1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * William Irwin, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 14 */ 15 16 #include <linux/module.h> 17 #include <linux/profile.h> 18 #include <linux/bootmem.h> 19 #include <linux/notifier.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/highmem.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/vmalloc.h> 27 #include <asm/sections.h> 28 #include <asm/irq_regs.h> 29 #include <asm/ptrace.h> 30 31 struct profile_hit { 32 u32 pc, hits; 33 }; 34 #define PROFILE_GRPSHIFT 3 35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 38 39 /* Oprofile timer tick hook */ 40 static int (*timer_hook)(struct pt_regs *) __read_mostly; 41 42 static atomic_t *prof_buffer; 43 static unsigned long prof_len, prof_shift; 44 45 int prof_on __read_mostly; 46 EXPORT_SYMBOL_GPL(prof_on); 47 48 static cpumask_var_t prof_cpu_mask; 49 #ifdef CONFIG_SMP 50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 51 static DEFINE_PER_CPU(int, cpu_profile_flip); 52 static DEFINE_MUTEX(profile_flip_mutex); 53 #endif /* CONFIG_SMP */ 54 55 int profile_setup(char *str) 56 { 57 static char schedstr[] = "schedule"; 58 static char sleepstr[] = "sleep"; 59 static char kvmstr[] = "kvm"; 60 int par; 61 62 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 63 #ifdef CONFIG_SCHEDSTATS 64 prof_on = SLEEP_PROFILING; 65 if (str[strlen(sleepstr)] == ',') 66 str += strlen(sleepstr) + 1; 67 if (get_option(&str, &par)) 68 prof_shift = par; 69 printk(KERN_INFO 70 "kernel sleep profiling enabled (shift: %ld)\n", 71 prof_shift); 72 #else 73 printk(KERN_WARNING 74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 75 #endif /* CONFIG_SCHEDSTATS */ 76 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 77 prof_on = SCHED_PROFILING; 78 if (str[strlen(schedstr)] == ',') 79 str += strlen(schedstr) + 1; 80 if (get_option(&str, &par)) 81 prof_shift = par; 82 printk(KERN_INFO 83 "kernel schedule profiling enabled (shift: %ld)\n", 84 prof_shift); 85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 86 prof_on = KVM_PROFILING; 87 if (str[strlen(kvmstr)] == ',') 88 str += strlen(kvmstr) + 1; 89 if (get_option(&str, &par)) 90 prof_shift = par; 91 printk(KERN_INFO 92 "kernel KVM profiling enabled (shift: %ld)\n", 93 prof_shift); 94 } else if (get_option(&str, &par)) { 95 prof_shift = par; 96 prof_on = CPU_PROFILING; 97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", 98 prof_shift); 99 } 100 return 1; 101 } 102 __setup("profile=", profile_setup); 103 104 105 int __ref profile_init(void) 106 { 107 int buffer_bytes; 108 if (!prof_on) 109 return 0; 110 111 /* only text is profiled */ 112 prof_len = (_etext - _stext) >> prof_shift; 113 buffer_bytes = prof_len*sizeof(atomic_t); 114 115 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 116 return -ENOMEM; 117 118 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 119 120 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL); 121 if (prof_buffer) 122 return 0; 123 124 prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO); 125 if (prof_buffer) 126 return 0; 127 128 prof_buffer = vmalloc(buffer_bytes); 129 if (prof_buffer) 130 return 0; 131 132 free_cpumask_var(prof_cpu_mask); 133 return -ENOMEM; 134 } 135 136 /* Profile event notifications */ 137 138 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 139 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 140 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 141 142 void profile_task_exit(struct task_struct *task) 143 { 144 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 145 } 146 147 int profile_handoff_task(struct task_struct *task) 148 { 149 int ret; 150 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 151 return (ret == NOTIFY_OK) ? 1 : 0; 152 } 153 154 void profile_munmap(unsigned long addr) 155 { 156 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 157 } 158 159 int task_handoff_register(struct notifier_block *n) 160 { 161 return atomic_notifier_chain_register(&task_free_notifier, n); 162 } 163 EXPORT_SYMBOL_GPL(task_handoff_register); 164 165 int task_handoff_unregister(struct notifier_block *n) 166 { 167 return atomic_notifier_chain_unregister(&task_free_notifier, n); 168 } 169 EXPORT_SYMBOL_GPL(task_handoff_unregister); 170 171 int profile_event_register(enum profile_type type, struct notifier_block *n) 172 { 173 int err = -EINVAL; 174 175 switch (type) { 176 case PROFILE_TASK_EXIT: 177 err = blocking_notifier_chain_register( 178 &task_exit_notifier, n); 179 break; 180 case PROFILE_MUNMAP: 181 err = blocking_notifier_chain_register( 182 &munmap_notifier, n); 183 break; 184 } 185 186 return err; 187 } 188 EXPORT_SYMBOL_GPL(profile_event_register); 189 190 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 191 { 192 int err = -EINVAL; 193 194 switch (type) { 195 case PROFILE_TASK_EXIT: 196 err = blocking_notifier_chain_unregister( 197 &task_exit_notifier, n); 198 break; 199 case PROFILE_MUNMAP: 200 err = blocking_notifier_chain_unregister( 201 &munmap_notifier, n); 202 break; 203 } 204 205 return err; 206 } 207 EXPORT_SYMBOL_GPL(profile_event_unregister); 208 209 int register_timer_hook(int (*hook)(struct pt_regs *)) 210 { 211 if (timer_hook) 212 return -EBUSY; 213 timer_hook = hook; 214 return 0; 215 } 216 EXPORT_SYMBOL_GPL(register_timer_hook); 217 218 void unregister_timer_hook(int (*hook)(struct pt_regs *)) 219 { 220 WARN_ON(hook != timer_hook); 221 timer_hook = NULL; 222 /* make sure all CPUs see the NULL hook */ 223 synchronize_sched(); /* Allow ongoing interrupts to complete. */ 224 } 225 EXPORT_SYMBOL_GPL(unregister_timer_hook); 226 227 228 #ifdef CONFIG_SMP 229 /* 230 * Each cpu has a pair of open-addressed hashtables for pending 231 * profile hits. read_profile() IPI's all cpus to request them 232 * to flip buffers and flushes their contents to prof_buffer itself. 233 * Flip requests are serialized by the profile_flip_mutex. The sole 234 * use of having a second hashtable is for avoiding cacheline 235 * contention that would otherwise happen during flushes of pending 236 * profile hits required for the accuracy of reported profile hits 237 * and so resurrect the interrupt livelock issue. 238 * 239 * The open-addressed hashtables are indexed by profile buffer slot 240 * and hold the number of pending hits to that profile buffer slot on 241 * a cpu in an entry. When the hashtable overflows, all pending hits 242 * are accounted to their corresponding profile buffer slots with 243 * atomic_add() and the hashtable emptied. As numerous pending hits 244 * may be accounted to a profile buffer slot in a hashtable entry, 245 * this amortizes a number of atomic profile buffer increments likely 246 * to be far larger than the number of entries in the hashtable, 247 * particularly given that the number of distinct profile buffer 248 * positions to which hits are accounted during short intervals (e.g. 249 * several seconds) is usually very small. Exclusion from buffer 250 * flipping is provided by interrupt disablement (note that for 251 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 252 * process context). 253 * The hash function is meant to be lightweight as opposed to strong, 254 * and was vaguely inspired by ppc64 firmware-supported inverted 255 * pagetable hash functions, but uses a full hashtable full of finite 256 * collision chains, not just pairs of them. 257 * 258 * -- wli 259 */ 260 static void __profile_flip_buffers(void *unused) 261 { 262 int cpu = smp_processor_id(); 263 264 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 265 } 266 267 static void profile_flip_buffers(void) 268 { 269 int i, j, cpu; 270 271 mutex_lock(&profile_flip_mutex); 272 j = per_cpu(cpu_profile_flip, get_cpu()); 273 put_cpu(); 274 on_each_cpu(__profile_flip_buffers, NULL, 1); 275 for_each_online_cpu(cpu) { 276 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 277 for (i = 0; i < NR_PROFILE_HIT; ++i) { 278 if (!hits[i].hits) { 279 if (hits[i].pc) 280 hits[i].pc = 0; 281 continue; 282 } 283 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 284 hits[i].hits = hits[i].pc = 0; 285 } 286 } 287 mutex_unlock(&profile_flip_mutex); 288 } 289 290 static void profile_discard_flip_buffers(void) 291 { 292 int i, cpu; 293 294 mutex_lock(&profile_flip_mutex); 295 i = per_cpu(cpu_profile_flip, get_cpu()); 296 put_cpu(); 297 on_each_cpu(__profile_flip_buffers, NULL, 1); 298 for_each_online_cpu(cpu) { 299 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 300 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 301 } 302 mutex_unlock(&profile_flip_mutex); 303 } 304 305 void profile_hits(int type, void *__pc, unsigned int nr_hits) 306 { 307 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 308 int i, j, cpu; 309 struct profile_hit *hits; 310 311 if (prof_on != type || !prof_buffer) 312 return; 313 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 314 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 315 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 316 cpu = get_cpu(); 317 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 318 if (!hits) { 319 put_cpu(); 320 return; 321 } 322 /* 323 * We buffer the global profiler buffer into a per-CPU 324 * queue and thus reduce the number of global (and possibly 325 * NUMA-alien) accesses. The write-queue is self-coalescing: 326 */ 327 local_irq_save(flags); 328 do { 329 for (j = 0; j < PROFILE_GRPSZ; ++j) { 330 if (hits[i + j].pc == pc) { 331 hits[i + j].hits += nr_hits; 332 goto out; 333 } else if (!hits[i + j].hits) { 334 hits[i + j].pc = pc; 335 hits[i + j].hits = nr_hits; 336 goto out; 337 } 338 } 339 i = (i + secondary) & (NR_PROFILE_HIT - 1); 340 } while (i != primary); 341 342 /* 343 * Add the current hit(s) and flush the write-queue out 344 * to the global buffer: 345 */ 346 atomic_add(nr_hits, &prof_buffer[pc]); 347 for (i = 0; i < NR_PROFILE_HIT; ++i) { 348 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 349 hits[i].pc = hits[i].hits = 0; 350 } 351 out: 352 local_irq_restore(flags); 353 put_cpu(); 354 } 355 356 static int __cpuinit profile_cpu_callback(struct notifier_block *info, 357 unsigned long action, void *__cpu) 358 { 359 int node, cpu = (unsigned long)__cpu; 360 struct page *page; 361 362 switch (action) { 363 case CPU_UP_PREPARE: 364 case CPU_UP_PREPARE_FROZEN: 365 node = cpu_to_node(cpu); 366 per_cpu(cpu_profile_flip, cpu) = 0; 367 if (!per_cpu(cpu_profile_hits, cpu)[1]) { 368 page = alloc_pages_node(node, 369 GFP_KERNEL | __GFP_ZERO, 370 0); 371 if (!page) 372 return NOTIFY_BAD; 373 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); 374 } 375 if (!per_cpu(cpu_profile_hits, cpu)[0]) { 376 page = alloc_pages_node(node, 377 GFP_KERNEL | __GFP_ZERO, 378 0); 379 if (!page) 380 goto out_free; 381 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); 382 } 383 break; 384 out_free: 385 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 386 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 387 __free_page(page); 388 return NOTIFY_BAD; 389 case CPU_ONLINE: 390 case CPU_ONLINE_FROZEN: 391 if (prof_cpu_mask != NULL) 392 cpumask_set_cpu(cpu, prof_cpu_mask); 393 break; 394 case CPU_UP_CANCELED: 395 case CPU_UP_CANCELED_FROZEN: 396 case CPU_DEAD: 397 case CPU_DEAD_FROZEN: 398 if (prof_cpu_mask != NULL) 399 cpumask_clear_cpu(cpu, prof_cpu_mask); 400 if (per_cpu(cpu_profile_hits, cpu)[0]) { 401 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 402 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 403 __free_page(page); 404 } 405 if (per_cpu(cpu_profile_hits, cpu)[1]) { 406 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 407 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 408 __free_page(page); 409 } 410 break; 411 } 412 return NOTIFY_OK; 413 } 414 #else /* !CONFIG_SMP */ 415 #define profile_flip_buffers() do { } while (0) 416 #define profile_discard_flip_buffers() do { } while (0) 417 #define profile_cpu_callback NULL 418 419 void profile_hits(int type, void *__pc, unsigned int nr_hits) 420 { 421 unsigned long pc; 422 423 if (prof_on != type || !prof_buffer) 424 return; 425 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 426 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 427 } 428 #endif /* !CONFIG_SMP */ 429 EXPORT_SYMBOL_GPL(profile_hits); 430 431 void profile_tick(int type) 432 { 433 struct pt_regs *regs = get_irq_regs(); 434 435 if (type == CPU_PROFILING && timer_hook) 436 timer_hook(regs); 437 if (!user_mode(regs) && prof_cpu_mask != NULL && 438 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 439 profile_hit(type, (void *)profile_pc(regs)); 440 } 441 442 #ifdef CONFIG_PROC_FS 443 #include <linux/proc_fs.h> 444 #include <asm/uaccess.h> 445 446 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, 447 int count, int *eof, void *data) 448 { 449 int len = cpumask_scnprintf(page, count, data); 450 if (count - len < 2) 451 return -EINVAL; 452 len += sprintf(page + len, "\n"); 453 return len; 454 } 455 456 static int prof_cpu_mask_write_proc(struct file *file, 457 const char __user *buffer, unsigned long count, void *data) 458 { 459 struct cpumask *mask = data; 460 unsigned long full_count = count, err; 461 cpumask_var_t new_value; 462 463 if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) 464 return -ENOMEM; 465 466 err = cpumask_parse_user(buffer, count, new_value); 467 if (!err) { 468 cpumask_copy(mask, new_value); 469 err = full_count; 470 } 471 free_cpumask_var(new_value); 472 return err; 473 } 474 475 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 476 { 477 struct proc_dir_entry *entry; 478 479 /* create /proc/irq/prof_cpu_mask */ 480 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); 481 if (!entry) 482 return; 483 entry->data = prof_cpu_mask; 484 entry->read_proc = prof_cpu_mask_read_proc; 485 entry->write_proc = prof_cpu_mask_write_proc; 486 } 487 488 /* 489 * This function accesses profiling information. The returned data is 490 * binary: the sampling step and the actual contents of the profile 491 * buffer. Use of the program readprofile is recommended in order to 492 * get meaningful info out of these data. 493 */ 494 static ssize_t 495 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 496 { 497 unsigned long p = *ppos; 498 ssize_t read; 499 char *pnt; 500 unsigned int sample_step = 1 << prof_shift; 501 502 profile_flip_buffers(); 503 if (p >= (prof_len+1)*sizeof(unsigned int)) 504 return 0; 505 if (count > (prof_len+1)*sizeof(unsigned int) - p) 506 count = (prof_len+1)*sizeof(unsigned int) - p; 507 read = 0; 508 509 while (p < sizeof(unsigned int) && count > 0) { 510 if (put_user(*((char *)(&sample_step)+p), buf)) 511 return -EFAULT; 512 buf++; p++; count--; read++; 513 } 514 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 515 if (copy_to_user(buf, (void *)pnt, count)) 516 return -EFAULT; 517 read += count; 518 *ppos += read; 519 return read; 520 } 521 522 /* 523 * Writing to /proc/profile resets the counters 524 * 525 * Writing a 'profiling multiplier' value into it also re-sets the profiling 526 * interrupt frequency, on architectures that support this. 527 */ 528 static ssize_t write_profile(struct file *file, const char __user *buf, 529 size_t count, loff_t *ppos) 530 { 531 #ifdef CONFIG_SMP 532 extern int setup_profiling_timer(unsigned int multiplier); 533 534 if (count == sizeof(int)) { 535 unsigned int multiplier; 536 537 if (copy_from_user(&multiplier, buf, sizeof(int))) 538 return -EFAULT; 539 540 if (setup_profiling_timer(multiplier)) 541 return -EINVAL; 542 } 543 #endif 544 profile_discard_flip_buffers(); 545 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 546 return count; 547 } 548 549 static const struct file_operations proc_profile_operations = { 550 .read = read_profile, 551 .write = write_profile, 552 }; 553 554 #ifdef CONFIG_SMP 555 static void profile_nop(void *unused) 556 { 557 } 558 559 static int create_hash_tables(void) 560 { 561 int cpu; 562 563 for_each_online_cpu(cpu) { 564 int node = cpu_to_node(cpu); 565 struct page *page; 566 567 page = alloc_pages_node(node, 568 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 569 0); 570 if (!page) 571 goto out_cleanup; 572 per_cpu(cpu_profile_hits, cpu)[1] 573 = (struct profile_hit *)page_address(page); 574 page = alloc_pages_node(node, 575 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 576 0); 577 if (!page) 578 goto out_cleanup; 579 per_cpu(cpu_profile_hits, cpu)[0] 580 = (struct profile_hit *)page_address(page); 581 } 582 return 0; 583 out_cleanup: 584 prof_on = 0; 585 smp_mb(); 586 on_each_cpu(profile_nop, NULL, 1); 587 for_each_online_cpu(cpu) { 588 struct page *page; 589 590 if (per_cpu(cpu_profile_hits, cpu)[0]) { 591 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 592 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 593 __free_page(page); 594 } 595 if (per_cpu(cpu_profile_hits, cpu)[1]) { 596 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 597 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 598 __free_page(page); 599 } 600 } 601 return -1; 602 } 603 #else 604 #define create_hash_tables() ({ 0; }) 605 #endif 606 607 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */ 608 { 609 struct proc_dir_entry *entry; 610 611 if (!prof_on) 612 return 0; 613 if (create_hash_tables()) 614 return -ENOMEM; 615 entry = proc_create("profile", S_IWUSR | S_IRUGO, 616 NULL, &proc_profile_operations); 617 if (!entry) 618 return 0; 619 entry->size = (1+prof_len) * sizeof(atomic_t); 620 hotcpu_notifier(profile_cpu_callback, 0); 621 return 0; 622 } 623 module_init(create_proc_profile); 624 #endif /* CONFIG_PROC_FS */ 625