xref: /openbmc/linux/kernel/profile.c (revision 384740dc)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <asm/sections.h>
26 #include <asm/irq_regs.h>
27 #include <asm/ptrace.h>
28 
29 struct profile_hit {
30 	u32 pc, hits;
31 };
32 #define PROFILE_GRPSHIFT	3
33 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
34 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
35 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
36 
37 /* Oprofile timer tick hook */
38 static int (*timer_hook)(struct pt_regs *) __read_mostly;
39 
40 static atomic_t *prof_buffer;
41 static unsigned long prof_len, prof_shift;
42 
43 int prof_on __read_mostly;
44 EXPORT_SYMBOL_GPL(prof_on);
45 
46 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
47 #ifdef CONFIG_SMP
48 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
49 static DEFINE_PER_CPU(int, cpu_profile_flip);
50 static DEFINE_MUTEX(profile_flip_mutex);
51 #endif /* CONFIG_SMP */
52 
53 static int __init profile_setup(char *str)
54 {
55 	static char __initdata schedstr[] = "schedule";
56 	static char __initdata sleepstr[] = "sleep";
57 	static char __initdata kvmstr[] = "kvm";
58 	int par;
59 
60 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
61 #ifdef CONFIG_SCHEDSTATS
62 		prof_on = SLEEP_PROFILING;
63 		if (str[strlen(sleepstr)] == ',')
64 			str += strlen(sleepstr) + 1;
65 		if (get_option(&str, &par))
66 			prof_shift = par;
67 		printk(KERN_INFO
68 			"kernel sleep profiling enabled (shift: %ld)\n",
69 			prof_shift);
70 #else
71 		printk(KERN_WARNING
72 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
73 #endif /* CONFIG_SCHEDSTATS */
74 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
75 		prof_on = SCHED_PROFILING;
76 		if (str[strlen(schedstr)] == ',')
77 			str += strlen(schedstr) + 1;
78 		if (get_option(&str, &par))
79 			prof_shift = par;
80 		printk(KERN_INFO
81 			"kernel schedule profiling enabled (shift: %ld)\n",
82 			prof_shift);
83 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
84 		prof_on = KVM_PROFILING;
85 		if (str[strlen(kvmstr)] == ',')
86 			str += strlen(kvmstr) + 1;
87 		if (get_option(&str, &par))
88 			prof_shift = par;
89 		printk(KERN_INFO
90 			"kernel KVM profiling enabled (shift: %ld)\n",
91 			prof_shift);
92 	} else if (get_option(&str, &par)) {
93 		prof_shift = par;
94 		prof_on = CPU_PROFILING;
95 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
96 			prof_shift);
97 	}
98 	return 1;
99 }
100 __setup("profile=", profile_setup);
101 
102 
103 void __init profile_init(void)
104 {
105 	if (!prof_on)
106 		return;
107 
108 	/* only text is profiled */
109 	prof_len = (_etext - _stext) >> prof_shift;
110 	prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
111 }
112 
113 /* Profile event notifications */
114 
115 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
116 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
117 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
118 
119 void profile_task_exit(struct task_struct *task)
120 {
121 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
122 }
123 
124 int profile_handoff_task(struct task_struct *task)
125 {
126 	int ret;
127 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
128 	return (ret == NOTIFY_OK) ? 1 : 0;
129 }
130 
131 void profile_munmap(unsigned long addr)
132 {
133 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
134 }
135 
136 int task_handoff_register(struct notifier_block *n)
137 {
138 	return atomic_notifier_chain_register(&task_free_notifier, n);
139 }
140 EXPORT_SYMBOL_GPL(task_handoff_register);
141 
142 int task_handoff_unregister(struct notifier_block *n)
143 {
144 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
145 }
146 EXPORT_SYMBOL_GPL(task_handoff_unregister);
147 
148 int profile_event_register(enum profile_type type, struct notifier_block *n)
149 {
150 	int err = -EINVAL;
151 
152 	switch (type) {
153 	case PROFILE_TASK_EXIT:
154 		err = blocking_notifier_chain_register(
155 				&task_exit_notifier, n);
156 		break;
157 	case PROFILE_MUNMAP:
158 		err = blocking_notifier_chain_register(
159 				&munmap_notifier, n);
160 		break;
161 	}
162 
163 	return err;
164 }
165 EXPORT_SYMBOL_GPL(profile_event_register);
166 
167 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
168 {
169 	int err = -EINVAL;
170 
171 	switch (type) {
172 	case PROFILE_TASK_EXIT:
173 		err = blocking_notifier_chain_unregister(
174 				&task_exit_notifier, n);
175 		break;
176 	case PROFILE_MUNMAP:
177 		err = blocking_notifier_chain_unregister(
178 				&munmap_notifier, n);
179 		break;
180 	}
181 
182 	return err;
183 }
184 EXPORT_SYMBOL_GPL(profile_event_unregister);
185 
186 int register_timer_hook(int (*hook)(struct pt_regs *))
187 {
188 	if (timer_hook)
189 		return -EBUSY;
190 	timer_hook = hook;
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(register_timer_hook);
194 
195 void unregister_timer_hook(int (*hook)(struct pt_regs *))
196 {
197 	WARN_ON(hook != timer_hook);
198 	timer_hook = NULL;
199 	/* make sure all CPUs see the NULL hook */
200 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
201 }
202 EXPORT_SYMBOL_GPL(unregister_timer_hook);
203 
204 
205 #ifdef CONFIG_SMP
206 /*
207  * Each cpu has a pair of open-addressed hashtables for pending
208  * profile hits. read_profile() IPI's all cpus to request them
209  * to flip buffers and flushes their contents to prof_buffer itself.
210  * Flip requests are serialized by the profile_flip_mutex. The sole
211  * use of having a second hashtable is for avoiding cacheline
212  * contention that would otherwise happen during flushes of pending
213  * profile hits required for the accuracy of reported profile hits
214  * and so resurrect the interrupt livelock issue.
215  *
216  * The open-addressed hashtables are indexed by profile buffer slot
217  * and hold the number of pending hits to that profile buffer slot on
218  * a cpu in an entry. When the hashtable overflows, all pending hits
219  * are accounted to their corresponding profile buffer slots with
220  * atomic_add() and the hashtable emptied. As numerous pending hits
221  * may be accounted to a profile buffer slot in a hashtable entry,
222  * this amortizes a number of atomic profile buffer increments likely
223  * to be far larger than the number of entries in the hashtable,
224  * particularly given that the number of distinct profile buffer
225  * positions to which hits are accounted during short intervals (e.g.
226  * several seconds) is usually very small. Exclusion from buffer
227  * flipping is provided by interrupt disablement (note that for
228  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
229  * process context).
230  * The hash function is meant to be lightweight as opposed to strong,
231  * and was vaguely inspired by ppc64 firmware-supported inverted
232  * pagetable hash functions, but uses a full hashtable full of finite
233  * collision chains, not just pairs of them.
234  *
235  * -- wli
236  */
237 static void __profile_flip_buffers(void *unused)
238 {
239 	int cpu = smp_processor_id();
240 
241 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
242 }
243 
244 static void profile_flip_buffers(void)
245 {
246 	int i, j, cpu;
247 
248 	mutex_lock(&profile_flip_mutex);
249 	j = per_cpu(cpu_profile_flip, get_cpu());
250 	put_cpu();
251 	on_each_cpu(__profile_flip_buffers, NULL, 1);
252 	for_each_online_cpu(cpu) {
253 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
254 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
255 			if (!hits[i].hits) {
256 				if (hits[i].pc)
257 					hits[i].pc = 0;
258 				continue;
259 			}
260 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
261 			hits[i].hits = hits[i].pc = 0;
262 		}
263 	}
264 	mutex_unlock(&profile_flip_mutex);
265 }
266 
267 static void profile_discard_flip_buffers(void)
268 {
269 	int i, cpu;
270 
271 	mutex_lock(&profile_flip_mutex);
272 	i = per_cpu(cpu_profile_flip, get_cpu());
273 	put_cpu();
274 	on_each_cpu(__profile_flip_buffers, NULL, 1);
275 	for_each_online_cpu(cpu) {
276 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
277 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
278 	}
279 	mutex_unlock(&profile_flip_mutex);
280 }
281 
282 void profile_hits(int type, void *__pc, unsigned int nr_hits)
283 {
284 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
285 	int i, j, cpu;
286 	struct profile_hit *hits;
287 
288 	if (prof_on != type || !prof_buffer)
289 		return;
290 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
291 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
292 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
293 	cpu = get_cpu();
294 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
295 	if (!hits) {
296 		put_cpu();
297 		return;
298 	}
299 	/*
300 	 * We buffer the global profiler buffer into a per-CPU
301 	 * queue and thus reduce the number of global (and possibly
302 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
303 	 */
304 	local_irq_save(flags);
305 	do {
306 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
307 			if (hits[i + j].pc == pc) {
308 				hits[i + j].hits += nr_hits;
309 				goto out;
310 			} else if (!hits[i + j].hits) {
311 				hits[i + j].pc = pc;
312 				hits[i + j].hits = nr_hits;
313 				goto out;
314 			}
315 		}
316 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
317 	} while (i != primary);
318 
319 	/*
320 	 * Add the current hit(s) and flush the write-queue out
321 	 * to the global buffer:
322 	 */
323 	atomic_add(nr_hits, &prof_buffer[pc]);
324 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
325 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
326 		hits[i].pc = hits[i].hits = 0;
327 	}
328 out:
329 	local_irq_restore(flags);
330 	put_cpu();
331 }
332 
333 static int __devinit profile_cpu_callback(struct notifier_block *info,
334 					unsigned long action, void *__cpu)
335 {
336 	int node, cpu = (unsigned long)__cpu;
337 	struct page *page;
338 
339 	switch (action) {
340 	case CPU_UP_PREPARE:
341 	case CPU_UP_PREPARE_FROZEN:
342 		node = cpu_to_node(cpu);
343 		per_cpu(cpu_profile_flip, cpu) = 0;
344 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
345 			page = alloc_pages_node(node,
346 					GFP_KERNEL | __GFP_ZERO,
347 					0);
348 			if (!page)
349 				return NOTIFY_BAD;
350 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
351 		}
352 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
353 			page = alloc_pages_node(node,
354 					GFP_KERNEL | __GFP_ZERO,
355 					0);
356 			if (!page)
357 				goto out_free;
358 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
359 		}
360 		break;
361 out_free:
362 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
363 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
364 		__free_page(page);
365 		return NOTIFY_BAD;
366 	case CPU_ONLINE:
367 	case CPU_ONLINE_FROZEN:
368 		cpu_set(cpu, prof_cpu_mask);
369 		break;
370 	case CPU_UP_CANCELED:
371 	case CPU_UP_CANCELED_FROZEN:
372 	case CPU_DEAD:
373 	case CPU_DEAD_FROZEN:
374 		cpu_clear(cpu, prof_cpu_mask);
375 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
376 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
377 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
378 			__free_page(page);
379 		}
380 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
381 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
382 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
383 			__free_page(page);
384 		}
385 		break;
386 	}
387 	return NOTIFY_OK;
388 }
389 #else /* !CONFIG_SMP */
390 #define profile_flip_buffers()		do { } while (0)
391 #define profile_discard_flip_buffers()	do { } while (0)
392 #define profile_cpu_callback		NULL
393 
394 void profile_hits(int type, void *__pc, unsigned int nr_hits)
395 {
396 	unsigned long pc;
397 
398 	if (prof_on != type || !prof_buffer)
399 		return;
400 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
401 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
402 }
403 #endif /* !CONFIG_SMP */
404 EXPORT_SYMBOL_GPL(profile_hits);
405 
406 void profile_tick(int type)
407 {
408 	struct pt_regs *regs = get_irq_regs();
409 
410 	if (type == CPU_PROFILING && timer_hook)
411 		timer_hook(regs);
412 	if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
413 		profile_hit(type, (void *)profile_pc(regs));
414 }
415 
416 #ifdef CONFIG_PROC_FS
417 #include <linux/proc_fs.h>
418 #include <asm/uaccess.h>
419 #include <asm/ptrace.h>
420 
421 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
422 			int count, int *eof, void *data)
423 {
424 	int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
425 	if (count - len < 2)
426 		return -EINVAL;
427 	len += sprintf(page + len, "\n");
428 	return len;
429 }
430 
431 static int prof_cpu_mask_write_proc(struct file *file,
432 	const char __user *buffer,  unsigned long count, void *data)
433 {
434 	cpumask_t *mask = (cpumask_t *)data;
435 	unsigned long full_count = count, err;
436 	cpumask_t new_value;
437 
438 	err = cpumask_parse_user(buffer, count, new_value);
439 	if (err)
440 		return err;
441 
442 	*mask = new_value;
443 	return full_count;
444 }
445 
446 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
447 {
448 	struct proc_dir_entry *entry;
449 
450 	/* create /proc/irq/prof_cpu_mask */
451 	entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
452 	if (!entry)
453 		return;
454 	entry->data = (void *)&prof_cpu_mask;
455 	entry->read_proc = prof_cpu_mask_read_proc;
456 	entry->write_proc = prof_cpu_mask_write_proc;
457 }
458 
459 /*
460  * This function accesses profiling information. The returned data is
461  * binary: the sampling step and the actual contents of the profile
462  * buffer. Use of the program readprofile is recommended in order to
463  * get meaningful info out of these data.
464  */
465 static ssize_t
466 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
467 {
468 	unsigned long p = *ppos;
469 	ssize_t read;
470 	char *pnt;
471 	unsigned int sample_step = 1 << prof_shift;
472 
473 	profile_flip_buffers();
474 	if (p >= (prof_len+1)*sizeof(unsigned int))
475 		return 0;
476 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
477 		count = (prof_len+1)*sizeof(unsigned int) - p;
478 	read = 0;
479 
480 	while (p < sizeof(unsigned int) && count > 0) {
481 		if (put_user(*((char *)(&sample_step)+p), buf))
482 			return -EFAULT;
483 		buf++; p++; count--; read++;
484 	}
485 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
486 	if (copy_to_user(buf, (void *)pnt, count))
487 		return -EFAULT;
488 	read += count;
489 	*ppos += read;
490 	return read;
491 }
492 
493 /*
494  * Writing to /proc/profile resets the counters
495  *
496  * Writing a 'profiling multiplier' value into it also re-sets the profiling
497  * interrupt frequency, on architectures that support this.
498  */
499 static ssize_t write_profile(struct file *file, const char __user *buf,
500 			     size_t count, loff_t *ppos)
501 {
502 #ifdef CONFIG_SMP
503 	extern int setup_profiling_timer(unsigned int multiplier);
504 
505 	if (count == sizeof(int)) {
506 		unsigned int multiplier;
507 
508 		if (copy_from_user(&multiplier, buf, sizeof(int)))
509 			return -EFAULT;
510 
511 		if (setup_profiling_timer(multiplier))
512 			return -EINVAL;
513 	}
514 #endif
515 	profile_discard_flip_buffers();
516 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
517 	return count;
518 }
519 
520 static const struct file_operations proc_profile_operations = {
521 	.read		= read_profile,
522 	.write		= write_profile,
523 };
524 
525 #ifdef CONFIG_SMP
526 static void __init profile_nop(void *unused)
527 {
528 }
529 
530 static int __init create_hash_tables(void)
531 {
532 	int cpu;
533 
534 	for_each_online_cpu(cpu) {
535 		int node = cpu_to_node(cpu);
536 		struct page *page;
537 
538 		page = alloc_pages_node(node,
539 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
540 				0);
541 		if (!page)
542 			goto out_cleanup;
543 		per_cpu(cpu_profile_hits, cpu)[1]
544 				= (struct profile_hit *)page_address(page);
545 		page = alloc_pages_node(node,
546 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
547 				0);
548 		if (!page)
549 			goto out_cleanup;
550 		per_cpu(cpu_profile_hits, cpu)[0]
551 				= (struct profile_hit *)page_address(page);
552 	}
553 	return 0;
554 out_cleanup:
555 	prof_on = 0;
556 	smp_mb();
557 	on_each_cpu(profile_nop, NULL, 1);
558 	for_each_online_cpu(cpu) {
559 		struct page *page;
560 
561 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
562 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
563 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
564 			__free_page(page);
565 		}
566 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
567 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
568 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
569 			__free_page(page);
570 		}
571 	}
572 	return -1;
573 }
574 #else
575 #define create_hash_tables()			({ 0; })
576 #endif
577 
578 static int __init create_proc_profile(void)
579 {
580 	struct proc_dir_entry *entry;
581 
582 	if (!prof_on)
583 		return 0;
584 	if (create_hash_tables())
585 		return -1;
586 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
587 			    NULL, &proc_profile_operations);
588 	if (!entry)
589 		return 0;
590 	entry->size = (1+prof_len) * sizeof(atomic_t);
591 	hotcpu_notifier(profile_cpu_callback, 0);
592 	return 0;
593 }
594 module_init(create_proc_profile);
595 #endif /* CONFIG_PROC_FS */
596