1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * William Irwin, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 14 */ 15 16 #include <linux/module.h> 17 #include <linux/profile.h> 18 #include <linux/bootmem.h> 19 #include <linux/notifier.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/highmem.h> 24 #include <linux/mutex.h> 25 #include <asm/sections.h> 26 #include <asm/irq_regs.h> 27 #include <asm/ptrace.h> 28 29 struct profile_hit { 30 u32 pc, hits; 31 }; 32 #define PROFILE_GRPSHIFT 3 33 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 34 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 35 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 36 37 /* Oprofile timer tick hook */ 38 static int (*timer_hook)(struct pt_regs *) __read_mostly; 39 40 static atomic_t *prof_buffer; 41 static unsigned long prof_len, prof_shift; 42 43 int prof_on __read_mostly; 44 EXPORT_SYMBOL_GPL(prof_on); 45 46 static cpumask_t prof_cpu_mask = CPU_MASK_ALL; 47 #ifdef CONFIG_SMP 48 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 49 static DEFINE_PER_CPU(int, cpu_profile_flip); 50 static DEFINE_MUTEX(profile_flip_mutex); 51 #endif /* CONFIG_SMP */ 52 53 static int __init profile_setup(char *str) 54 { 55 static char __initdata schedstr[] = "schedule"; 56 static char __initdata sleepstr[] = "sleep"; 57 static char __initdata kvmstr[] = "kvm"; 58 int par; 59 60 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 61 #ifdef CONFIG_SCHEDSTATS 62 prof_on = SLEEP_PROFILING; 63 if (str[strlen(sleepstr)] == ',') 64 str += strlen(sleepstr) + 1; 65 if (get_option(&str, &par)) 66 prof_shift = par; 67 printk(KERN_INFO 68 "kernel sleep profiling enabled (shift: %ld)\n", 69 prof_shift); 70 #else 71 printk(KERN_WARNING 72 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 73 #endif /* CONFIG_SCHEDSTATS */ 74 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 75 prof_on = SCHED_PROFILING; 76 if (str[strlen(schedstr)] == ',') 77 str += strlen(schedstr) + 1; 78 if (get_option(&str, &par)) 79 prof_shift = par; 80 printk(KERN_INFO 81 "kernel schedule profiling enabled (shift: %ld)\n", 82 prof_shift); 83 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 84 prof_on = KVM_PROFILING; 85 if (str[strlen(kvmstr)] == ',') 86 str += strlen(kvmstr) + 1; 87 if (get_option(&str, &par)) 88 prof_shift = par; 89 printk(KERN_INFO 90 "kernel KVM profiling enabled (shift: %ld)\n", 91 prof_shift); 92 } else if (get_option(&str, &par)) { 93 prof_shift = par; 94 prof_on = CPU_PROFILING; 95 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", 96 prof_shift); 97 } 98 return 1; 99 } 100 __setup("profile=", profile_setup); 101 102 103 void __init profile_init(void) 104 { 105 if (!prof_on) 106 return; 107 108 /* only text is profiled */ 109 prof_len = (_etext - _stext) >> prof_shift; 110 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); 111 } 112 113 /* Profile event notifications */ 114 115 #ifdef CONFIG_PROFILING 116 117 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 118 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 119 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 120 121 void profile_task_exit(struct task_struct *task) 122 { 123 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 124 } 125 126 int profile_handoff_task(struct task_struct *task) 127 { 128 int ret; 129 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 130 return (ret == NOTIFY_OK) ? 1 : 0; 131 } 132 133 void profile_munmap(unsigned long addr) 134 { 135 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 136 } 137 138 int task_handoff_register(struct notifier_block *n) 139 { 140 return atomic_notifier_chain_register(&task_free_notifier, n); 141 } 142 EXPORT_SYMBOL_GPL(task_handoff_register); 143 144 int task_handoff_unregister(struct notifier_block *n) 145 { 146 return atomic_notifier_chain_unregister(&task_free_notifier, n); 147 } 148 EXPORT_SYMBOL_GPL(task_handoff_unregister); 149 150 int profile_event_register(enum profile_type type, struct notifier_block *n) 151 { 152 int err = -EINVAL; 153 154 switch (type) { 155 case PROFILE_TASK_EXIT: 156 err = blocking_notifier_chain_register( 157 &task_exit_notifier, n); 158 break; 159 case PROFILE_MUNMAP: 160 err = blocking_notifier_chain_register( 161 &munmap_notifier, n); 162 break; 163 } 164 165 return err; 166 } 167 EXPORT_SYMBOL_GPL(profile_event_register); 168 169 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 170 { 171 int err = -EINVAL; 172 173 switch (type) { 174 case PROFILE_TASK_EXIT: 175 err = blocking_notifier_chain_unregister( 176 &task_exit_notifier, n); 177 break; 178 case PROFILE_MUNMAP: 179 err = blocking_notifier_chain_unregister( 180 &munmap_notifier, n); 181 break; 182 } 183 184 return err; 185 } 186 EXPORT_SYMBOL_GPL(profile_event_unregister); 187 188 int register_timer_hook(int (*hook)(struct pt_regs *)) 189 { 190 if (timer_hook) 191 return -EBUSY; 192 timer_hook = hook; 193 return 0; 194 } 195 EXPORT_SYMBOL_GPL(register_timer_hook); 196 197 void unregister_timer_hook(int (*hook)(struct pt_regs *)) 198 { 199 WARN_ON(hook != timer_hook); 200 timer_hook = NULL; 201 /* make sure all CPUs see the NULL hook */ 202 synchronize_sched(); /* Allow ongoing interrupts to complete. */ 203 } 204 EXPORT_SYMBOL_GPL(unregister_timer_hook); 205 206 #endif /* CONFIG_PROFILING */ 207 208 209 #ifdef CONFIG_SMP 210 /* 211 * Each cpu has a pair of open-addressed hashtables for pending 212 * profile hits. read_profile() IPI's all cpus to request them 213 * to flip buffers and flushes their contents to prof_buffer itself. 214 * Flip requests are serialized by the profile_flip_mutex. The sole 215 * use of having a second hashtable is for avoiding cacheline 216 * contention that would otherwise happen during flushes of pending 217 * profile hits required for the accuracy of reported profile hits 218 * and so resurrect the interrupt livelock issue. 219 * 220 * The open-addressed hashtables are indexed by profile buffer slot 221 * and hold the number of pending hits to that profile buffer slot on 222 * a cpu in an entry. When the hashtable overflows, all pending hits 223 * are accounted to their corresponding profile buffer slots with 224 * atomic_add() and the hashtable emptied. As numerous pending hits 225 * may be accounted to a profile buffer slot in a hashtable entry, 226 * this amortizes a number of atomic profile buffer increments likely 227 * to be far larger than the number of entries in the hashtable, 228 * particularly given that the number of distinct profile buffer 229 * positions to which hits are accounted during short intervals (e.g. 230 * several seconds) is usually very small. Exclusion from buffer 231 * flipping is provided by interrupt disablement (note that for 232 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 233 * process context). 234 * The hash function is meant to be lightweight as opposed to strong, 235 * and was vaguely inspired by ppc64 firmware-supported inverted 236 * pagetable hash functions, but uses a full hashtable full of finite 237 * collision chains, not just pairs of them. 238 * 239 * -- wli 240 */ 241 static void __profile_flip_buffers(void *unused) 242 { 243 int cpu = smp_processor_id(); 244 245 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 246 } 247 248 static void profile_flip_buffers(void) 249 { 250 int i, j, cpu; 251 252 mutex_lock(&profile_flip_mutex); 253 j = per_cpu(cpu_profile_flip, get_cpu()); 254 put_cpu(); 255 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 256 for_each_online_cpu(cpu) { 257 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 258 for (i = 0; i < NR_PROFILE_HIT; ++i) { 259 if (!hits[i].hits) { 260 if (hits[i].pc) 261 hits[i].pc = 0; 262 continue; 263 } 264 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 265 hits[i].hits = hits[i].pc = 0; 266 } 267 } 268 mutex_unlock(&profile_flip_mutex); 269 } 270 271 static void profile_discard_flip_buffers(void) 272 { 273 int i, cpu; 274 275 mutex_lock(&profile_flip_mutex); 276 i = per_cpu(cpu_profile_flip, get_cpu()); 277 put_cpu(); 278 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 279 for_each_online_cpu(cpu) { 280 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 281 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 282 } 283 mutex_unlock(&profile_flip_mutex); 284 } 285 286 void profile_hits(int type, void *__pc, unsigned int nr_hits) 287 { 288 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 289 int i, j, cpu; 290 struct profile_hit *hits; 291 292 if (prof_on != type || !prof_buffer) 293 return; 294 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 295 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 296 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 297 cpu = get_cpu(); 298 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 299 if (!hits) { 300 put_cpu(); 301 return; 302 } 303 /* 304 * We buffer the global profiler buffer into a per-CPU 305 * queue and thus reduce the number of global (and possibly 306 * NUMA-alien) accesses. The write-queue is self-coalescing: 307 */ 308 local_irq_save(flags); 309 do { 310 for (j = 0; j < PROFILE_GRPSZ; ++j) { 311 if (hits[i + j].pc == pc) { 312 hits[i + j].hits += nr_hits; 313 goto out; 314 } else if (!hits[i + j].hits) { 315 hits[i + j].pc = pc; 316 hits[i + j].hits = nr_hits; 317 goto out; 318 } 319 } 320 i = (i + secondary) & (NR_PROFILE_HIT - 1); 321 } while (i != primary); 322 323 /* 324 * Add the current hit(s) and flush the write-queue out 325 * to the global buffer: 326 */ 327 atomic_add(nr_hits, &prof_buffer[pc]); 328 for (i = 0; i < NR_PROFILE_HIT; ++i) { 329 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 330 hits[i].pc = hits[i].hits = 0; 331 } 332 out: 333 local_irq_restore(flags); 334 put_cpu(); 335 } 336 337 static int __devinit profile_cpu_callback(struct notifier_block *info, 338 unsigned long action, void *__cpu) 339 { 340 int node, cpu = (unsigned long)__cpu; 341 struct page *page; 342 343 switch (action) { 344 case CPU_UP_PREPARE: 345 case CPU_UP_PREPARE_FROZEN: 346 node = cpu_to_node(cpu); 347 per_cpu(cpu_profile_flip, cpu) = 0; 348 if (!per_cpu(cpu_profile_hits, cpu)[1]) { 349 page = alloc_pages_node(node, 350 GFP_KERNEL | __GFP_ZERO, 351 0); 352 if (!page) 353 return NOTIFY_BAD; 354 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); 355 } 356 if (!per_cpu(cpu_profile_hits, cpu)[0]) { 357 page = alloc_pages_node(node, 358 GFP_KERNEL | __GFP_ZERO, 359 0); 360 if (!page) 361 goto out_free; 362 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); 363 } 364 break; 365 out_free: 366 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 367 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 368 __free_page(page); 369 return NOTIFY_BAD; 370 case CPU_ONLINE: 371 case CPU_ONLINE_FROZEN: 372 cpu_set(cpu, prof_cpu_mask); 373 break; 374 case CPU_UP_CANCELED: 375 case CPU_UP_CANCELED_FROZEN: 376 case CPU_DEAD: 377 case CPU_DEAD_FROZEN: 378 cpu_clear(cpu, prof_cpu_mask); 379 if (per_cpu(cpu_profile_hits, cpu)[0]) { 380 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 381 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 382 __free_page(page); 383 } 384 if (per_cpu(cpu_profile_hits, cpu)[1]) { 385 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 386 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 387 __free_page(page); 388 } 389 break; 390 } 391 return NOTIFY_OK; 392 } 393 #else /* !CONFIG_SMP */ 394 #define profile_flip_buffers() do { } while (0) 395 #define profile_discard_flip_buffers() do { } while (0) 396 #define profile_cpu_callback NULL 397 398 void profile_hits(int type, void *__pc, unsigned int nr_hits) 399 { 400 unsigned long pc; 401 402 if (prof_on != type || !prof_buffer) 403 return; 404 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 405 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 406 } 407 #endif /* !CONFIG_SMP */ 408 EXPORT_SYMBOL_GPL(profile_hits); 409 410 void profile_tick(int type) 411 { 412 struct pt_regs *regs = get_irq_regs(); 413 414 if (type == CPU_PROFILING && timer_hook) 415 timer_hook(regs); 416 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) 417 profile_hit(type, (void *)profile_pc(regs)); 418 } 419 420 #ifdef CONFIG_PROC_FS 421 #include <linux/proc_fs.h> 422 #include <asm/uaccess.h> 423 #include <asm/ptrace.h> 424 425 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, 426 int count, int *eof, void *data) 427 { 428 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); 429 if (count - len < 2) 430 return -EINVAL; 431 len += sprintf(page + len, "\n"); 432 return len; 433 } 434 435 static int prof_cpu_mask_write_proc(struct file *file, 436 const char __user *buffer, unsigned long count, void *data) 437 { 438 cpumask_t *mask = (cpumask_t *)data; 439 unsigned long full_count = count, err; 440 cpumask_t new_value; 441 442 err = cpumask_parse_user(buffer, count, new_value); 443 if (err) 444 return err; 445 446 *mask = new_value; 447 return full_count; 448 } 449 450 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 451 { 452 struct proc_dir_entry *entry; 453 454 /* create /proc/irq/prof_cpu_mask */ 455 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); 456 if (!entry) 457 return; 458 entry->data = (void *)&prof_cpu_mask; 459 entry->read_proc = prof_cpu_mask_read_proc; 460 entry->write_proc = prof_cpu_mask_write_proc; 461 } 462 463 /* 464 * This function accesses profiling information. The returned data is 465 * binary: the sampling step and the actual contents of the profile 466 * buffer. Use of the program readprofile is recommended in order to 467 * get meaningful info out of these data. 468 */ 469 static ssize_t 470 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 471 { 472 unsigned long p = *ppos; 473 ssize_t read; 474 char *pnt; 475 unsigned int sample_step = 1 << prof_shift; 476 477 profile_flip_buffers(); 478 if (p >= (prof_len+1)*sizeof(unsigned int)) 479 return 0; 480 if (count > (prof_len+1)*sizeof(unsigned int) - p) 481 count = (prof_len+1)*sizeof(unsigned int) - p; 482 read = 0; 483 484 while (p < sizeof(unsigned int) && count > 0) { 485 if (put_user(*((char *)(&sample_step)+p), buf)) 486 return -EFAULT; 487 buf++; p++; count--; read++; 488 } 489 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 490 if (copy_to_user(buf, (void *)pnt, count)) 491 return -EFAULT; 492 read += count; 493 *ppos += read; 494 return read; 495 } 496 497 /* 498 * Writing to /proc/profile resets the counters 499 * 500 * Writing a 'profiling multiplier' value into it also re-sets the profiling 501 * interrupt frequency, on architectures that support this. 502 */ 503 static ssize_t write_profile(struct file *file, const char __user *buf, 504 size_t count, loff_t *ppos) 505 { 506 #ifdef CONFIG_SMP 507 extern int setup_profiling_timer(unsigned int multiplier); 508 509 if (count == sizeof(int)) { 510 unsigned int multiplier; 511 512 if (copy_from_user(&multiplier, buf, sizeof(int))) 513 return -EFAULT; 514 515 if (setup_profiling_timer(multiplier)) 516 return -EINVAL; 517 } 518 #endif 519 profile_discard_flip_buffers(); 520 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 521 return count; 522 } 523 524 static const struct file_operations proc_profile_operations = { 525 .read = read_profile, 526 .write = write_profile, 527 }; 528 529 #ifdef CONFIG_SMP 530 static void __init profile_nop(void *unused) 531 { 532 } 533 534 static int __init create_hash_tables(void) 535 { 536 int cpu; 537 538 for_each_online_cpu(cpu) { 539 int node = cpu_to_node(cpu); 540 struct page *page; 541 542 page = alloc_pages_node(node, 543 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 544 0); 545 if (!page) 546 goto out_cleanup; 547 per_cpu(cpu_profile_hits, cpu)[1] 548 = (struct profile_hit *)page_address(page); 549 page = alloc_pages_node(node, 550 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 551 0); 552 if (!page) 553 goto out_cleanup; 554 per_cpu(cpu_profile_hits, cpu)[0] 555 = (struct profile_hit *)page_address(page); 556 } 557 return 0; 558 out_cleanup: 559 prof_on = 0; 560 smp_mb(); 561 on_each_cpu(profile_nop, NULL, 0, 1); 562 for_each_online_cpu(cpu) { 563 struct page *page; 564 565 if (per_cpu(cpu_profile_hits, cpu)[0]) { 566 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 567 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 568 __free_page(page); 569 } 570 if (per_cpu(cpu_profile_hits, cpu)[1]) { 571 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 572 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 573 __free_page(page); 574 } 575 } 576 return -1; 577 } 578 #else 579 #define create_hash_tables() ({ 0; }) 580 #endif 581 582 static int __init create_proc_profile(void) 583 { 584 struct proc_dir_entry *entry; 585 586 if (!prof_on) 587 return 0; 588 if (create_hash_tables()) 589 return -1; 590 entry = proc_create("profile", S_IWUSR | S_IRUGO, 591 NULL, &proc_profile_operations); 592 if (!entry) 593 return 0; 594 entry->size = (1+prof_len) * sizeof(atomic_t); 595 hotcpu_notifier(profile_cpu_callback, 0); 596 return 0; 597 } 598 module_init(create_proc_profile); 599 #endif /* CONFIG_PROC_FS */ 600