xref: /openbmc/linux/kernel/profile.c (revision 0d4bb5e4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/profile.c
4  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
5  *  with configurable resolution, support for restricting the cpus on
6  *  which profiling is done, and switching between cpu time and
7  *  schedule() calls via kernel command line parameters passed at boot.
8  *
9  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10  *	Red Hat, July 2004
11  *  Consolidation of architecture support code for profiling,
12  *	Nadia Yvette Chambers, Oracle, July 2004
13  *  Amortized hit count accounting via per-cpu open-addressed hashtables
14  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15  *	Oracle, 2004
16  */
17 
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30 
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34 
35 struct profile_hit {
36 	u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT	3
39 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
42 
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len;
45 static unsigned short int prof_shift;
46 
47 int prof_on __read_mostly;
48 EXPORT_SYMBOL_GPL(prof_on);
49 
50 static cpumask_var_t prof_cpu_mask;
51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
53 static DEFINE_PER_CPU(int, cpu_profile_flip);
54 static DEFINE_MUTEX(profile_flip_mutex);
55 #endif /* CONFIG_SMP */
56 
57 int profile_setup(char *str)
58 {
59 	static const char schedstr[] = "schedule";
60 	static const char sleepstr[] = "sleep";
61 	static const char kvmstr[] = "kvm";
62 	int par;
63 
64 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
65 #ifdef CONFIG_SCHEDSTATS
66 		force_schedstat_enabled();
67 		prof_on = SLEEP_PROFILING;
68 		if (str[strlen(sleepstr)] == ',')
69 			str += strlen(sleepstr) + 1;
70 		if (get_option(&str, &par))
71 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
72 		pr_info("kernel sleep profiling enabled (shift: %u)\n",
73 			prof_shift);
74 #else
75 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
76 #endif /* CONFIG_SCHEDSTATS */
77 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
78 		prof_on = SCHED_PROFILING;
79 		if (str[strlen(schedstr)] == ',')
80 			str += strlen(schedstr) + 1;
81 		if (get_option(&str, &par))
82 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
83 		pr_info("kernel schedule profiling enabled (shift: %u)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
91 		pr_info("kernel KVM profiling enabled (shift: %u)\n",
92 			prof_shift);
93 	} else if (get_option(&str, &par)) {
94 		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
95 		prof_on = CPU_PROFILING;
96 		pr_info("kernel profiling enabled (shift: %u)\n",
97 			prof_shift);
98 	}
99 	return 1;
100 }
101 __setup("profile=", profile_setup);
102 
103 
104 int __ref profile_init(void)
105 {
106 	int buffer_bytes;
107 	if (!prof_on)
108 		return 0;
109 
110 	/* only text is profiled */
111 	prof_len = (_etext - _stext) >> prof_shift;
112 
113 	if (!prof_len) {
114 		pr_warn("profiling shift: %u too large\n", prof_shift);
115 		prof_on = 0;
116 		return -EINVAL;
117 	}
118 
119 	buffer_bytes = prof_len*sizeof(atomic_t);
120 
121 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
122 		return -ENOMEM;
123 
124 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
125 
126 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
127 	if (prof_buffer)
128 		return 0;
129 
130 	prof_buffer = alloc_pages_exact(buffer_bytes,
131 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
132 	if (prof_buffer)
133 		return 0;
134 
135 	prof_buffer = vzalloc(buffer_bytes);
136 	if (prof_buffer)
137 		return 0;
138 
139 	free_cpumask_var(prof_cpu_mask);
140 	return -ENOMEM;
141 }
142 
143 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
144 /*
145  * Each cpu has a pair of open-addressed hashtables for pending
146  * profile hits. read_profile() IPI's all cpus to request them
147  * to flip buffers and flushes their contents to prof_buffer itself.
148  * Flip requests are serialized by the profile_flip_mutex. The sole
149  * use of having a second hashtable is for avoiding cacheline
150  * contention that would otherwise happen during flushes of pending
151  * profile hits required for the accuracy of reported profile hits
152  * and so resurrect the interrupt livelock issue.
153  *
154  * The open-addressed hashtables are indexed by profile buffer slot
155  * and hold the number of pending hits to that profile buffer slot on
156  * a cpu in an entry. When the hashtable overflows, all pending hits
157  * are accounted to their corresponding profile buffer slots with
158  * atomic_add() and the hashtable emptied. As numerous pending hits
159  * may be accounted to a profile buffer slot in a hashtable entry,
160  * this amortizes a number of atomic profile buffer increments likely
161  * to be far larger than the number of entries in the hashtable,
162  * particularly given that the number of distinct profile buffer
163  * positions to which hits are accounted during short intervals (e.g.
164  * several seconds) is usually very small. Exclusion from buffer
165  * flipping is provided by interrupt disablement (note that for
166  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
167  * process context).
168  * The hash function is meant to be lightweight as opposed to strong,
169  * and was vaguely inspired by ppc64 firmware-supported inverted
170  * pagetable hash functions, but uses a full hashtable full of finite
171  * collision chains, not just pairs of them.
172  *
173  * -- nyc
174  */
175 static void __profile_flip_buffers(void *unused)
176 {
177 	int cpu = smp_processor_id();
178 
179 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
180 }
181 
182 static void profile_flip_buffers(void)
183 {
184 	int i, j, cpu;
185 
186 	mutex_lock(&profile_flip_mutex);
187 	j = per_cpu(cpu_profile_flip, get_cpu());
188 	put_cpu();
189 	on_each_cpu(__profile_flip_buffers, NULL, 1);
190 	for_each_online_cpu(cpu) {
191 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
192 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
193 			if (!hits[i].hits) {
194 				if (hits[i].pc)
195 					hits[i].pc = 0;
196 				continue;
197 			}
198 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
199 			hits[i].hits = hits[i].pc = 0;
200 		}
201 	}
202 	mutex_unlock(&profile_flip_mutex);
203 }
204 
205 static void profile_discard_flip_buffers(void)
206 {
207 	int i, cpu;
208 
209 	mutex_lock(&profile_flip_mutex);
210 	i = per_cpu(cpu_profile_flip, get_cpu());
211 	put_cpu();
212 	on_each_cpu(__profile_flip_buffers, NULL, 1);
213 	for_each_online_cpu(cpu) {
214 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
215 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
216 	}
217 	mutex_unlock(&profile_flip_mutex);
218 }
219 
220 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
221 {
222 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
223 	int i, j, cpu;
224 	struct profile_hit *hits;
225 
226 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
227 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
228 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
229 	cpu = get_cpu();
230 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
231 	if (!hits) {
232 		put_cpu();
233 		return;
234 	}
235 	/*
236 	 * We buffer the global profiler buffer into a per-CPU
237 	 * queue and thus reduce the number of global (and possibly
238 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
239 	 */
240 	local_irq_save(flags);
241 	do {
242 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
243 			if (hits[i + j].pc == pc) {
244 				hits[i + j].hits += nr_hits;
245 				goto out;
246 			} else if (!hits[i + j].hits) {
247 				hits[i + j].pc = pc;
248 				hits[i + j].hits = nr_hits;
249 				goto out;
250 			}
251 		}
252 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
253 	} while (i != primary);
254 
255 	/*
256 	 * Add the current hit(s) and flush the write-queue out
257 	 * to the global buffer:
258 	 */
259 	atomic_add(nr_hits, &prof_buffer[pc]);
260 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
261 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
262 		hits[i].pc = hits[i].hits = 0;
263 	}
264 out:
265 	local_irq_restore(flags);
266 	put_cpu();
267 }
268 
269 static int profile_dead_cpu(unsigned int cpu)
270 {
271 	struct page *page;
272 	int i;
273 
274 	if (cpumask_available(prof_cpu_mask))
275 		cpumask_clear_cpu(cpu, prof_cpu_mask);
276 
277 	for (i = 0; i < 2; i++) {
278 		if (per_cpu(cpu_profile_hits, cpu)[i]) {
279 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
280 			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
281 			__free_page(page);
282 		}
283 	}
284 	return 0;
285 }
286 
287 static int profile_prepare_cpu(unsigned int cpu)
288 {
289 	int i, node = cpu_to_mem(cpu);
290 	struct page *page;
291 
292 	per_cpu(cpu_profile_flip, cpu) = 0;
293 
294 	for (i = 0; i < 2; i++) {
295 		if (per_cpu(cpu_profile_hits, cpu)[i])
296 			continue;
297 
298 		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
299 		if (!page) {
300 			profile_dead_cpu(cpu);
301 			return -ENOMEM;
302 		}
303 		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
304 
305 	}
306 	return 0;
307 }
308 
309 static int profile_online_cpu(unsigned int cpu)
310 {
311 	if (cpumask_available(prof_cpu_mask))
312 		cpumask_set_cpu(cpu, prof_cpu_mask);
313 
314 	return 0;
315 }
316 
317 #else /* !CONFIG_SMP */
318 #define profile_flip_buffers()		do { } while (0)
319 #define profile_discard_flip_buffers()	do { } while (0)
320 
321 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
322 {
323 	unsigned long pc;
324 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
325 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
326 }
327 #endif /* !CONFIG_SMP */
328 
329 void profile_hits(int type, void *__pc, unsigned int nr_hits)
330 {
331 	if (prof_on != type || !prof_buffer)
332 		return;
333 	do_profile_hits(type, __pc, nr_hits);
334 }
335 EXPORT_SYMBOL_GPL(profile_hits);
336 
337 void profile_tick(int type)
338 {
339 	struct pt_regs *regs = get_irq_regs();
340 
341 	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
342 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
343 		profile_hit(type, (void *)profile_pc(regs));
344 }
345 
346 #ifdef CONFIG_PROC_FS
347 #include <linux/proc_fs.h>
348 #include <linux/seq_file.h>
349 #include <linux/uaccess.h>
350 
351 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
352 {
353 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
354 	return 0;
355 }
356 
357 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
358 {
359 	return single_open(file, prof_cpu_mask_proc_show, NULL);
360 }
361 
362 static ssize_t prof_cpu_mask_proc_write(struct file *file,
363 	const char __user *buffer, size_t count, loff_t *pos)
364 {
365 	cpumask_var_t new_value;
366 	int err;
367 
368 	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
369 		return -ENOMEM;
370 
371 	err = cpumask_parse_user(buffer, count, new_value);
372 	if (!err) {
373 		cpumask_copy(prof_cpu_mask, new_value);
374 		err = count;
375 	}
376 	free_cpumask_var(new_value);
377 	return err;
378 }
379 
380 static const struct proc_ops prof_cpu_mask_proc_ops = {
381 	.proc_open	= prof_cpu_mask_proc_open,
382 	.proc_read	= seq_read,
383 	.proc_lseek	= seq_lseek,
384 	.proc_release	= single_release,
385 	.proc_write	= prof_cpu_mask_proc_write,
386 };
387 
388 void create_prof_cpu_mask(void)
389 {
390 	/* create /proc/irq/prof_cpu_mask */
391 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
392 }
393 
394 /*
395  * This function accesses profiling information. The returned data is
396  * binary: the sampling step and the actual contents of the profile
397  * buffer. Use of the program readprofile is recommended in order to
398  * get meaningful info out of these data.
399  */
400 static ssize_t
401 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
402 {
403 	unsigned long p = *ppos;
404 	ssize_t read;
405 	char *pnt;
406 	unsigned long sample_step = 1UL << prof_shift;
407 
408 	profile_flip_buffers();
409 	if (p >= (prof_len+1)*sizeof(unsigned int))
410 		return 0;
411 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
412 		count = (prof_len+1)*sizeof(unsigned int) - p;
413 	read = 0;
414 
415 	while (p < sizeof(unsigned int) && count > 0) {
416 		if (put_user(*((char *)(&sample_step)+p), buf))
417 			return -EFAULT;
418 		buf++; p++; count--; read++;
419 	}
420 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
421 	if (copy_to_user(buf, (void *)pnt, count))
422 		return -EFAULT;
423 	read += count;
424 	*ppos += read;
425 	return read;
426 }
427 
428 /* default is to not implement this call */
429 int __weak setup_profiling_timer(unsigned mult)
430 {
431 	return -EINVAL;
432 }
433 
434 /*
435  * Writing to /proc/profile resets the counters
436  *
437  * Writing a 'profiling multiplier' value into it also re-sets the profiling
438  * interrupt frequency, on architectures that support this.
439  */
440 static ssize_t write_profile(struct file *file, const char __user *buf,
441 			     size_t count, loff_t *ppos)
442 {
443 #ifdef CONFIG_SMP
444 	if (count == sizeof(int)) {
445 		unsigned int multiplier;
446 
447 		if (copy_from_user(&multiplier, buf, sizeof(int)))
448 			return -EFAULT;
449 
450 		if (setup_profiling_timer(multiplier))
451 			return -EINVAL;
452 	}
453 #endif
454 	profile_discard_flip_buffers();
455 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
456 	return count;
457 }
458 
459 static const struct proc_ops profile_proc_ops = {
460 	.proc_read	= read_profile,
461 	.proc_write	= write_profile,
462 	.proc_lseek	= default_llseek,
463 };
464 
465 int __ref create_proc_profile(void)
466 {
467 	struct proc_dir_entry *entry;
468 #ifdef CONFIG_SMP
469 	enum cpuhp_state online_state;
470 #endif
471 
472 	int err = 0;
473 
474 	if (!prof_on)
475 		return 0;
476 #ifdef CONFIG_SMP
477 	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
478 				profile_prepare_cpu, profile_dead_cpu);
479 	if (err)
480 		return err;
481 
482 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
483 				profile_online_cpu, NULL);
484 	if (err < 0)
485 		goto err_state_prep;
486 	online_state = err;
487 	err = 0;
488 #endif
489 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
490 			    NULL, &profile_proc_ops);
491 	if (!entry)
492 		goto err_state_onl;
493 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
494 
495 	return err;
496 err_state_onl:
497 #ifdef CONFIG_SMP
498 	cpuhp_remove_state(online_state);
499 err_state_prep:
500 	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
501 #endif
502 	return err;
503 }
504 subsys_initcall(create_proc_profile);
505 #endif /* CONFIG_PROC_FS */
506