xref: /openbmc/linux/kernel/profile.c (revision 64c70b1c)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/profile.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30 
31 struct profile_hit {
32 	u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT	3
35 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
38 
39 /* Oprofile timer tick hook */
40 int (*timer_hook)(struct pt_regs *) __read_mostly;
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47 
48 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 static int __init profile_setup(char * str)
56 {
57 	static char __initdata schedstr[] = "schedule";
58 	static char __initdata sleepstr[] = "sleep";
59 	static char __initdata kvmstr[] = "kvm";
60 	int par;
61 
62 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 		prof_on = SLEEP_PROFILING;
64 		if (str[strlen(sleepstr)] == ',')
65 			str += strlen(sleepstr) + 1;
66 		if (get_option(&str, &par))
67 			prof_shift = par;
68 		printk(KERN_INFO
69 			"kernel sleep profiling enabled (shift: %ld)\n",
70 			prof_shift);
71 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
72 		prof_on = SCHED_PROFILING;
73 		if (str[strlen(schedstr)] == ',')
74 			str += strlen(schedstr) + 1;
75 		if (get_option(&str, &par))
76 			prof_shift = par;
77 		printk(KERN_INFO
78 			"kernel schedule profiling enabled (shift: %ld)\n",
79 			prof_shift);
80 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
81 		prof_on = KVM_PROFILING;
82 		if (str[strlen(kvmstr)] == ',')
83 			str += strlen(kvmstr) + 1;
84 		if (get_option(&str, &par))
85 			prof_shift = par;
86 		printk(KERN_INFO
87 			"kernel KVM profiling enabled (shift: %ld)\n",
88 			prof_shift);
89 	} else if (get_option(&str, &par)) {
90 		prof_shift = par;
91 		prof_on = CPU_PROFILING;
92 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
93 			prof_shift);
94 	}
95 	return 1;
96 }
97 __setup("profile=", profile_setup);
98 
99 
100 void __init profile_init(void)
101 {
102 	if (!prof_on)
103 		return;
104 
105 	/* only text is profiled */
106 	prof_len = (_etext - _stext) >> prof_shift;
107 	prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
108 }
109 
110 /* Profile event notifications */
111 
112 #ifdef CONFIG_PROFILING
113 
114 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
115 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
116 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
117 
118 void profile_task_exit(struct task_struct * task)
119 {
120 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
121 }
122 
123 int profile_handoff_task(struct task_struct * task)
124 {
125 	int ret;
126 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
127 	return (ret == NOTIFY_OK) ? 1 : 0;
128 }
129 
130 void profile_munmap(unsigned long addr)
131 {
132 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
133 }
134 
135 int task_handoff_register(struct notifier_block * n)
136 {
137 	return atomic_notifier_chain_register(&task_free_notifier, n);
138 }
139 
140 int task_handoff_unregister(struct notifier_block * n)
141 {
142 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
143 }
144 
145 int profile_event_register(enum profile_type type, struct notifier_block * n)
146 {
147 	int err = -EINVAL;
148 
149 	switch (type) {
150 		case PROFILE_TASK_EXIT:
151 			err = blocking_notifier_chain_register(
152 					&task_exit_notifier, n);
153 			break;
154 		case PROFILE_MUNMAP:
155 			err = blocking_notifier_chain_register(
156 					&munmap_notifier, n);
157 			break;
158 	}
159 
160 	return err;
161 }
162 
163 
164 int profile_event_unregister(enum profile_type type, struct notifier_block * n)
165 {
166 	int err = -EINVAL;
167 
168 	switch (type) {
169 		case PROFILE_TASK_EXIT:
170 			err = blocking_notifier_chain_unregister(
171 					&task_exit_notifier, n);
172 			break;
173 		case PROFILE_MUNMAP:
174 			err = blocking_notifier_chain_unregister(
175 					&munmap_notifier, n);
176 			break;
177 	}
178 
179 	return err;
180 }
181 
182 int register_timer_hook(int (*hook)(struct pt_regs *))
183 {
184 	if (timer_hook)
185 		return -EBUSY;
186 	timer_hook = hook;
187 	return 0;
188 }
189 
190 void unregister_timer_hook(int (*hook)(struct pt_regs *))
191 {
192 	WARN_ON(hook != timer_hook);
193 	timer_hook = NULL;
194 	/* make sure all CPUs see the NULL hook */
195 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
196 }
197 
198 EXPORT_SYMBOL_GPL(register_timer_hook);
199 EXPORT_SYMBOL_GPL(unregister_timer_hook);
200 EXPORT_SYMBOL_GPL(task_handoff_register);
201 EXPORT_SYMBOL_GPL(task_handoff_unregister);
202 
203 #endif /* CONFIG_PROFILING */
204 
205 EXPORT_SYMBOL_GPL(profile_event_register);
206 EXPORT_SYMBOL_GPL(profile_event_unregister);
207 
208 #ifdef CONFIG_SMP
209 /*
210  * Each cpu has a pair of open-addressed hashtables for pending
211  * profile hits. read_profile() IPI's all cpus to request them
212  * to flip buffers and flushes their contents to prof_buffer itself.
213  * Flip requests are serialized by the profile_flip_mutex. The sole
214  * use of having a second hashtable is for avoiding cacheline
215  * contention that would otherwise happen during flushes of pending
216  * profile hits required for the accuracy of reported profile hits
217  * and so resurrect the interrupt livelock issue.
218  *
219  * The open-addressed hashtables are indexed by profile buffer slot
220  * and hold the number of pending hits to that profile buffer slot on
221  * a cpu in an entry. When the hashtable overflows, all pending hits
222  * are accounted to their corresponding profile buffer slots with
223  * atomic_add() and the hashtable emptied. As numerous pending hits
224  * may be accounted to a profile buffer slot in a hashtable entry,
225  * this amortizes a number of atomic profile buffer increments likely
226  * to be far larger than the number of entries in the hashtable,
227  * particularly given that the number of distinct profile buffer
228  * positions to which hits are accounted during short intervals (e.g.
229  * several seconds) is usually very small. Exclusion from buffer
230  * flipping is provided by interrupt disablement (note that for
231  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
232  * process context).
233  * The hash function is meant to be lightweight as opposed to strong,
234  * and was vaguely inspired by ppc64 firmware-supported inverted
235  * pagetable hash functions, but uses a full hashtable full of finite
236  * collision chains, not just pairs of them.
237  *
238  * -- wli
239  */
240 static void __profile_flip_buffers(void *unused)
241 {
242 	int cpu = smp_processor_id();
243 
244 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
245 }
246 
247 static void profile_flip_buffers(void)
248 {
249 	int i, j, cpu;
250 
251 	mutex_lock(&profile_flip_mutex);
252 	j = per_cpu(cpu_profile_flip, get_cpu());
253 	put_cpu();
254 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
255 	for_each_online_cpu(cpu) {
256 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
257 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
258 			if (!hits[i].hits) {
259 				if (hits[i].pc)
260 					hits[i].pc = 0;
261 				continue;
262 			}
263 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
264 			hits[i].hits = hits[i].pc = 0;
265 		}
266 	}
267 	mutex_unlock(&profile_flip_mutex);
268 }
269 
270 static void profile_discard_flip_buffers(void)
271 {
272 	int i, cpu;
273 
274 	mutex_lock(&profile_flip_mutex);
275 	i = per_cpu(cpu_profile_flip, get_cpu());
276 	put_cpu();
277 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
278 	for_each_online_cpu(cpu) {
279 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
280 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
281 	}
282 	mutex_unlock(&profile_flip_mutex);
283 }
284 
285 void profile_hits(int type, void *__pc, unsigned int nr_hits)
286 {
287 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
288 	int i, j, cpu;
289 	struct profile_hit *hits;
290 
291 	if (prof_on != type || !prof_buffer)
292 		return;
293 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
294 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
295 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
296 	cpu = get_cpu();
297 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
298 	if (!hits) {
299 		put_cpu();
300 		return;
301 	}
302 	/*
303 	 * We buffer the global profiler buffer into a per-CPU
304 	 * queue and thus reduce the number of global (and possibly
305 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
306 	 */
307 	local_irq_save(flags);
308 	do {
309 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
310 			if (hits[i + j].pc == pc) {
311 				hits[i + j].hits += nr_hits;
312 				goto out;
313 			} else if (!hits[i + j].hits) {
314 				hits[i + j].pc = pc;
315 				hits[i + j].hits = nr_hits;
316 				goto out;
317 			}
318 		}
319 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
320 	} while (i != primary);
321 
322 	/*
323 	 * Add the current hit(s) and flush the write-queue out
324 	 * to the global buffer:
325 	 */
326 	atomic_add(nr_hits, &prof_buffer[pc]);
327 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
328 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
329 		hits[i].pc = hits[i].hits = 0;
330 	}
331 out:
332 	local_irq_restore(flags);
333 	put_cpu();
334 }
335 
336 static int __devinit profile_cpu_callback(struct notifier_block *info,
337 					unsigned long action, void *__cpu)
338 {
339 	int node, cpu = (unsigned long)__cpu;
340 	struct page *page;
341 
342 	switch (action) {
343 	case CPU_UP_PREPARE:
344 	case CPU_UP_PREPARE_FROZEN:
345 		node = cpu_to_node(cpu);
346 		per_cpu(cpu_profile_flip, cpu) = 0;
347 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
348 			page = alloc_pages_node(node,
349 					GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
350 					0);
351 			if (!page)
352 				return NOTIFY_BAD;
353 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
354 		}
355 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
356 			page = alloc_pages_node(node,
357 					GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
358 					0);
359 			if (!page)
360 				goto out_free;
361 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
362 		}
363 		break;
364 	out_free:
365 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
366 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
367 		__free_page(page);
368 		return NOTIFY_BAD;
369 	case CPU_ONLINE:
370 	case CPU_ONLINE_FROZEN:
371 		cpu_set(cpu, prof_cpu_mask);
372 		break;
373 	case CPU_UP_CANCELED:
374 	case CPU_UP_CANCELED_FROZEN:
375 	case CPU_DEAD:
376 	case CPU_DEAD_FROZEN:
377 		cpu_clear(cpu, prof_cpu_mask);
378 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
379 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
380 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
381 			__free_page(page);
382 		}
383 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
384 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
385 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
386 			__free_page(page);
387 		}
388 		break;
389 	}
390 	return NOTIFY_OK;
391 }
392 #else /* !CONFIG_SMP */
393 #define profile_flip_buffers()		do { } while (0)
394 #define profile_discard_flip_buffers()	do { } while (0)
395 #define profile_cpu_callback		NULL
396 
397 void profile_hits(int type, void *__pc, unsigned int nr_hits)
398 {
399 	unsigned long pc;
400 
401 	if (prof_on != type || !prof_buffer)
402 		return;
403 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
404 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
405 }
406 #endif /* !CONFIG_SMP */
407 
408 EXPORT_SYMBOL_GPL(profile_hits);
409 
410 void profile_tick(int type)
411 {
412 	struct pt_regs *regs = get_irq_regs();
413 
414 	if (type == CPU_PROFILING && timer_hook)
415 		timer_hook(regs);
416 	if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
417 		profile_hit(type, (void *)profile_pc(regs));
418 }
419 
420 #ifdef CONFIG_PROC_FS
421 #include <linux/proc_fs.h>
422 #include <asm/uaccess.h>
423 #include <asm/ptrace.h>
424 
425 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
426 			int count, int *eof, void *data)
427 {
428 	int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
429 	if (count - len < 2)
430 		return -EINVAL;
431 	len += sprintf(page + len, "\n");
432 	return len;
433 }
434 
435 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
436 					unsigned long count, void *data)
437 {
438 	cpumask_t *mask = (cpumask_t *)data;
439 	unsigned long full_count = count, err;
440 	cpumask_t new_value;
441 
442 	err = cpumask_parse_user(buffer, count, new_value);
443 	if (err)
444 		return err;
445 
446 	*mask = new_value;
447 	return full_count;
448 }
449 
450 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
451 {
452 	struct proc_dir_entry *entry;
453 
454 	/* create /proc/irq/prof_cpu_mask */
455 	if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
456 		return;
457 	entry->data = (void *)&prof_cpu_mask;
458 	entry->read_proc = prof_cpu_mask_read_proc;
459 	entry->write_proc = prof_cpu_mask_write_proc;
460 }
461 
462 /*
463  * This function accesses profiling information. The returned data is
464  * binary: the sampling step and the actual contents of the profile
465  * buffer. Use of the program readprofile is recommended in order to
466  * get meaningful info out of these data.
467  */
468 static ssize_t
469 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
470 {
471 	unsigned long p = *ppos;
472 	ssize_t read;
473 	char * pnt;
474 	unsigned int sample_step = 1 << prof_shift;
475 
476 	profile_flip_buffers();
477 	if (p >= (prof_len+1)*sizeof(unsigned int))
478 		return 0;
479 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
480 		count = (prof_len+1)*sizeof(unsigned int) - p;
481 	read = 0;
482 
483 	while (p < sizeof(unsigned int) && count > 0) {
484 		if (put_user(*((char *)(&sample_step)+p),buf))
485 			return -EFAULT;
486 		buf++; p++; count--; read++;
487 	}
488 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
489 	if (copy_to_user(buf,(void *)pnt,count))
490 		return -EFAULT;
491 	read += count;
492 	*ppos += read;
493 	return read;
494 }
495 
496 /*
497  * Writing to /proc/profile resets the counters
498  *
499  * Writing a 'profiling multiplier' value into it also re-sets the profiling
500  * interrupt frequency, on architectures that support this.
501  */
502 static ssize_t write_profile(struct file *file, const char __user *buf,
503 			     size_t count, loff_t *ppos)
504 {
505 #ifdef CONFIG_SMP
506 	extern int setup_profiling_timer (unsigned int multiplier);
507 
508 	if (count == sizeof(int)) {
509 		unsigned int multiplier;
510 
511 		if (copy_from_user(&multiplier, buf, sizeof(int)))
512 			return -EFAULT;
513 
514 		if (setup_profiling_timer(multiplier))
515 			return -EINVAL;
516 	}
517 #endif
518 	profile_discard_flip_buffers();
519 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
520 	return count;
521 }
522 
523 static const struct file_operations proc_profile_operations = {
524 	.read		= read_profile,
525 	.write		= write_profile,
526 };
527 
528 #ifdef CONFIG_SMP
529 static void __init profile_nop(void *unused)
530 {
531 }
532 
533 static int __init create_hash_tables(void)
534 {
535 	int cpu;
536 
537 	for_each_online_cpu(cpu) {
538 		int node = cpu_to_node(cpu);
539 		struct page *page;
540 
541 		page = alloc_pages_node(node,
542 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
543 				0);
544 		if (!page)
545 			goto out_cleanup;
546 		per_cpu(cpu_profile_hits, cpu)[1]
547 				= (struct profile_hit *)page_address(page);
548 		page = alloc_pages_node(node,
549 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
550 				0);
551 		if (!page)
552 			goto out_cleanup;
553 		per_cpu(cpu_profile_hits, cpu)[0]
554 				= (struct profile_hit *)page_address(page);
555 	}
556 	return 0;
557 out_cleanup:
558 	prof_on = 0;
559 	smp_mb();
560 	on_each_cpu(profile_nop, NULL, 0, 1);
561 	for_each_online_cpu(cpu) {
562 		struct page *page;
563 
564 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
565 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
566 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
567 			__free_page(page);
568 		}
569 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
570 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
571 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
572 			__free_page(page);
573 		}
574 	}
575 	return -1;
576 }
577 #else
578 #define create_hash_tables()			({ 0; })
579 #endif
580 
581 static int __init create_proc_profile(void)
582 {
583 	struct proc_dir_entry *entry;
584 
585 	if (!prof_on)
586 		return 0;
587 	if (create_hash_tables())
588 		return -1;
589 	if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
590 		return 0;
591 	entry->proc_fops = &proc_profile_operations;
592 	entry->size = (1+prof_len) * sizeof(atomic_t);
593 	hotcpu_notifier(profile_cpu_callback, 0);
594 	return 0;
595 }
596 module_init(create_proc_profile);
597 #endif /* CONFIG_PROC_FS */
598