1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * William Irwin, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 14 */ 15 16 #include <linux/module.h> 17 #include <linux/profile.h> 18 #include <linux/bootmem.h> 19 #include <linux/notifier.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/profile.h> 24 #include <linux/highmem.h> 25 #include <linux/mutex.h> 26 #include <asm/sections.h> 27 #include <asm/semaphore.h> 28 #include <asm/irq_regs.h> 29 #include <asm/ptrace.h> 30 31 struct profile_hit { 32 u32 pc, hits; 33 }; 34 #define PROFILE_GRPSHIFT 3 35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 38 39 /* Oprofile timer tick hook */ 40 int (*timer_hook)(struct pt_regs *) __read_mostly; 41 42 static atomic_t *prof_buffer; 43 static unsigned long prof_len, prof_shift; 44 45 int prof_on __read_mostly; 46 EXPORT_SYMBOL_GPL(prof_on); 47 48 static cpumask_t prof_cpu_mask = CPU_MASK_ALL; 49 #ifdef CONFIG_SMP 50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 51 static DEFINE_PER_CPU(int, cpu_profile_flip); 52 static DEFINE_MUTEX(profile_flip_mutex); 53 #endif /* CONFIG_SMP */ 54 55 static int __init profile_setup(char * str) 56 { 57 static char __initdata schedstr[] = "schedule"; 58 static char __initdata sleepstr[] = "sleep"; 59 static char __initdata kvmstr[] = "kvm"; 60 int par; 61 62 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 63 prof_on = SLEEP_PROFILING; 64 if (str[strlen(sleepstr)] == ',') 65 str += strlen(sleepstr) + 1; 66 if (get_option(&str, &par)) 67 prof_shift = par; 68 printk(KERN_INFO 69 "kernel sleep profiling enabled (shift: %ld)\n", 70 prof_shift); 71 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 72 prof_on = SCHED_PROFILING; 73 if (str[strlen(schedstr)] == ',') 74 str += strlen(schedstr) + 1; 75 if (get_option(&str, &par)) 76 prof_shift = par; 77 printk(KERN_INFO 78 "kernel schedule profiling enabled (shift: %ld)\n", 79 prof_shift); 80 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 81 prof_on = KVM_PROFILING; 82 if (str[strlen(kvmstr)] == ',') 83 str += strlen(kvmstr) + 1; 84 if (get_option(&str, &par)) 85 prof_shift = par; 86 printk(KERN_INFO 87 "kernel KVM profiling enabled (shift: %ld)\n", 88 prof_shift); 89 } else if (get_option(&str, &par)) { 90 prof_shift = par; 91 prof_on = CPU_PROFILING; 92 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", 93 prof_shift); 94 } 95 return 1; 96 } 97 __setup("profile=", profile_setup); 98 99 100 void __init profile_init(void) 101 { 102 if (!prof_on) 103 return; 104 105 /* only text is profiled */ 106 prof_len = (_etext - _stext) >> prof_shift; 107 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); 108 } 109 110 /* Profile event notifications */ 111 112 #ifdef CONFIG_PROFILING 113 114 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 115 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 116 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 117 118 void profile_task_exit(struct task_struct * task) 119 { 120 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 121 } 122 123 int profile_handoff_task(struct task_struct * task) 124 { 125 int ret; 126 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 127 return (ret == NOTIFY_OK) ? 1 : 0; 128 } 129 130 void profile_munmap(unsigned long addr) 131 { 132 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 133 } 134 135 int task_handoff_register(struct notifier_block * n) 136 { 137 return atomic_notifier_chain_register(&task_free_notifier, n); 138 } 139 140 int task_handoff_unregister(struct notifier_block * n) 141 { 142 return atomic_notifier_chain_unregister(&task_free_notifier, n); 143 } 144 145 int profile_event_register(enum profile_type type, struct notifier_block * n) 146 { 147 int err = -EINVAL; 148 149 switch (type) { 150 case PROFILE_TASK_EXIT: 151 err = blocking_notifier_chain_register( 152 &task_exit_notifier, n); 153 break; 154 case PROFILE_MUNMAP: 155 err = blocking_notifier_chain_register( 156 &munmap_notifier, n); 157 break; 158 } 159 160 return err; 161 } 162 163 164 int profile_event_unregister(enum profile_type type, struct notifier_block * n) 165 { 166 int err = -EINVAL; 167 168 switch (type) { 169 case PROFILE_TASK_EXIT: 170 err = blocking_notifier_chain_unregister( 171 &task_exit_notifier, n); 172 break; 173 case PROFILE_MUNMAP: 174 err = blocking_notifier_chain_unregister( 175 &munmap_notifier, n); 176 break; 177 } 178 179 return err; 180 } 181 182 int register_timer_hook(int (*hook)(struct pt_regs *)) 183 { 184 if (timer_hook) 185 return -EBUSY; 186 timer_hook = hook; 187 return 0; 188 } 189 190 void unregister_timer_hook(int (*hook)(struct pt_regs *)) 191 { 192 WARN_ON(hook != timer_hook); 193 timer_hook = NULL; 194 /* make sure all CPUs see the NULL hook */ 195 synchronize_sched(); /* Allow ongoing interrupts to complete. */ 196 } 197 198 EXPORT_SYMBOL_GPL(register_timer_hook); 199 EXPORT_SYMBOL_GPL(unregister_timer_hook); 200 EXPORT_SYMBOL_GPL(task_handoff_register); 201 EXPORT_SYMBOL_GPL(task_handoff_unregister); 202 203 #endif /* CONFIG_PROFILING */ 204 205 EXPORT_SYMBOL_GPL(profile_event_register); 206 EXPORT_SYMBOL_GPL(profile_event_unregister); 207 208 #ifdef CONFIG_SMP 209 /* 210 * Each cpu has a pair of open-addressed hashtables for pending 211 * profile hits. read_profile() IPI's all cpus to request them 212 * to flip buffers and flushes their contents to prof_buffer itself. 213 * Flip requests are serialized by the profile_flip_mutex. The sole 214 * use of having a second hashtable is for avoiding cacheline 215 * contention that would otherwise happen during flushes of pending 216 * profile hits required for the accuracy of reported profile hits 217 * and so resurrect the interrupt livelock issue. 218 * 219 * The open-addressed hashtables are indexed by profile buffer slot 220 * and hold the number of pending hits to that profile buffer slot on 221 * a cpu in an entry. When the hashtable overflows, all pending hits 222 * are accounted to their corresponding profile buffer slots with 223 * atomic_add() and the hashtable emptied. As numerous pending hits 224 * may be accounted to a profile buffer slot in a hashtable entry, 225 * this amortizes a number of atomic profile buffer increments likely 226 * to be far larger than the number of entries in the hashtable, 227 * particularly given that the number of distinct profile buffer 228 * positions to which hits are accounted during short intervals (e.g. 229 * several seconds) is usually very small. Exclusion from buffer 230 * flipping is provided by interrupt disablement (note that for 231 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 232 * process context). 233 * The hash function is meant to be lightweight as opposed to strong, 234 * and was vaguely inspired by ppc64 firmware-supported inverted 235 * pagetable hash functions, but uses a full hashtable full of finite 236 * collision chains, not just pairs of them. 237 * 238 * -- wli 239 */ 240 static void __profile_flip_buffers(void *unused) 241 { 242 int cpu = smp_processor_id(); 243 244 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 245 } 246 247 static void profile_flip_buffers(void) 248 { 249 int i, j, cpu; 250 251 mutex_lock(&profile_flip_mutex); 252 j = per_cpu(cpu_profile_flip, get_cpu()); 253 put_cpu(); 254 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 255 for_each_online_cpu(cpu) { 256 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 257 for (i = 0; i < NR_PROFILE_HIT; ++i) { 258 if (!hits[i].hits) { 259 if (hits[i].pc) 260 hits[i].pc = 0; 261 continue; 262 } 263 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 264 hits[i].hits = hits[i].pc = 0; 265 } 266 } 267 mutex_unlock(&profile_flip_mutex); 268 } 269 270 static void profile_discard_flip_buffers(void) 271 { 272 int i, cpu; 273 274 mutex_lock(&profile_flip_mutex); 275 i = per_cpu(cpu_profile_flip, get_cpu()); 276 put_cpu(); 277 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 278 for_each_online_cpu(cpu) { 279 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 280 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 281 } 282 mutex_unlock(&profile_flip_mutex); 283 } 284 285 void profile_hits(int type, void *__pc, unsigned int nr_hits) 286 { 287 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 288 int i, j, cpu; 289 struct profile_hit *hits; 290 291 if (prof_on != type || !prof_buffer) 292 return; 293 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 294 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 295 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 296 cpu = get_cpu(); 297 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 298 if (!hits) { 299 put_cpu(); 300 return; 301 } 302 /* 303 * We buffer the global profiler buffer into a per-CPU 304 * queue and thus reduce the number of global (and possibly 305 * NUMA-alien) accesses. The write-queue is self-coalescing: 306 */ 307 local_irq_save(flags); 308 do { 309 for (j = 0; j < PROFILE_GRPSZ; ++j) { 310 if (hits[i + j].pc == pc) { 311 hits[i + j].hits += nr_hits; 312 goto out; 313 } else if (!hits[i + j].hits) { 314 hits[i + j].pc = pc; 315 hits[i + j].hits = nr_hits; 316 goto out; 317 } 318 } 319 i = (i + secondary) & (NR_PROFILE_HIT - 1); 320 } while (i != primary); 321 322 /* 323 * Add the current hit(s) and flush the write-queue out 324 * to the global buffer: 325 */ 326 atomic_add(nr_hits, &prof_buffer[pc]); 327 for (i = 0; i < NR_PROFILE_HIT; ++i) { 328 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 329 hits[i].pc = hits[i].hits = 0; 330 } 331 out: 332 local_irq_restore(flags); 333 put_cpu(); 334 } 335 336 static int __devinit profile_cpu_callback(struct notifier_block *info, 337 unsigned long action, void *__cpu) 338 { 339 int node, cpu = (unsigned long)__cpu; 340 struct page *page; 341 342 switch (action) { 343 case CPU_UP_PREPARE: 344 case CPU_UP_PREPARE_FROZEN: 345 node = cpu_to_node(cpu); 346 per_cpu(cpu_profile_flip, cpu) = 0; 347 if (!per_cpu(cpu_profile_hits, cpu)[1]) { 348 page = alloc_pages_node(node, 349 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 350 0); 351 if (!page) 352 return NOTIFY_BAD; 353 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); 354 } 355 if (!per_cpu(cpu_profile_hits, cpu)[0]) { 356 page = alloc_pages_node(node, 357 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 358 0); 359 if (!page) 360 goto out_free; 361 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); 362 } 363 break; 364 out_free: 365 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 366 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 367 __free_page(page); 368 return NOTIFY_BAD; 369 case CPU_ONLINE: 370 case CPU_ONLINE_FROZEN: 371 cpu_set(cpu, prof_cpu_mask); 372 break; 373 case CPU_UP_CANCELED: 374 case CPU_UP_CANCELED_FROZEN: 375 case CPU_DEAD: 376 case CPU_DEAD_FROZEN: 377 cpu_clear(cpu, prof_cpu_mask); 378 if (per_cpu(cpu_profile_hits, cpu)[0]) { 379 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 380 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 381 __free_page(page); 382 } 383 if (per_cpu(cpu_profile_hits, cpu)[1]) { 384 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 385 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 386 __free_page(page); 387 } 388 break; 389 } 390 return NOTIFY_OK; 391 } 392 #else /* !CONFIG_SMP */ 393 #define profile_flip_buffers() do { } while (0) 394 #define profile_discard_flip_buffers() do { } while (0) 395 #define profile_cpu_callback NULL 396 397 void profile_hits(int type, void *__pc, unsigned int nr_hits) 398 { 399 unsigned long pc; 400 401 if (prof_on != type || !prof_buffer) 402 return; 403 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 404 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 405 } 406 #endif /* !CONFIG_SMP */ 407 408 EXPORT_SYMBOL_GPL(profile_hits); 409 410 void profile_tick(int type) 411 { 412 struct pt_regs *regs = get_irq_regs(); 413 414 if (type == CPU_PROFILING && timer_hook) 415 timer_hook(regs); 416 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) 417 profile_hit(type, (void *)profile_pc(regs)); 418 } 419 420 #ifdef CONFIG_PROC_FS 421 #include <linux/proc_fs.h> 422 #include <asm/uaccess.h> 423 #include <asm/ptrace.h> 424 425 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off, 426 int count, int *eof, void *data) 427 { 428 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); 429 if (count - len < 2) 430 return -EINVAL; 431 len += sprintf(page + len, "\n"); 432 return len; 433 } 434 435 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer, 436 unsigned long count, void *data) 437 { 438 cpumask_t *mask = (cpumask_t *)data; 439 unsigned long full_count = count, err; 440 cpumask_t new_value; 441 442 err = cpumask_parse_user(buffer, count, new_value); 443 if (err) 444 return err; 445 446 *mask = new_value; 447 return full_count; 448 } 449 450 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 451 { 452 struct proc_dir_entry *entry; 453 454 /* create /proc/irq/prof_cpu_mask */ 455 if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir))) 456 return; 457 entry->data = (void *)&prof_cpu_mask; 458 entry->read_proc = prof_cpu_mask_read_proc; 459 entry->write_proc = prof_cpu_mask_write_proc; 460 } 461 462 /* 463 * This function accesses profiling information. The returned data is 464 * binary: the sampling step and the actual contents of the profile 465 * buffer. Use of the program readprofile is recommended in order to 466 * get meaningful info out of these data. 467 */ 468 static ssize_t 469 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 470 { 471 unsigned long p = *ppos; 472 ssize_t read; 473 char * pnt; 474 unsigned int sample_step = 1 << prof_shift; 475 476 profile_flip_buffers(); 477 if (p >= (prof_len+1)*sizeof(unsigned int)) 478 return 0; 479 if (count > (prof_len+1)*sizeof(unsigned int) - p) 480 count = (prof_len+1)*sizeof(unsigned int) - p; 481 read = 0; 482 483 while (p < sizeof(unsigned int) && count > 0) { 484 if (put_user(*((char *)(&sample_step)+p),buf)) 485 return -EFAULT; 486 buf++; p++; count--; read++; 487 } 488 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 489 if (copy_to_user(buf,(void *)pnt,count)) 490 return -EFAULT; 491 read += count; 492 *ppos += read; 493 return read; 494 } 495 496 /* 497 * Writing to /proc/profile resets the counters 498 * 499 * Writing a 'profiling multiplier' value into it also re-sets the profiling 500 * interrupt frequency, on architectures that support this. 501 */ 502 static ssize_t write_profile(struct file *file, const char __user *buf, 503 size_t count, loff_t *ppos) 504 { 505 #ifdef CONFIG_SMP 506 extern int setup_profiling_timer (unsigned int multiplier); 507 508 if (count == sizeof(int)) { 509 unsigned int multiplier; 510 511 if (copy_from_user(&multiplier, buf, sizeof(int))) 512 return -EFAULT; 513 514 if (setup_profiling_timer(multiplier)) 515 return -EINVAL; 516 } 517 #endif 518 profile_discard_flip_buffers(); 519 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 520 return count; 521 } 522 523 static const struct file_operations proc_profile_operations = { 524 .read = read_profile, 525 .write = write_profile, 526 }; 527 528 #ifdef CONFIG_SMP 529 static void __init profile_nop(void *unused) 530 { 531 } 532 533 static int __init create_hash_tables(void) 534 { 535 int cpu; 536 537 for_each_online_cpu(cpu) { 538 int node = cpu_to_node(cpu); 539 struct page *page; 540 541 page = alloc_pages_node(node, 542 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 543 0); 544 if (!page) 545 goto out_cleanup; 546 per_cpu(cpu_profile_hits, cpu)[1] 547 = (struct profile_hit *)page_address(page); 548 page = alloc_pages_node(node, 549 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 550 0); 551 if (!page) 552 goto out_cleanup; 553 per_cpu(cpu_profile_hits, cpu)[0] 554 = (struct profile_hit *)page_address(page); 555 } 556 return 0; 557 out_cleanup: 558 prof_on = 0; 559 smp_mb(); 560 on_each_cpu(profile_nop, NULL, 0, 1); 561 for_each_online_cpu(cpu) { 562 struct page *page; 563 564 if (per_cpu(cpu_profile_hits, cpu)[0]) { 565 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 566 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 567 __free_page(page); 568 } 569 if (per_cpu(cpu_profile_hits, cpu)[1]) { 570 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 571 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 572 __free_page(page); 573 } 574 } 575 return -1; 576 } 577 #else 578 #define create_hash_tables() ({ 0; }) 579 #endif 580 581 static int __init create_proc_profile(void) 582 { 583 struct proc_dir_entry *entry; 584 585 if (!prof_on) 586 return 0; 587 if (create_hash_tables()) 588 return -1; 589 if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL))) 590 return 0; 591 entry->proc_fops = &proc_profile_operations; 592 entry->size = (1+prof_len) * sizeof(atomic_t); 593 hotcpu_notifier(profile_cpu_callback, 0); 594 return 0; 595 } 596 module_init(create_proc_profile); 597 #endif /* CONFIG_PROC_FS */ 598