interrupt disablement (note that for 228 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 229 * process context). 230 * The hash function is meant to be lightweight as opposed to strong, 231 * and was vaguely inspired by ppc64 firmware-supported inverted 232 * pagetable hash functions, but uses a full hashtable full of finite 233 * collision chains, not just pairs of them. 234 * 235 * -- nyc 236 */ 237 static void __profile_flip_buffers(void *unused) 238 { 239 int cpu = smp_processor_id(); 240 241 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 242 } 243 244 static void profile_flip_buffers(void) 245 { 246 int i, j, cpu; 247 248 mutex_lock(&profile_flip_mutex); 249 j = per_cpu(cpu_profile_flip, get_cpu()); 250 put_cpu(); 251 on_each_cpu(__profile_flip_buffers, NULL, 1); 252 for_each_online_cpu(cpu) { 253 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 254 for (i = 0; i < NR_PROFILE_HIT; ++i) { 255 if (!hits[i].hits) { 256 if (hits[i].pc) 257 hits[i].pc = 0; 258 continue; 259 } 260 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 261 hits[i].hits = hits[i].pc = 0; 262 } 263 } 264 mutex_unlock(&profile_flip_mutex); 265 } 266 267 static void profile_discard_flip_buffers(void) 268 { 269 int i, cpu; 270 271 mutex_lock(&profile_flip_mutex); 272 i = per_cpu(cpu_profile_flip, get_cpu()); 273 put_cpu(); 274 on_each_cpu(__profile_flip_buffers, NULL, 1); 275 for_each_online_cpu(cpu) { 276 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 277 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 278 } 279 mutex_unlock(&profile_flip_mutex); 280 } 281 282 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 283 { 284 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 285 int i, j, cpu; 286 struct profile_hit *hits; 287 288 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 289 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 290 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 291 cpu = get_cpu(); 292 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 293 if (!hits) { 294 put_cpu(); 295 return; 296 } 297 /* 298 * We buffer the global profiler buffer into a per-CPU 299 * queue and thus reduce the number of global (and possibly 300 * NUMA-alien) accesses. The write-queue is self-coalescing: 301 */ 302 local_irq_save(flags); 303 do { 304 for (j = 0; j < PROFILE_GRPSZ; ++j) { 305 if (hits[i + j].pc == pc) { 306 hits[i + j].hits += nr_hits; 307 goto out; 308 } else if (!hits[i + j].hits) { 309 hits[i + j].pc = pc; 310 hits[i + j].hits = nr_hits; 311 goto out; 312 } 313 } 314 i = (i + secondary) & (NR_PROFILE_HIT - 1); 315 } while (i != primary); 316 317 /* 318 * Add the current hit(s) and flush the write-queue out 319 * to the global buffer: 320 */ 321 atomic_add(nr_hits, &prof_buffer[pc]); 322 for (i = 0; i < NR_PROFILE_HIT; ++i) { 323 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 324 hits[i].pc = hits[i].hits = 0; 325 } 326 out: 327 local_irq_restore(flags); 328 put_cpu(); 329 } 330 331 static int profile_dead_cpu(unsigned int cpu) 332 { 333 struct page *page; 334 int i; 335 336 if (prof_cpu_mask != NULL) 337 cpumask_clear_cpu(cpu, prof_cpu_mask); 338 339 for (i = 0; i < 2; i++) { 340 if (per_cpu(cpu_profile_hits, cpu)[i]) { 341 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); 342 per_cpu(cpu_profile_hits, cpu)[i] = NULL; 343 __free_page(page); 344 } 345 } 346 return 0; 347 } 348 349 static int profile_prepare_cpu(unsigned int cpu) 350 { 351 int i, node = cpu_to_mem(cpu); 352 struct page *page; 353 354 per_cpu(cpu_profile_flip, cpu) = 0; 355 356 for (i = 0; i < 2; i++) { 357 if (per_cpu(cpu_profile_hits, cpu)[i]) 358 continue; 359 360 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 361 if (!page) { 362 profile_dead_cpu(cpu); 363 return -ENOMEM; 364 } 365 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); 366 367 } 368 return 0; 369 } 370 371 static int profile_online_cpu(unsigned int cpu) 372 { 373 if (prof_cpu_mask != NULL) 374 cpumask_set_cpu(cpu, prof_cpu_mask); 375 376 return 0; 377 } 378 379 #else /* !CONFIG_SMP */ 380 #define profile_flip_buffers() do { } while (0) 381 #define profile_discard_flip_buffers() do { } while (0) 382 383 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 384 { 385 unsigned long pc; 386 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 387 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 388 } 389 #endif /* !CONFIG_SMP */ 390 391 void profile_hits(int type, void *__pc, unsigned int nr_hits) 392 { 393 if (prof_on != type || !prof_buffer) 394 return; 395 do_profile_hits(type, __pc, nr_hits); 396 } 397 EXPORT_SYMBOL_GPL(profile_hits); 398 399 void profile_tick(int type) 400 { 401 struct pt_regs *regs = get_irq_regs(); 402 403 if (!user_mode(regs) && prof_cpu_mask != NULL && 404 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 405 profile_hit(type, (void *)profile_pc(regs)); 406 } 407 408 #ifdef CONFIG_PROC_FS 409 #include <linux/proc_fs.h> 410 #include <linux/seq_file.h> 411 #include <linux/uaccess.h> 412 413 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) 414 { 415 seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); 416 return 0; 417 } 418 419 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) 420 { 421 return single_open(file, prof_cpu_mask_proc_show, NULL); 422 } 423 424 static ssize_t prof_cpu_mask_proc_write(struct file *file, 425 const char __user *buffer, size_t count, loff_t *pos) 426 { 427 cpumask_var_t new_value; 428 int err; 429 430 if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) 431 return -ENOMEM; 432 433 err = cpumask_parse_user(buffer, count, new_value); 434 if (!err) { 435 cpumask_copy(prof_cpu_mask, new_value); 436 err = count; 437 } 438 free_cpumask_var(new_value); 439 return err; 440 } 441 442 static const struct file_operations prof_cpu_mask_proc_fops = { 443 .open = prof_cpu_mask_proc_open, 444 .read = seq_read, 445 .llseek = seq_lseek, 446 .release = single_release, 447 .write = prof_cpu_mask_proc_write, 448 }; 449 450 void create_prof_cpu_mask(void) 451 { 452 /* create /proc/irq/prof_cpu_mask */ 453 proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops); 454 } 455 456 /* 457 * This function accesses profiling information. The returned data is 458 * binary: the sampling step and the actual contents of the profile 459 * buffer. Use of the program readprofile is recommended in order to 460 * get meaningful info out of these data. 461 */ 462 static ssize_t 463 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 464 { 465 unsigned long p = *ppos; 466 ssize_t read; 467 char *pnt; 468 unsigned int sample_step = 1 << prof_shift; 469 470 profile_flip_buffers(); 471 if (p >= (prof_len+1)*sizeof(unsigned int)) 472 return 0; 473 if (count > (prof_len+1)*sizeof(unsigned int) - p) 474 count = (prof_len+1)*sizeof(unsigned int) - p; 475 read = 0; 476 477 while (p < sizeof(unsigned int) && count > 0) { 478 if (put_user(*((char *)(&sample_step)+p), buf)) 479 return -EFAULT; 480 buf++; p++; count--; read++; 481 } 482 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 483 if (copy_to_user(buf, (void *)pnt, count)) 484 return -EFAULT; 485 read += count; 486 *ppos += read; 487 return read; 488 } 489 490 /* 491 * Writing to /proc/profile resets the counters 492 * 493 * Writing a 'profiling multiplier' value into it also re-sets the profiling 494 * interrupt frequency, on architectures that support this. 495 */ 496 static ssize_t write_profile(struct file *file, const char __user *buf, 497 size_t count, loff_t *ppos) 498 { 499 #ifdef CONFIG_SMP 500 extern int setup_profiling_timer(unsigned int multiplier); 501 502 if (count == sizeof(int)) { 503 unsigned int multiplier; 504 505 if (copy_from_user(&multiplier, buf, sizeof(int))) 506 return -EFAULT; 507 508 if (setup_profiling_timer(multiplier)) 509 return -EINVAL; 510 } 511 #endif 512 profile_discard_flip_buffers(); 513 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 514 return count; 515 } 516 517 static const struct file_operations proc_profile_operations = { 518 .read = read_profile, 519 .write = write_profile, 520 .llseek = default_llseek, 521 }; 522 523 int __ref create_proc_profile(void) 524 { 525 struct proc_dir_entry *entry; 526 #ifdef CONFIG_SMP 527 enum cpuhp_state online_state; 528 #endif 529 530 int err = 0; 531 532 if (!prof_on) 533 return 0; 534 #ifdef CONFIG_SMP 535 err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", 536 profile_prepare_cpu, profile_dead_cpu); 537 if (err) 538 return err; 539 540 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", 541 profile_online_cpu, NULL); 542 if (err < 0) 543 goto err_state_prep; 544 online_state = err; 545 err = 0; 546 #endif 547 entry = proc_create("profile", S_IWUSR | S_IRUGO, 548 NULL, &proc_profile_operations); 549 if (!entry) 550 goto err_state_onl; 551 proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); 552 553 return err; 554 err_state_onl: 555 #ifdef CONFIG_SMP 556 cpuhp_remove_state(online_state); 557 err_state_prep: 558 cpuhp_remove_state(CPUHP_PROFILE_PREPARE); 559 #endif 560 return err; 561 } 562 subsys_initcall(create_proc_profile); 563 #endif /* CONFIG_PROC_FS */ 564