xref: /openbmc/linux/kernel/profile.c (revision 78c99ba1)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30 
31 struct profile_hit {
32 	u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT	3
35 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
38 
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47 
48 static cpumask_var_t prof_cpu_mask;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 int profile_setup(char *str)
56 {
57 	static char schedstr[] = "schedule";
58 	static char sleepstr[] = "sleep";
59 	static char kvmstr[] = "kvm";
60 	int par;
61 
62 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 		prof_on = SLEEP_PROFILING;
65 		if (str[strlen(sleepstr)] == ',')
66 			str += strlen(sleepstr) + 1;
67 		if (get_option(&str, &par))
68 			prof_shift = par;
69 		printk(KERN_INFO
70 			"kernel sleep profiling enabled (shift: %ld)\n",
71 			prof_shift);
72 #else
73 		printk(KERN_WARNING
74 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 		prof_on = SCHED_PROFILING;
78 		if (str[strlen(schedstr)] == ',')
79 			str += strlen(schedstr) + 1;
80 		if (get_option(&str, &par))
81 			prof_shift = par;
82 		printk(KERN_INFO
83 			"kernel schedule profiling enabled (shift: %ld)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = par;
91 		printk(KERN_INFO
92 			"kernel KVM profiling enabled (shift: %ld)\n",
93 			prof_shift);
94 	} else if (get_option(&str, &par)) {
95 		prof_shift = par;
96 		prof_on = CPU_PROFILING;
97 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 			prof_shift);
99 	}
100 	return 1;
101 }
102 __setup("profile=", profile_setup);
103 
104 
105 int __ref profile_init(void)
106 {
107 	int buffer_bytes;
108 	if (!prof_on)
109 		return 0;
110 
111 	/* only text is profiled */
112 	prof_len = (_etext - _stext) >> prof_shift;
113 	buffer_bytes = prof_len*sizeof(atomic_t);
114 
115 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
116 		return -ENOMEM;
117 
118 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
119 
120 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL);
121 	if (prof_buffer)
122 		return 0;
123 
124 	prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO);
125 	if (prof_buffer)
126 		return 0;
127 
128 	prof_buffer = vmalloc(buffer_bytes);
129 	if (prof_buffer)
130 		return 0;
131 
132 	free_cpumask_var(prof_cpu_mask);
133 	return -ENOMEM;
134 }
135 
136 /* Profile event notifications */
137 
138 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
139 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
140 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
141 
142 void profile_task_exit(struct task_struct *task)
143 {
144 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
145 }
146 
147 int profile_handoff_task(struct task_struct *task)
148 {
149 	int ret;
150 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
151 	return (ret == NOTIFY_OK) ? 1 : 0;
152 }
153 
154 void profile_munmap(unsigned long addr)
155 {
156 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
157 }
158 
159 int task_handoff_register(struct notifier_block *n)
160 {
161 	return atomic_notifier_chain_register(&task_free_notifier, n);
162 }
163 EXPORT_SYMBOL_GPL(task_handoff_register);
164 
165 int task_handoff_unregister(struct notifier_block *n)
166 {
167 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
168 }
169 EXPORT_SYMBOL_GPL(task_handoff_unregister);
170 
171 int profile_event_register(enum profile_type type, struct notifier_block *n)
172 {
173 	int err = -EINVAL;
174 
175 	switch (type) {
176 	case PROFILE_TASK_EXIT:
177 		err = blocking_notifier_chain_register(
178 				&task_exit_notifier, n);
179 		break;
180 	case PROFILE_MUNMAP:
181 		err = blocking_notifier_chain_register(
182 				&munmap_notifier, n);
183 		break;
184 	}
185 
186 	return err;
187 }
188 EXPORT_SYMBOL_GPL(profile_event_register);
189 
190 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
191 {
192 	int err = -EINVAL;
193 
194 	switch (type) {
195 	case PROFILE_TASK_EXIT:
196 		err = blocking_notifier_chain_unregister(
197 				&task_exit_notifier, n);
198 		break;
199 	case PROFILE_MUNMAP:
200 		err = blocking_notifier_chain_unregister(
201 				&munmap_notifier, n);
202 		break;
203 	}
204 
205 	return err;
206 }
207 EXPORT_SYMBOL_GPL(profile_event_unregister);
208 
209 int register_timer_hook(int (*hook)(struct pt_regs *))
210 {
211 	if (timer_hook)
212 		return -EBUSY;
213 	timer_hook = hook;
214 	return 0;
215 }
216 EXPORT_SYMBOL_GPL(register_timer_hook);
217 
218 void unregister_timer_hook(int (*hook)(struct pt_regs *))
219 {
220 	WARN_ON(hook != timer_hook);
221 	timer_hook = NULL;
222 	/* make sure all CPUs see the NULL hook */
223 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
224 }
225 EXPORT_SYMBOL_GPL(unregister_timer_hook);
226 
227 
228 #ifdef CONFIG_SMP
229 /*
230  * Each cpu has a pair of open-addressed hashtables for pending
231  * profile hits. read_profile() IPI's all cpus to request them
232  * to flip buffers and flushes their contents to prof_buffer itself.
233  * Flip requests are serialized by the profile_flip_mutex. The sole
234  * use of having a second hashtable is for avoiding cacheline
235  * contention that would otherwise happen during flushes of pending
236  * profile hits required for the accuracy of reported profile hits
237  * and so resurrect the interrupt livelock issue.
238  *
239  * The open-addressed hashtables are indexed by profile buffer slot
240  * and hold the number of pending hits to that profile buffer slot on
241  * a cpu in an entry. When the hashtable overflows, all pending hits
242  * are accounted to their corresponding profile buffer slots with
243  * atomic_add() and the hashtable emptied. As numerous pending hits
244  * may be accounted to a profile buffer slot in a hashtable entry,
245  * this amortizes a number of atomic profile buffer increments likely
246  * to be far larger than the number of entries in the hashtable,
247  * particularly given that the number of distinct profile buffer
248  * positions to which hits are accounted during short intervals (e.g.
249  * several seconds) is usually very small. Exclusion from buffer
250  * flipping is provided by interrupt disablement (note that for
251  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
252  * process context).
253  * The hash function is meant to be lightweight as opposed to strong,
254  * and was vaguely inspired by ppc64 firmware-supported inverted
255  * pagetable hash functions, but uses a full hashtable full of finite
256  * collision chains, not just pairs of them.
257  *
258  * -- wli
259  */
260 static void __profile_flip_buffers(void *unused)
261 {
262 	int cpu = smp_processor_id();
263 
264 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
265 }
266 
267 static void profile_flip_buffers(void)
268 {
269 	int i, j, cpu;
270 
271 	mutex_lock(&profile_flip_mutex);
272 	j = per_cpu(cpu_profile_flip, get_cpu());
273 	put_cpu();
274 	on_each_cpu(__profile_flip_buffers, NULL, 1);
275 	for_each_online_cpu(cpu) {
276 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
277 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
278 			if (!hits[i].hits) {
279 				if (hits[i].pc)
280 					hits[i].pc = 0;
281 				continue;
282 			}
283 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
284 			hits[i].hits = hits[i].pc = 0;
285 		}
286 	}
287 	mutex_unlock(&profile_flip_mutex);
288 }
289 
290 static void profile_discard_flip_buffers(void)
291 {
292 	int i, cpu;
293 
294 	mutex_lock(&profile_flip_mutex);
295 	i = per_cpu(cpu_profile_flip, get_cpu());
296 	put_cpu();
297 	on_each_cpu(__profile_flip_buffers, NULL, 1);
298 	for_each_online_cpu(cpu) {
299 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
300 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
301 	}
302 	mutex_unlock(&profile_flip_mutex);
303 }
304 
305 void profile_hits(int type, void *__pc, unsigned int nr_hits)
306 {
307 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
308 	int i, j, cpu;
309 	struct profile_hit *hits;
310 
311 	if (prof_on != type || !prof_buffer)
312 		return;
313 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
314 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
315 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
316 	cpu = get_cpu();
317 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
318 	if (!hits) {
319 		put_cpu();
320 		return;
321 	}
322 	/*
323 	 * We buffer the global profiler buffer into a per-CPU
324 	 * queue and thus reduce the number of global (and possibly
325 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
326 	 */
327 	local_irq_save(flags);
328 	do {
329 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
330 			if (hits[i + j].pc == pc) {
331 				hits[i + j].hits += nr_hits;
332 				goto out;
333 			} else if (!hits[i + j].hits) {
334 				hits[i + j].pc = pc;
335 				hits[i + j].hits = nr_hits;
336 				goto out;
337 			}
338 		}
339 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
340 	} while (i != primary);
341 
342 	/*
343 	 * Add the current hit(s) and flush the write-queue out
344 	 * to the global buffer:
345 	 */
346 	atomic_add(nr_hits, &prof_buffer[pc]);
347 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
348 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
349 		hits[i].pc = hits[i].hits = 0;
350 	}
351 out:
352 	local_irq_restore(flags);
353 	put_cpu();
354 }
355 
356 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
357 					unsigned long action, void *__cpu)
358 {
359 	int node, cpu = (unsigned long)__cpu;
360 	struct page *page;
361 
362 	switch (action) {
363 	case CPU_UP_PREPARE:
364 	case CPU_UP_PREPARE_FROZEN:
365 		node = cpu_to_node(cpu);
366 		per_cpu(cpu_profile_flip, cpu) = 0;
367 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
368 			page = alloc_pages_node(node,
369 					GFP_KERNEL | __GFP_ZERO,
370 					0);
371 			if (!page)
372 				return NOTIFY_BAD;
373 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
374 		}
375 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
376 			page = alloc_pages_node(node,
377 					GFP_KERNEL | __GFP_ZERO,
378 					0);
379 			if (!page)
380 				goto out_free;
381 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
382 		}
383 		break;
384 out_free:
385 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
386 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
387 		__free_page(page);
388 		return NOTIFY_BAD;
389 	case CPU_ONLINE:
390 	case CPU_ONLINE_FROZEN:
391 		if (prof_cpu_mask != NULL)
392 			cpumask_set_cpu(cpu, prof_cpu_mask);
393 		break;
394 	case CPU_UP_CANCELED:
395 	case CPU_UP_CANCELED_FROZEN:
396 	case CPU_DEAD:
397 	case CPU_DEAD_FROZEN:
398 		if (prof_cpu_mask != NULL)
399 			cpumask_clear_cpu(cpu, prof_cpu_mask);
400 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
401 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
402 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
403 			__free_page(page);
404 		}
405 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
406 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
407 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
408 			__free_page(page);
409 		}
410 		break;
411 	}
412 	return NOTIFY_OK;
413 }
414 #else /* !CONFIG_SMP */
415 #define profile_flip_buffers()		do { } while (0)
416 #define profile_discard_flip_buffers()	do { } while (0)
417 #define profile_cpu_callback		NULL
418 
419 void profile_hits(int type, void *__pc, unsigned int nr_hits)
420 {
421 	unsigned long pc;
422 
423 	if (prof_on != type || !prof_buffer)
424 		return;
425 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
426 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
427 }
428 #endif /* !CONFIG_SMP */
429 EXPORT_SYMBOL_GPL(profile_hits);
430 
431 void profile_tick(int type)
432 {
433 	struct pt_regs *regs = get_irq_regs();
434 
435 	if (type == CPU_PROFILING && timer_hook)
436 		timer_hook(regs);
437 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
438 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
439 		profile_hit(type, (void *)profile_pc(regs));
440 }
441 
442 #ifdef CONFIG_PROC_FS
443 #include <linux/proc_fs.h>
444 #include <asm/uaccess.h>
445 
446 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
447 			int count, int *eof, void *data)
448 {
449 	int len = cpumask_scnprintf(page, count, data);
450 	if (count - len < 2)
451 		return -EINVAL;
452 	len += sprintf(page + len, "\n");
453 	return len;
454 }
455 
456 static int prof_cpu_mask_write_proc(struct file *file,
457 	const char __user *buffer,  unsigned long count, void *data)
458 {
459 	struct cpumask *mask = data;
460 	unsigned long full_count = count, err;
461 	cpumask_var_t new_value;
462 
463 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
464 		return -ENOMEM;
465 
466 	err = cpumask_parse_user(buffer, count, new_value);
467 	if (!err) {
468 		cpumask_copy(mask, new_value);
469 		err = full_count;
470 	}
471 	free_cpumask_var(new_value);
472 	return err;
473 }
474 
475 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
476 {
477 	struct proc_dir_entry *entry;
478 
479 	/* create /proc/irq/prof_cpu_mask */
480 	entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
481 	if (!entry)
482 		return;
483 	entry->data = prof_cpu_mask;
484 	entry->read_proc = prof_cpu_mask_read_proc;
485 	entry->write_proc = prof_cpu_mask_write_proc;
486 }
487 
488 /*
489  * This function accesses profiling information. The returned data is
490  * binary: the sampling step and the actual contents of the profile
491  * buffer. Use of the program readprofile is recommended in order to
492  * get meaningful info out of these data.
493  */
494 static ssize_t
495 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
496 {
497 	unsigned long p = *ppos;
498 	ssize_t read;
499 	char *pnt;
500 	unsigned int sample_step = 1 << prof_shift;
501 
502 	profile_flip_buffers();
503 	if (p >= (prof_len+1)*sizeof(unsigned int))
504 		return 0;
505 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
506 		count = (prof_len+1)*sizeof(unsigned int) - p;
507 	read = 0;
508 
509 	while (p < sizeof(unsigned int) && count > 0) {
510 		if (put_user(*((char *)(&sample_step)+p), buf))
511 			return -EFAULT;
512 		buf++; p++; count--; read++;
513 	}
514 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
515 	if (copy_to_user(buf, (void *)pnt, count))
516 		return -EFAULT;
517 	read += count;
518 	*ppos += read;
519 	return read;
520 }
521 
522 /*
523  * Writing to /proc/profile resets the counters
524  *
525  * Writing a 'profiling multiplier' value into it also re-sets the profiling
526  * interrupt frequency, on architectures that support this.
527  */
528 static ssize_t write_profile(struct file *file, const char __user *buf,
529 			     size_t count, loff_t *ppos)
530 {
531 #ifdef CONFIG_SMP
532 	extern int setup_profiling_timer(unsigned int multiplier);
533 
534 	if (count == sizeof(int)) {
535 		unsigned int multiplier;
536 
537 		if (copy_from_user(&multiplier, buf, sizeof(int)))
538 			return -EFAULT;
539 
540 		if (setup_profiling_timer(multiplier))
541 			return -EINVAL;
542 	}
543 #endif
544 	profile_discard_flip_buffers();
545 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
546 	return count;
547 }
548 
549 static const struct file_operations proc_profile_operations = {
550 	.read		= read_profile,
551 	.write		= write_profile,
552 };
553 
554 #ifdef CONFIG_SMP
555 static void profile_nop(void *unused)
556 {
557 }
558 
559 static int create_hash_tables(void)
560 {
561 	int cpu;
562 
563 	for_each_online_cpu(cpu) {
564 		int node = cpu_to_node(cpu);
565 		struct page *page;
566 
567 		page = alloc_pages_node(node,
568 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
569 				0);
570 		if (!page)
571 			goto out_cleanup;
572 		per_cpu(cpu_profile_hits, cpu)[1]
573 				= (struct profile_hit *)page_address(page);
574 		page = alloc_pages_node(node,
575 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
576 				0);
577 		if (!page)
578 			goto out_cleanup;
579 		per_cpu(cpu_profile_hits, cpu)[0]
580 				= (struct profile_hit *)page_address(page);
581 	}
582 	return 0;
583 out_cleanup:
584 	prof_on = 0;
585 	smp_mb();
586 	on_each_cpu(profile_nop, NULL, 1);
587 	for_each_online_cpu(cpu) {
588 		struct page *page;
589 
590 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
591 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
592 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
593 			__free_page(page);
594 		}
595 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
596 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
597 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
598 			__free_page(page);
599 		}
600 	}
601 	return -1;
602 }
603 #else
604 #define create_hash_tables()			({ 0; })
605 #endif
606 
607 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
608 {
609 	struct proc_dir_entry *entry;
610 
611 	if (!prof_on)
612 		return 0;
613 	if (create_hash_tables())
614 		return -ENOMEM;
615 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
616 			    NULL, &proc_profile_operations);
617 	if (!entry)
618 		return 0;
619 	entry->size = (1+prof_len) * sizeof(atomic_t);
620 	hotcpu_notifier(profile_cpu_callback, 0);
621 	return 0;
622 }
623 module_init(create_proc_profile);
624 #endif /* CONFIG_PROC_FS */
625