1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * Nadia Yvette Chambers, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, Nadia Yvette Chambers, 14 * Oracle, 2004 15 */ 16 17 #include <linux/export.h> 18 #include <linux/profile.h> 19 #include <linux/memblock.h> 20 #include <linux/notifier.h> 21 #include <linux/mm.h> 22 #include <linux/cpumask.h> 23 #include <linux/cpu.h> 24 #include <linux/highmem.h> 25 #include <linux/mutex.h> 26 #include <linux/slab.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sched/stat.h> 29 30 #include <asm/sections.h> 31 #include <asm/irq_regs.h> 32 #include <asm/ptrace.h> 33 34 struct profile_hit { 35 u32 pc, hits; 36 }; 37 #define PROFILE_GRPSHIFT 3 38 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 39 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 40 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 41 42 static atomic_t *prof_buffer; 43 static unsigned long prof_len, prof_shift; 44 45 int prof_on __read_mostly; 46 EXPORT_SYMBOL_GPL(prof_on); 47 48 static cpumask_var_t prof_cpu_mask; 49 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 51 static DEFINE_PER_CPU(int, cpu_profile_flip); 52 static DEFINE_MUTEX(profile_flip_mutex); 53 #endif /* CONFIG_SMP */ 54 55 int profile_setup(char *str) 56 { 57 static const char schedstr[] = "schedule"; 58 static const char sleepstr[] = "sleep"; 59 static const char kvmstr[] = "kvm"; 60 int par; 61 62 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 63 #ifdef CONFIG_SCHEDSTATS 64 force_schedstat_enabled(); 65 prof_on = SLEEP_PROFILING; 66 if (str[strlen(sleepstr)] == ',') 67 str += strlen(sleepstr) + 1; 68 if (get_option(&str, &par)) 69 prof_shift = par; 70 pr_info("kernel sleep profiling enabled (shift: %ld)\n", 71 prof_shift); 72 #else 73 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 74 #endif /* CONFIG_SCHEDSTATS */ 75 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 76 prof_on = SCHED_PROFILING; 77 if (str[strlen(schedstr)] == ',') 78 str += strlen(schedstr) + 1; 79 if (get_option(&str, &par)) 80 prof_shift = par; 81 pr_info("kernel schedule profiling enabled (shift: %ld)\n", 82 prof_shift); 83 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 84 prof_on = KVM_PROFILING; 85 if (str[strlen(kvmstr)] == ',') 86 str += strlen(kvmstr) + 1; 87 if (get_option(&str, &par)) 88 prof_shift = par; 89 pr_info("kernel KVM profiling enabled (shift: %ld)\n", 90 prof_shift); 91 } else if (get_option(&str, &par)) { 92 prof_shift = par; 93 prof_on = CPU_PROFILING; 94 pr_info("kernel profiling enabled (shift: %ld)\n", 95 prof_shift); 96 } 97 return 1; 98 } 99 __setup("profile=", profile_setup); 100 101 102 int __ref profile_init(void) 103 { 104 int buffer_bytes; 105 if (!prof_on) 106 return 0; 107 108 /* only text is profiled */ 109 prof_len = (_etext - _stext) >> prof_shift; 110 buffer_bytes = prof_len*sizeof(atomic_t); 111 112 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 113 return -ENOMEM; 114 115 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 116 117 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); 118 if (prof_buffer) 119 return 0; 120 121 prof_buffer = alloc_pages_exact(buffer_bytes, 122 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); 123 if (prof_buffer) 124 return 0; 125 126 prof_buffer = vzalloc(buffer_bytes); 127 if (prof_buffer) 128 return 0; 129 130 free_cpumask_var(prof_cpu_mask); 131 return -ENOMEM; 132 } 133 134 /* Profile event notifications */ 135 136 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 137 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 138 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 139 140 void profile_task_exit(struct task_struct *task) 141 { 142 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 143 } 144 145 int profile_handoff_task(struct task_struct *task) 146 { 147 int ret; 148 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 149 return (ret == NOTIFY_OK) ? 1 : 0; 150 } 151 152 void profile_munmap(unsigned long addr) 153 { 154 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 155 } 156 157 int task_handoff_register(struct notifier_block *n) 158 { 159 return atomic_notifier_chain_register(&task_free_notifier, n); 160 } 161 EXPORT_SYMBOL_GPL(task_handoff_register); 162 163 int task_handoff_unregister(struct notifier_block *n) 164 { 165 return atomic_notifier_chain_unregister(&task_free_notifier, n); 166 } 167 EXPORT_SYMBOL_GPL(task_handoff_unregister); 168 169 int profile_event_register(enum profile_type type, struct notifier_block *n) 170 { 171 int err = -EINVAL; 172 173 switch (type) { 174 case PROFILE_TASK_EXIT: 175 err = blocking_notifier_chain_register( 176 &task_exit_notifier, n); 177 break; 178 case PROFILE_MUNMAP: 179 err = blocking_notifier_chain_register( 180 &munmap_notifier, n); 181 break; 182 } 183 184 return err; 185 } 186 EXPORT_SYMBOL_GPL(profile_event_register); 187 188 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 189 { 190 int err = -EINVAL; 191 192 switch (type) { 193 case PROFILE_TASK_EXIT: 194 err = blocking_notifier_chain_unregister( 195 &task_exit_notifier, n); 196 break; 197 case PROFILE_MUNMAP: 198 err = blocking_notifier_chain_unregister( 199 &munmap_notifier, n); 200 break; 201 } 202 203 return err; 204 } 205 EXPORT_SYMBOL_GPL(profile_event_unregister); 206 207 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 208 /* 209 * Each cpu has a pair of open-addressed hashtables for pending 210 * profile hits. read_profile() IPI's all cpus to request them 211 * to flip buffers and flushes their contents to prof_buffer itself. 212 * Flip requests are serialized by the profile_flip_mutex. The sole 213 * use of having a second hashtable is for avoiding cacheline 214 * contention that would otherwise happen during flushes of pending 215 * profile hits required for the accuracy of reported profile hits 216 * and so resurrect the interrupt livelock issue. 217 * 218 * The open-addressed hashtables are indexed by profile buffer slot 219 * and hold the number of pending hits to that profile buffer slot on 220 * a cpu in an entry. When the hashtable overflows, all pending hits 221 * are accounted to their corresponding profile buffer slots with 222 * atomic_add() and the hashtable emptied. As numerous pending hits 223 * may be accounted to a profile buffer slot in a hashtable entry, 224 * this amortizes a number of atomic profile buffer increments likely 225 * to be far larger than the number of entries in the hashtable, 226 * particularly given that the number of distinct profile buffer 227 * positions to which hits are accounted during short intervals (e.g. 228 * several seconds) is usually very small. Exclusion from buffer 229 * flipping is provided by interrupt disablement (note that for 230 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 231 * process context). 232 * The hash function is meant to be lightweight as opposed to strong, 233 * and was vaguely inspired by ppc64 firmware-supported inverted 234 * pagetable hash functions, but uses a full hashtable full of finite 235 * collision chains, not just pairs of them. 236 * 237 * -- nyc 238 */ 239 static void __profile_flip_buffers(void *unused) 240 { 241 int cpu = smp_processor_id(); 242 243 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 244 } 245 246 static void profile_flip_buffers(void) 247 { 248 int i, j, cpu; 249 250 mutex_lock(&profile_flip_mutex); 251 j = per_cpu(cpu_profile_flip, get_cpu()); 252 put_cpu(); 253 on_each_cpu(__profile_flip_buffers, NULL, 1); 254 for_each_online_cpu(cpu) { 255 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 256 for (i = 0; i < NR_PROFILE_HIT; ++i) { 257 if (!hits[i].hits) { 258 if (hits[i].pc) 259 hits[i].pc = 0; 260 continue; 261 } 262 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 263 hits[i].hits = hits[i].pc = 0; 264 } 265 } 266 mutex_unlock(&profile_flip_mutex); 267 } 268 269 static void profile_discard_flip_buffers(void) 270 { 271 int i, cpu; 272 273 mutex_lock(&profile_flip_mutex); 274 i = per_cpu(cpu_profile_flip, get_cpu()); 275 put_cpu(); 276 on_each_cpu(__profile_flip_buffers, NULL, 1); 277 for_each_online_cpu(cpu) { 278 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 279 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 280 } 281 mutex_unlock(&profile_flip_mutex); 282 } 283 284 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 285 { 286 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 287 int i, j, cpu; 288 struct profile_hit *hits; 289 290 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 291 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 292 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 293 cpu = get_cpu(); 294 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 295 if (!hits) { 296 put_cpu(); 297 return; 298 } 299 /* 300 * We buffer the global profiler buffer into a per-CPU 301 * queue and thus reduce the number of global (and possibly 302 * NUMA-alien) accesses. The write-queue is self-coalescing: 303 */ 304 local_irq_save(flags); 305 do { 306 for (j = 0; j < PROFILE_GRPSZ; ++j) { 307 if (hits[i + j].pc == pc) { 308 hits[i + j].hits += nr_hits; 309 goto out; 310 } else if (!hits[i + j].hits) { 311 hits[i + j].pc = pc; 312 hits[i + j].hits = nr_hits; 313 goto out; 314 } 315 } 316 i = (i + secondary) & (NR_PROFILE_HIT - 1); 317 } while (i != primary); 318 319 /* 320 * Add the current hit(s) and flush the write-queue out 321 * to the global buffer: 322 */ 323 atomic_add(nr_hits, &prof_buffer[pc]); 324 for (i = 0; i < NR_PROFILE_HIT; ++i) { 325 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 326 hits[i].pc = hits[i].hits = 0; 327 } 328 out: 329 local_irq_restore(flags); 330 put_cpu(); 331 } 332 333 static int profile_dead_cpu(unsigned int cpu) 334 { 335 struct page *page; 336 int i; 337 338 if (prof_cpu_mask != NULL) 339 cpumask_clear_cpu(cpu, prof_cpu_mask); 340 341 for (i = 0; i < 2; i++) { 342 if (per_cpu(cpu_profile_hits, cpu)[i]) { 343 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); 344 per_cpu(cpu_profile_hits, cpu)[i] = NULL; 345 __free_page(page); 346 } 347 } 348 return 0; 349 } 350 351 static int profile_prepare_cpu(unsigned int cpu) 352 { 353 int i, node = cpu_to_mem(cpu); 354 struct page *page; 355 356 per_cpu(cpu_profile_flip, cpu) = 0; 357 358 for (i = 0; i < 2; i++) { 359 if (per_cpu(cpu_profile_hits, cpu)[i]) 360 continue; 361 362 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 363 if (!page) { 364 profile_dead_cpu(cpu); 365 return -ENOMEM; 366 } 367 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); 368 369 } 370 return 0; 371 } 372 373 static int profile_online_cpu(unsigned int cpu) 374 { 375 if (prof_cpu_mask != NULL) 376 cpumask_set_cpu(cpu, prof_cpu_mask); 377 378 return 0; 379 } 380 381 #else /* !CONFIG_SMP */ 382 #define profile_flip_buffers() do { } while (0) 383 #define profile_discard_flip_buffers() do { } while (0) 384 385 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 386 { 387 unsigned long pc; 388 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 389 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 390 } 391 #endif /* !CONFIG_SMP */ 392 393 void profile_hits(int type, void *__pc, unsigned int nr_hits) 394 { 395 if (prof_on != type || !prof_buffer) 396 return; 397 do_profile_hits(type, __pc, nr_hits); 398 } 399 EXPORT_SYMBOL_GPL(profile_hits); 400 401 void profile_tick(int type) 402 { 403 struct pt_regs *regs = get_irq_regs(); 404 405 if (!user_mode(regs) && prof_cpu_mask != NULL && 406 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 407 profile_hit(type, (void *)profile_pc(regs)); 408 } 409 410 #ifdef CONFIG_PROC_FS 411 #include <linux/proc_fs.h> 412 #include <linux/seq_file.h> 413 #include <linux/uaccess.h> 414 415 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) 416 { 417 seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); 418 return 0; 419 } 420 421 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) 422 { 423 return single_open(file, prof_cpu_mask_proc_show, NULL); 424 } 425 426 static ssize_t prof_cpu_mask_proc_write(struct file *file, 427 const char __user *buffer, size_t count, loff_t *pos) 428 { 429 cpumask_var_t new_value; 430 int err; 431 432 if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) 433 return -ENOMEM; 434 435 err = cpumask_parse_user(buffer, count, new_value); 436 if (!err) { 437 cpumask_copy(prof_cpu_mask, new_value); 438 err = count; 439 } 440 free_cpumask_var(new_value); 441 return err; 442 } 443 444 static const struct file_operations prof_cpu_mask_proc_fops = { 445 .open = prof_cpu_mask_proc_open, 446 .read = seq_read, 447 .llseek = seq_lseek, 448 .release = single_release, 449 .write = prof_cpu_mask_proc_write, 450 }; 451 452 void create_prof_cpu_mask(void) 453 { 454 /* create /proc/irq/prof_cpu_mask */ 455 proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops); 456 } 457 458 /* 459 * This function accesses profiling information. The returned data is 460 * binary: the sampling step and the actual contents of the profile 461 * buffer. Use of the program readprofile is recommended in order to 462 * get meaningful info out of these data. 463 */ 464 static ssize_t 465 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 466 { 467 unsigned long p = *ppos; 468 ssize_t read; 469 char *pnt; 470 unsigned int sample_step = 1 << prof_shift; 471 472 profile_flip_buffers(); 473 if (p >= (prof_len+1)*sizeof(unsigned int)) 474 return 0; 475 if (count > (prof_len+1)*sizeof(unsigned int) - p) 476 count = (prof_len+1)*sizeof(unsigned int) - p; 477 read = 0; 478 479 while (p < sizeof(unsigned int) && count > 0) { 480 if (put_user(*((char *)(&sample_step)+p), buf)) 481 return -EFAULT; 482 buf++; p++; count--; read++; 483 } 484 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 485 if (copy_to_user(buf, (void *)pnt, count)) 486 return -EFAULT; 487 read += count; 488 *ppos += read; 489 return read; 490 } 491 492 /* 493 * Writing to /proc/profile resets the counters 494 * 495 * Writing a 'profiling multiplier' value into it also re-sets the profiling 496 * interrupt frequency, on architectures that support this. 497 */ 498 static ssize_t write_profile(struct file *file, const char __user *buf, 499 size_t count, loff_t *ppos) 500 { 501 #ifdef CONFIG_SMP 502 extern int setup_profiling_timer(unsigned int multiplier); 503 504 if (count == sizeof(int)) { 505 unsigned int multiplier; 506 507 if (copy_from_user(&multiplier, buf, sizeof(int))) 508 return -EFAULT; 509 510 if (setup_profiling_timer(multiplier)) 511 return -EINVAL; 512 } 513 #endif 514 profile_discard_flip_buffers(); 515 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 516 return count; 517 } 518 519 static const struct file_operations proc_profile_operations = { 520 .read = read_profile, 521 .write = write_profile, 522 .llseek = default_llseek, 523 }; 524 525 int __ref create_proc_profile(void) 526 { 527 struct proc_dir_entry *entry; 528 #ifdef CONFIG_SMP 529 enum cpuhp_state online_state; 530 #endif 531 532 int err = 0; 533 534 if (!prof_on) 535 return 0; 536 #ifdef CONFIG_SMP 537 err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", 538 profile_prepare_cpu, profile_dead_cpu); 539 if (err) 540 return err; 541 542 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", 543 profile_online_cpu, NULL); 544 if (err < 0) 545 goto err_state_prep; 546 online_state = err; 547 err = 0; 548 #endif 549 entry = proc_create("profile", S_IWUSR | S_IRUGO, 550 NULL, &proc_profile_operations); 551 if (!entry) 552 goto err_state_onl; 553 proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); 554 555 return err; 556 err_state_onl: 557 #ifdef CONFIG_SMP 558 cpuhp_remove_state(online_state); 559 err_state_prep: 560 cpuhp_remove_state(CPUHP_PROFILE_PREPARE); 561 #endif 562 return err; 563 } 564 subsys_initcall(create_proc_profile); 565 #endif /* CONFIG_PROC_FS */ 566