xref: /openbmc/linux/kernel/profile.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	Nadia Yvette Chambers, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
14  *	Oracle, 2004
15  */
16 
17 #include <linux/export.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
21 #include <linux/mm.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched/stat.h>
29 
30 #include <asm/sections.h>
31 #include <asm/irq_regs.h>
32 #include <asm/ptrace.h>
33 
34 struct profile_hit {
35 	u32 pc, hits;
36 };
37 #define PROFILE_GRPSHIFT	3
38 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
39 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
40 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47 
48 static cpumask_var_t prof_cpu_mask;
49 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 int profile_setup(char *str)
56 {
57 	static const char schedstr[] = "schedule";
58 	static const char sleepstr[] = "sleep";
59 	static const char kvmstr[] = "kvm";
60 	int par;
61 
62 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 		force_schedstat_enabled();
65 		prof_on = SLEEP_PROFILING;
66 		if (str[strlen(sleepstr)] == ',')
67 			str += strlen(sleepstr) + 1;
68 		if (get_option(&str, &par))
69 			prof_shift = par;
70 		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
71 			prof_shift);
72 #else
73 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
74 #endif /* CONFIG_SCHEDSTATS */
75 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
76 		prof_on = SCHED_PROFILING;
77 		if (str[strlen(schedstr)] == ',')
78 			str += strlen(schedstr) + 1;
79 		if (get_option(&str, &par))
80 			prof_shift = par;
81 		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
82 			prof_shift);
83 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
84 		prof_on = KVM_PROFILING;
85 		if (str[strlen(kvmstr)] == ',')
86 			str += strlen(kvmstr) + 1;
87 		if (get_option(&str, &par))
88 			prof_shift = par;
89 		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
90 			prof_shift);
91 	} else if (get_option(&str, &par)) {
92 		prof_shift = par;
93 		prof_on = CPU_PROFILING;
94 		pr_info("kernel profiling enabled (shift: %ld)\n",
95 			prof_shift);
96 	}
97 	return 1;
98 }
99 __setup("profile=", profile_setup);
100 
101 
102 int __ref profile_init(void)
103 {
104 	int buffer_bytes;
105 	if (!prof_on)
106 		return 0;
107 
108 	/* only text is profiled */
109 	prof_len = (_etext - _stext) >> prof_shift;
110 	buffer_bytes = prof_len*sizeof(atomic_t);
111 
112 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
113 		return -ENOMEM;
114 
115 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
116 
117 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
118 	if (prof_buffer)
119 		return 0;
120 
121 	prof_buffer = alloc_pages_exact(buffer_bytes,
122 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
123 	if (prof_buffer)
124 		return 0;
125 
126 	prof_buffer = vzalloc(buffer_bytes);
127 	if (prof_buffer)
128 		return 0;
129 
130 	free_cpumask_var(prof_cpu_mask);
131 	return -ENOMEM;
132 }
133 
134 /* Profile event notifications */
135 
136 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
137 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
138 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
139 
140 void profile_task_exit(struct task_struct *task)
141 {
142 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
143 }
144 
145 int profile_handoff_task(struct task_struct *task)
146 {
147 	int ret;
148 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
149 	return (ret == NOTIFY_OK) ? 1 : 0;
150 }
151 
152 void profile_munmap(unsigned long addr)
153 {
154 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
155 }
156 
157 int task_handoff_register(struct notifier_block *n)
158 {
159 	return atomic_notifier_chain_register(&task_free_notifier, n);
160 }
161 EXPORT_SYMBOL_GPL(task_handoff_register);
162 
163 int task_handoff_unregister(struct notifier_block *n)
164 {
165 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
166 }
167 EXPORT_SYMBOL_GPL(task_handoff_unregister);
168 
169 int profile_event_register(enum profile_type type, struct notifier_block *n)
170 {
171 	int err = -EINVAL;
172 
173 	switch (type) {
174 	case PROFILE_TASK_EXIT:
175 		err = blocking_notifier_chain_register(
176 				&task_exit_notifier, n);
177 		break;
178 	case PROFILE_MUNMAP:
179 		err = blocking_notifier_chain_register(
180 				&munmap_notifier, n);
181 		break;
182 	}
183 
184 	return err;
185 }
186 EXPORT_SYMBOL_GPL(profile_event_register);
187 
188 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
189 {
190 	int err = -EINVAL;
191 
192 	switch (type) {
193 	case PROFILE_TASK_EXIT:
194 		err = blocking_notifier_chain_unregister(
195 				&task_exit_notifier, n);
196 		break;
197 	case PROFILE_MUNMAP:
198 		err = blocking_notifier_chain_unregister(
199 				&munmap_notifier, n);
200 		break;
201 	}
202 
203 	return err;
204 }
205 EXPORT_SYMBOL_GPL(profile_event_unregister);
206 
207 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
208 /*
209  * Each cpu has a pair of open-addressed hashtables for pending
210  * profile hits. read_profile() IPI's all cpus to request them
211  * to flip buffers and flushes their contents to prof_buffer itself.
212  * Flip requests are serialized by the profile_flip_mutex. The sole
213  * use of having a second hashtable is for avoiding cacheline
214  * contention that would otherwise happen during flushes of pending
215  * profile hits required for the accuracy of reported profile hits
216  * and so resurrect the interrupt livelock issue.
217  *
218  * The open-addressed hashtables are indexed by profile buffer slot
219  * and hold the number of pending hits to that profile buffer slot on
220  * a cpu in an entry. When the hashtable overflows, all pending hits
221  * are accounted to their corresponding profile buffer slots with
222  * atomic_add() and the hashtable emptied. As numerous pending hits
223  * may be accounted to a profile buffer slot in a hashtable entry,
224  * this amortizes a number of atomic profile buffer increments likely
225  * to be far larger than the number of entries in the hashtable,
226  * particularly given that the number of distinct profile buffer
227  * positions to which hits are accounted during short intervals (e.g.
228  * several seconds) is usually very small. Exclusion from buffer
229  * flipping is provided by interrupt disablement (note that for
230  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
231  * process context).
232  * The hash function is meant to be lightweight as opposed to strong,
233  * and was vaguely inspired by ppc64 firmware-supported inverted
234  * pagetable hash functions, but uses a full hashtable full of finite
235  * collision chains, not just pairs of them.
236  *
237  * -- nyc
238  */
239 static void __profile_flip_buffers(void *unused)
240 {
241 	int cpu = smp_processor_id();
242 
243 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
244 }
245 
246 static void profile_flip_buffers(void)
247 {
248 	int i, j, cpu;
249 
250 	mutex_lock(&profile_flip_mutex);
251 	j = per_cpu(cpu_profile_flip, get_cpu());
252 	put_cpu();
253 	on_each_cpu(__profile_flip_buffers, NULL, 1);
254 	for_each_online_cpu(cpu) {
255 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
256 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
257 			if (!hits[i].hits) {
258 				if (hits[i].pc)
259 					hits[i].pc = 0;
260 				continue;
261 			}
262 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
263 			hits[i].hits = hits[i].pc = 0;
264 		}
265 	}
266 	mutex_unlock(&profile_flip_mutex);
267 }
268 
269 static void profile_discard_flip_buffers(void)
270 {
271 	int i, cpu;
272 
273 	mutex_lock(&profile_flip_mutex);
274 	i = per_cpu(cpu_profile_flip, get_cpu());
275 	put_cpu();
276 	on_each_cpu(__profile_flip_buffers, NULL, 1);
277 	for_each_online_cpu(cpu) {
278 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
279 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
280 	}
281 	mutex_unlock(&profile_flip_mutex);
282 }
283 
284 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
285 {
286 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
287 	int i, j, cpu;
288 	struct profile_hit *hits;
289 
290 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
291 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
292 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
293 	cpu = get_cpu();
294 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
295 	if (!hits) {
296 		put_cpu();
297 		return;
298 	}
299 	/*
300 	 * We buffer the global profiler buffer into a per-CPU
301 	 * queue and thus reduce the number of global (and possibly
302 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
303 	 */
304 	local_irq_save(flags);
305 	do {
306 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
307 			if (hits[i + j].pc == pc) {
308 				hits[i + j].hits += nr_hits;
309 				goto out;
310 			} else if (!hits[i + j].hits) {
311 				hits[i + j].pc = pc;
312 				hits[i + j].hits = nr_hits;
313 				goto out;
314 			}
315 		}
316 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
317 	} while (i != primary);
318 
319 	/*
320 	 * Add the current hit(s) and flush the write-queue out
321 	 * to the global buffer:
322 	 */
323 	atomic_add(nr_hits, &prof_buffer[pc]);
324 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
325 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
326 		hits[i].pc = hits[i].hits = 0;
327 	}
328 out:
329 	local_irq_restore(flags);
330 	put_cpu();
331 }
332 
333 static int profile_dead_cpu(unsigned int cpu)
334 {
335 	struct page *page;
336 	int i;
337 
338 	if (prof_cpu_mask != NULL)
339 		cpumask_clear_cpu(cpu, prof_cpu_mask);
340 
341 	for (i = 0; i < 2; i++) {
342 		if (per_cpu(cpu_profile_hits, cpu)[i]) {
343 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
344 			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
345 			__free_page(page);
346 		}
347 	}
348 	return 0;
349 }
350 
351 static int profile_prepare_cpu(unsigned int cpu)
352 {
353 	int i, node = cpu_to_mem(cpu);
354 	struct page *page;
355 
356 	per_cpu(cpu_profile_flip, cpu) = 0;
357 
358 	for (i = 0; i < 2; i++) {
359 		if (per_cpu(cpu_profile_hits, cpu)[i])
360 			continue;
361 
362 		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
363 		if (!page) {
364 			profile_dead_cpu(cpu);
365 			return -ENOMEM;
366 		}
367 		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
368 
369 	}
370 	return 0;
371 }
372 
373 static int profile_online_cpu(unsigned int cpu)
374 {
375 	if (prof_cpu_mask != NULL)
376 		cpumask_set_cpu(cpu, prof_cpu_mask);
377 
378 	return 0;
379 }
380 
381 #else /* !CONFIG_SMP */
382 #define profile_flip_buffers()		do { } while (0)
383 #define profile_discard_flip_buffers()	do { } while (0)
384 
385 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
386 {
387 	unsigned long pc;
388 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
389 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
390 }
391 #endif /* !CONFIG_SMP */
392 
393 void profile_hits(int type, void *__pc, unsigned int nr_hits)
394 {
395 	if (prof_on != type || !prof_buffer)
396 		return;
397 	do_profile_hits(type, __pc, nr_hits);
398 }
399 EXPORT_SYMBOL_GPL(profile_hits);
400 
401 void profile_tick(int type)
402 {
403 	struct pt_regs *regs = get_irq_regs();
404 
405 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
406 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
407 		profile_hit(type, (void *)profile_pc(regs));
408 }
409 
410 #ifdef CONFIG_PROC_FS
411 #include <linux/proc_fs.h>
412 #include <linux/seq_file.h>
413 #include <linux/uaccess.h>
414 
415 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
416 {
417 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
418 	return 0;
419 }
420 
421 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
422 {
423 	return single_open(file, prof_cpu_mask_proc_show, NULL);
424 }
425 
426 static ssize_t prof_cpu_mask_proc_write(struct file *file,
427 	const char __user *buffer, size_t count, loff_t *pos)
428 {
429 	cpumask_var_t new_value;
430 	int err;
431 
432 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
433 		return -ENOMEM;
434 
435 	err = cpumask_parse_user(buffer, count, new_value);
436 	if (!err) {
437 		cpumask_copy(prof_cpu_mask, new_value);
438 		err = count;
439 	}
440 	free_cpumask_var(new_value);
441 	return err;
442 }
443 
444 static const struct file_operations prof_cpu_mask_proc_fops = {
445 	.open		= prof_cpu_mask_proc_open,
446 	.read		= seq_read,
447 	.llseek		= seq_lseek,
448 	.release	= single_release,
449 	.write		= prof_cpu_mask_proc_write,
450 };
451 
452 void create_prof_cpu_mask(void)
453 {
454 	/* create /proc/irq/prof_cpu_mask */
455 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
456 }
457 
458 /*
459  * This function accesses profiling information. The returned data is
460  * binary: the sampling step and the actual contents of the profile
461  * buffer. Use of the program readprofile is recommended in order to
462  * get meaningful info out of these data.
463  */
464 static ssize_t
465 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
466 {
467 	unsigned long p = *ppos;
468 	ssize_t read;
469 	char *pnt;
470 	unsigned int sample_step = 1 << prof_shift;
471 
472 	profile_flip_buffers();
473 	if (p >= (prof_len+1)*sizeof(unsigned int))
474 		return 0;
475 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
476 		count = (prof_len+1)*sizeof(unsigned int) - p;
477 	read = 0;
478 
479 	while (p < sizeof(unsigned int) && count > 0) {
480 		if (put_user(*((char *)(&sample_step)+p), buf))
481 			return -EFAULT;
482 		buf++; p++; count--; read++;
483 	}
484 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
485 	if (copy_to_user(buf, (void *)pnt, count))
486 		return -EFAULT;
487 	read += count;
488 	*ppos += read;
489 	return read;
490 }
491 
492 /*
493  * Writing to /proc/profile resets the counters
494  *
495  * Writing a 'profiling multiplier' value into it also re-sets the profiling
496  * interrupt frequency, on architectures that support this.
497  */
498 static ssize_t write_profile(struct file *file, const char __user *buf,
499 			     size_t count, loff_t *ppos)
500 {
501 #ifdef CONFIG_SMP
502 	extern int setup_profiling_timer(unsigned int multiplier);
503 
504 	if (count == sizeof(int)) {
505 		unsigned int multiplier;
506 
507 		if (copy_from_user(&multiplier, buf, sizeof(int)))
508 			return -EFAULT;
509 
510 		if (setup_profiling_timer(multiplier))
511 			return -EINVAL;
512 	}
513 #endif
514 	profile_discard_flip_buffers();
515 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
516 	return count;
517 }
518 
519 static const struct file_operations proc_profile_operations = {
520 	.read		= read_profile,
521 	.write		= write_profile,
522 	.llseek		= default_llseek,
523 };
524 
525 int __ref create_proc_profile(void)
526 {
527 	struct proc_dir_entry *entry;
528 #ifdef CONFIG_SMP
529 	enum cpuhp_state online_state;
530 #endif
531 
532 	int err = 0;
533 
534 	if (!prof_on)
535 		return 0;
536 #ifdef CONFIG_SMP
537 	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
538 				profile_prepare_cpu, profile_dead_cpu);
539 	if (err)
540 		return err;
541 
542 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
543 				profile_online_cpu, NULL);
544 	if (err < 0)
545 		goto err_state_prep;
546 	online_state = err;
547 	err = 0;
548 #endif
549 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
550 			    NULL, &proc_profile_operations);
551 	if (!entry)
552 		goto err_state_onl;
553 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
554 
555 	return err;
556 err_state_onl:
557 #ifdef CONFIG_SMP
558 	cpuhp_remove_state(online_state);
559 err_state_prep:
560 	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
561 #endif
562 	return err;
563 }
564 subsys_initcall(create_proc_profile);
565 #endif /* CONFIG_PROC_FS */
566