1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/profile.c 4 * Simple profiling. Manages a direct-mapped profile hit count buffer, 5 * with configurable resolution, support for restricting the cpus on 6 * which profiling is done, and switching between cpu time and 7 * schedule() calls via kernel command line parameters passed at boot. 8 * 9 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 10 * Red Hat, July 2004 11 * Consolidation of architecture support code for profiling, 12 * Nadia Yvette Chambers, Oracle, July 2004 13 * Amortized hit count accounting via per-cpu open-addressed hashtables 14 * to resolve timer interrupt livelocks, Nadia Yvette Chambers, 15 * Oracle, 2004 16 */ 17 18 #include <linux/export.h> 19 #include <linux/profile.h> 20 #include <linux/memblock.h> 21 #include <linux/notifier.h> 22 #include <linux/mm.h> 23 #include <linux/cpumask.h> 24 #include <linux/cpu.h> 25 #include <linux/highmem.h> 26 #include <linux/mutex.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sched/stat.h> 30 31 #include <asm/sections.h> 32 #include <asm/irq_regs.h> 33 #include <asm/ptrace.h> 34 35 struct profile_hit { 36 u32 pc, hits; 37 }; 38 #define PROFILE_GRPSHIFT 3 39 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 40 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 41 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 42 43 static atomic_t *prof_buffer; 44 static unsigned long prof_len; 45 static unsigned short int prof_shift; 46 47 int prof_on __read_mostly; 48 EXPORT_SYMBOL_GPL(prof_on); 49 50 static cpumask_var_t prof_cpu_mask; 51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 53 static DEFINE_PER_CPU(int, cpu_profile_flip); 54 static DEFINE_MUTEX(profile_flip_mutex); 55 #endif /* CONFIG_SMP */ 56 57 int profile_setup(char *str) 58 { 59 static const char schedstr[] = "schedule"; 60 static const char sleepstr[] = "sleep"; 61 static const char kvmstr[] = "kvm"; 62 int par; 63 64 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 65 #ifdef CONFIG_SCHEDSTATS 66 force_schedstat_enabled(); 67 prof_on = SLEEP_PROFILING; 68 if (str[strlen(sleepstr)] == ',') 69 str += strlen(sleepstr) + 1; 70 if (get_option(&str, &par)) 71 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 72 pr_info("kernel sleep profiling enabled (shift: %u)\n", 73 prof_shift); 74 #else 75 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 76 #endif /* CONFIG_SCHEDSTATS */ 77 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 78 prof_on = SCHED_PROFILING; 79 if (str[strlen(schedstr)] == ',') 80 str += strlen(schedstr) + 1; 81 if (get_option(&str, &par)) 82 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 83 pr_info("kernel schedule profiling enabled (shift: %u)\n", 84 prof_shift); 85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 86 prof_on = KVM_PROFILING; 87 if (str[strlen(kvmstr)] == ',') 88 str += strlen(kvmstr) + 1; 89 if (get_option(&str, &par)) 90 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 91 pr_info("kernel KVM profiling enabled (shift: %u)\n", 92 prof_shift); 93 } else if (get_option(&str, &par)) { 94 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 95 prof_on = CPU_PROFILING; 96 pr_info("kernel profiling enabled (shift: %u)\n", 97 prof_shift); 98 } 99 return 1; 100 } 101 __setup("profile=", profile_setup); 102 103 104 int __ref profile_init(void) 105 { 106 int buffer_bytes; 107 if (!prof_on) 108 return 0; 109 110 /* only text is profiled */ 111 prof_len = (_etext - _stext) >> prof_shift; 112 buffer_bytes = prof_len*sizeof(atomic_t); 113 114 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 115 return -ENOMEM; 116 117 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 118 119 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); 120 if (prof_buffer) 121 return 0; 122 123 prof_buffer = alloc_pages_exact(buffer_bytes, 124 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); 125 if (prof_buffer) 126 return 0; 127 128 prof_buffer = vzalloc(buffer_bytes); 129 if (prof_buffer) 130 return 0; 131 132 free_cpumask_var(prof_cpu_mask); 133 return -ENOMEM; 134 } 135 136 /* Profile event notifications */ 137 138 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 139 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 140 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 141 142 void profile_task_exit(struct task_struct *task) 143 { 144 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 145 } 146 147 int profile_handoff_task(struct task_struct *task) 148 { 149 int ret; 150 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 151 return (ret == NOTIFY_OK) ? 1 : 0; 152 } 153 154 void profile_munmap(unsigned long addr) 155 { 156 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 157 } 158 159 int task_handoff_register(struct notifier_block *n) 160 { 161 return atomic_notifier_chain_register(&task_free_notifier, n); 162 } 163 EXPORT_SYMBOL_GPL(task_handoff_register); 164 165 int task_handoff_unregister(struct notifier_block *n) 166 { 167 return atomic_notifier_chain_unregister(&task_free_notifier, n); 168 } 169 EXPORT_SYMBOL_GPL(task_handoff_unregister); 170 171 int profile_event_register(enum profile_type type, struct notifier_block *n) 172 { 173 int err = -EINVAL; 174 175 switch (type) { 176 case PROFILE_TASK_EXIT: 177 err = blocking_notifier_chain_register( 178 &task_exit_notifier, n); 179 break; 180 case PROFILE_MUNMAP: 181 err = blocking_notifier_chain_register( 182 &munmap_notifier, n); 183 break; 184 } 185 186 return err; 187 } 188 EXPORT_SYMBOL_GPL(profile_event_register); 189 190 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 191 { 192 int err = -EINVAL; 193 194 switch (type) { 195 case PROFILE_TASK_EXIT: 196 err = blocking_notifier_chain_unregister( 197 &task_exit_notifier, n); 198 break; 199 case PROFILE_MUNMAP: 200 err = blocking_notifier_chain_unregister( 201 &munmap_notifier, n); 202 break; 203 } 204 205 return err; 206 } 207 EXPORT_SYMBOL_GPL(profile_event_unregister); 208 209 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 210 /* 211 * Each cpu has a pair of open-addressed hashtables for pending 212 * profile hits. read_profile() IPI's all cpus to request them 213 * to flip buffers and flushes their contents to prof_buffer itself. 214 * Flip requests are serialized by the profile_flip_mutex. The sole 215 * use of having a second hashtable is for avoiding cacheline 216 * contention that would otherwise happen during flushes of pending 217 * profile hits required for the accuracy of reported profile hits 218 * and so resurrect the interrupt livelock issue. 219 * 220 * The open-addressed hashtables are indexed by profile buffer slot 221 * and hold the number of pending hits to that profile buffer slot on 222 * a cpu in an entry. When the hashtable overflows, all pending hits 223 * are accounted to their corresponding profile buffer slots with 224 * atomic_add() and the hashtable emptied. As numerous pending hits 225 * may be accounted to a profile buffer slot in a hashtable entry, 226 * this amortizes a number of atomic profile buffer increments likely 227 * to be far larger than the number of entries in the hashtable, 228 * particularly given that the number of distinct profile buffer 229 * positions to which hits are accounted during short intervals (e.g. 230 * several seconds) is usually very small. Exclusion from buffer 231 * flipping is provided by interrupt disablement (note that for 232 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 233 * process context). 234 * The hash function is meant to be lightweight as opposed to strong, 235 * and was vaguely inspired by ppc64 firmware-supported inverted 236 * pagetable hash functions, but uses a full hashtable full of finite 237 * collision chains, not just pairs of them. 238 * 239 * -- nyc 240 */ 241 static void __profile_flip_buffers(void *unused) 242 { 243 int cpu = smp_processor_id(); 244 245 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 246 } 247 248 static void profile_flip_buffers(void) 249 { 250 int i, j, cpu; 251 252 mutex_lock(&profile_flip_mutex); 253 j = per_cpu(cpu_profile_flip, get_cpu()); 254 put_cpu(); 255 on_each_cpu(__profile_flip_buffers, NULL, 1); 256 for_each_online_cpu(cpu) { 257 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 258 for (i = 0; i < NR_PROFILE_HIT; ++i) { 259 if (!hits[i].hits) { 260 if (hits[i].pc) 261 hits[i].pc = 0; 262 continue; 263 } 264 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 265 hits[i].hits = hits[i].pc = 0; 266 } 267 } 268 mutex_unlock(&profile_flip_mutex); 269 } 270 271 static void profile_discard_flip_buffers(void) 272 { 273 int i, cpu; 274 275 mutex_lock(&profile_flip_mutex); 276 i = per_cpu(cpu_profile_flip, get_cpu()); 277 put_cpu(); 278 on_each_cpu(__profile_flip_buffers, NULL, 1); 279 for_each_online_cpu(cpu) { 280 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 281 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 282 } 283 mutex_unlock(&profile_flip_mutex); 284 } 285 286 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 287 { 288 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 289 int i, j, cpu; 290 struct profile_hit *hits; 291 292 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 293 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 294 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 295 cpu = get_cpu(); 296 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 297 if (!hits) { 298 put_cpu(); 299 return; 300 } 301 /* 302 * We buffer the global profiler buffer into a per-CPU 303 * queue and thus reduce the number of global (and possibly 304 * NUMA-alien) accesses. The write-queue is self-coalescing: 305 */ 306 local_irq_save(flags); 307 do { 308 for (j = 0; j < PROFILE_GRPSZ; ++j) { 309 if (hits[i + j].pc == pc) { 310 hits[i + j].hits += nr_hits; 311 goto out; 312 } else if (!hits[i + j].hits) { 313 hits[i + j].pc = pc; 314 hits[i + j].hits = nr_hits; 315 goto out; 316 } 317 } 318 i = (i + secondary) & (NR_PROFILE_HIT - 1); 319 } while (i != primary); 320 321 /* 322 * Add the current hit(s) and flush the write-queue out 323 * to the global buffer: 324 */ 325 atomic_add(nr_hits, &prof_buffer[pc]); 326 for (i = 0; i < NR_PROFILE_HIT; ++i) { 327 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 328 hits[i].pc = hits[i].hits = 0; 329 } 330 out: 331 local_irq_restore(flags); 332 put_cpu(); 333 } 334 335 static int profile_dead_cpu(unsigned int cpu) 336 { 337 struct page *page; 338 int i; 339 340 if (cpumask_available(prof_cpu_mask)) 341 cpumask_clear_cpu(cpu, prof_cpu_mask); 342 343 for (i = 0; i < 2; i++) { 344 if (per_cpu(cpu_profile_hits, cpu)[i]) { 345 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); 346 per_cpu(cpu_profile_hits, cpu)[i] = NULL; 347 __free_page(page); 348 } 349 } 350 return 0; 351 } 352 353 static int profile_prepare_cpu(unsigned int cpu) 354 { 355 int i, node = cpu_to_mem(cpu); 356 struct page *page; 357 358 per_cpu(cpu_profile_flip, cpu) = 0; 359 360 for (i = 0; i < 2; i++) { 361 if (per_cpu(cpu_profile_hits, cpu)[i]) 362 continue; 363 364 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 365 if (!page) { 366 profile_dead_cpu(cpu); 367 return -ENOMEM; 368 } 369 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); 370 371 } 372 return 0; 373 } 374 375 static int profile_online_cpu(unsigned int cpu) 376 { 377 if (cpumask_available(prof_cpu_mask)) 378 cpumask_set_cpu(cpu, prof_cpu_mask); 379 380 return 0; 381 } 382 383 #else /* !CONFIG_SMP */ 384 #define profile_flip_buffers() do { } while (0) 385 #define profile_discard_flip_buffers() do { } while (0) 386 387 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 388 { 389 unsigned long pc; 390 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 391 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 392 } 393 #endif /* !CONFIG_SMP */ 394 395 void profile_hits(int type, void *__pc, unsigned int nr_hits) 396 { 397 if (prof_on != type || !prof_buffer) 398 return; 399 do_profile_hits(type, __pc, nr_hits); 400 } 401 EXPORT_SYMBOL_GPL(profile_hits); 402 403 void profile_tick(int type) 404 { 405 struct pt_regs *regs = get_irq_regs(); 406 407 if (!user_mode(regs) && cpumask_available(prof_cpu_mask) && 408 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 409 profile_hit(type, (void *)profile_pc(regs)); 410 } 411 412 #ifdef CONFIG_PROC_FS 413 #include <linux/proc_fs.h> 414 #include <linux/seq_file.h> 415 #include <linux/uaccess.h> 416 417 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) 418 { 419 seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); 420 return 0; 421 } 422 423 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) 424 { 425 return single_open(file, prof_cpu_mask_proc_show, NULL); 426 } 427 428 static ssize_t prof_cpu_mask_proc_write(struct file *file, 429 const char __user *buffer, size_t count, loff_t *pos) 430 { 431 cpumask_var_t new_value; 432 int err; 433 434 if (!zalloc_cpumask_var(&new_value, GFP_KERNEL)) 435 return -ENOMEM; 436 437 err = cpumask_parse_user(buffer, count, new_value); 438 if (!err) { 439 cpumask_copy(prof_cpu_mask, new_value); 440 err = count; 441 } 442 free_cpumask_var(new_value); 443 return err; 444 } 445 446 static const struct proc_ops prof_cpu_mask_proc_ops = { 447 .proc_open = prof_cpu_mask_proc_open, 448 .proc_read = seq_read, 449 .proc_lseek = seq_lseek, 450 .proc_release = single_release, 451 .proc_write = prof_cpu_mask_proc_write, 452 }; 453 454 void create_prof_cpu_mask(void) 455 { 456 /* create /proc/irq/prof_cpu_mask */ 457 proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops); 458 } 459 460 /* 461 * This function accesses profiling information. The returned data is 462 * binary: the sampling step and the actual contents of the profile 463 * buffer. Use of the program readprofile is recommended in order to 464 * get meaningful info out of these data. 465 */ 466 static ssize_t 467 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 468 { 469 unsigned long p = *ppos; 470 ssize_t read; 471 char *pnt; 472 unsigned long sample_step = 1UL << prof_shift; 473 474 profile_flip_buffers(); 475 if (p >= (prof_len+1)*sizeof(unsigned int)) 476 return 0; 477 if (count > (prof_len+1)*sizeof(unsigned int) - p) 478 count = (prof_len+1)*sizeof(unsigned int) - p; 479 read = 0; 480 481 while (p < sizeof(unsigned int) && count > 0) { 482 if (put_user(*((char *)(&sample_step)+p), buf)) 483 return -EFAULT; 484 buf++; p++; count--; read++; 485 } 486 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 487 if (copy_to_user(buf, (void *)pnt, count)) 488 return -EFAULT; 489 read += count; 490 *ppos += read; 491 return read; 492 } 493 494 /* 495 * Writing to /proc/profile resets the counters 496 * 497 * Writing a 'profiling multiplier' value into it also re-sets the profiling 498 * interrupt frequency, on architectures that support this. 499 */ 500 static ssize_t write_profile(struct file *file, const char __user *buf, 501 size_t count, loff_t *ppos) 502 { 503 #ifdef CONFIG_SMP 504 extern int setup_profiling_timer(unsigned int multiplier); 505 506 if (count == sizeof(int)) { 507 unsigned int multiplier; 508 509 if (copy_from_user(&multiplier, buf, sizeof(int))) 510 return -EFAULT; 511 512 if (setup_profiling_timer(multiplier)) 513 return -EINVAL; 514 } 515 #endif 516 profile_discard_flip_buffers(); 517 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 518 return count; 519 } 520 521 static const struct proc_ops profile_proc_ops = { 522 .proc_read = read_profile, 523 .proc_write = write_profile, 524 .proc_lseek = default_llseek, 525 }; 526 527 int __ref create_proc_profile(void) 528 { 529 struct proc_dir_entry *entry; 530 #ifdef CONFIG_SMP 531 enum cpuhp_state online_state; 532 #endif 533 534 int err = 0; 535 536 if (!prof_on) 537 return 0; 538 #ifdef CONFIG_SMP 539 err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", 540 profile_prepare_cpu, profile_dead_cpu); 541 if (err) 542 return err; 543 544 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", 545 profile_online_cpu, NULL); 546 if (err < 0) 547 goto err_state_prep; 548 online_state = err; 549 err = 0; 550 #endif 551 entry = proc_create("profile", S_IWUSR | S_IRUGO, 552 NULL, &profile_proc_ops); 553 if (!entry) 554 goto err_state_onl; 555 proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); 556 557 return err; 558 err_state_onl: 559 #ifdef CONFIG_SMP 560 cpuhp_remove_state(online_state); 561 err_state_prep: 562 cpuhp_remove_state(CPUHP_PROFILE_PREPARE); 563 #endif 564 return err; 565 } 566 subsys_initcall(create_proc_profile); 567 #endif /* CONFIG_PROC_FS */ 568